JPS6226838B2 - - Google Patents

Info

Publication number
JPS6226838B2
JPS6226838B2 JP58015135A JP1513583A JPS6226838B2 JP S6226838 B2 JPS6226838 B2 JP S6226838B2 JP 58015135 A JP58015135 A JP 58015135A JP 1513583 A JP1513583 A JP 1513583A JP S6226838 B2 JPS6226838 B2 JP S6226838B2
Authority
JP
Japan
Prior art keywords
zinc
gypsum
precipitate
calcium carbonate
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58015135A
Other languages
Japanese (ja)
Other versions
JPS59142895A (en
Inventor
Mitsuo Mamya
Hiromi Magota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP58015135A priority Critical patent/JPS59142895A/en
Publication of JPS59142895A publication Critical patent/JPS59142895A/en
Publication of JPS6226838B2 publication Critical patent/JPS6226838B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鉱山排水等に溶存する硫酸酸性の亜鉛
含有溶液の中和処理法に関するものである。 鉱山排水や製錬工程水などに溶存する亜鉛含有
溶液の中和は、一般にコスト的に安価で反応性の
良い消石灰を用いて処理されているが、中和殿物
として同時に石膏が析出するために生成亜鉛殿物
の亜鉛品位が低く、ダム等に廃棄せざるを得ない
ので経費がかかる欠点がある。そこで、石膏等を
析出させない中和剤として高価なアンモニアや苛
性ソーダを用いる方法も採られている。また、中
和剤として炭酸カルシウムを使用する場合には、
炭酸カルシウムの反応性が悪く液のPHがなかなか
上がらないので、従来は中和反応を促進させるた
めに液温を80℃以上の高温に加熱しなければなら
ず、経費がかさむので製錬工程の排熱を利用する
など限られた使用法であつた。 本発明は従来の中和生成殿物中の亜鉛品位が低
い欠点を補うと共に亜鉛殿物(主として水酸化亜
鉛)を経済的かつ高品位で回収することができる
方法を提供するものである。 第1図はZnを1000mg/含む硫酸亜鉛溶液に炭
酸カルシウムを亜鉛に対して1当量と2当量添加
した場合の温度と液中の残存亜鉛濃度との関係
(但し1時間後)を示すグラフであり、このグラ
フからも判るように亜鉛の中和反応は80℃以上に
加温しなければ満足させることができない。 本発明にあつては、含亜鉛溶液を炭酸カルシウ
ムにより中和するものであるが、中和時に空気を
吹込んで液中に溶存する炭酸ガスを追い出し、中
和反応を促進させて比較的低温で中和を完了する
ことができるものである。第2図は第1図で述べ
たと同じ硫酸亜鉛溶液を炭酸カルシウム(2当
量)により中和する際に空気を吹込んだ場合の温
度と液中残存亜鉛濃度との関係(但し1時間後)
を示すもので、この図から判るように空気吹込み
により溶存する炭酸ガスを追い出して反応効率を
良くすることで50〜60℃の低温でも中和反応が進
む。 本発明は上記の如く液温を40〜70℃好ましくは
50〜60℃の比較的低温で炭酸カルシウムによる中
和が行なえるため、利用範囲は拡大される。炭酸
カルシウムを用いた中和反応は次の通りである。 ZnSO4+CaCO3+H2O=Zn(OH)2 +CaSO4+CO2↑ 次に、本発明では炭酸カルシウムでの中和によ
り生成した水酸化亜鉛主体の亜鉛殿物と石膏とを
浮遊選鉱により分離する。従来、亜鉛殿物と石膏
の浮選分離法としては、弱酸性の領域で浮鉱に石
膏、沈鉱に亜鉛殿物として分離する方法や、ナフ
テン酸ソーダを捕収剤として浮鉱に亜鉛殿物、沈
鉱に石膏として分離する方法が知られているが、
本発明では弱酸性〜アルカリ領域で上記中和生成
殿物に対し捕収剤としてアルキルアミン酸塩系陽
イオン捕収剤等を、また抑制剤としてデンプン等
を用い、石膏を浮鉱として、また亜鉛殿物を沈鉱
として相互に浮選分離を行うものである。 実施例 Zn2+3g/を含有する硫酸亜鉛溶液3.5を液
温50℃に保持して空気を5/分で吹込みながら
炭酸カルシウム25gを添加してPH6.5に調整して2
時間中和反応を行なつた後、捕収剤として陽イオ
ン系のDAA(ドデシル・アンモニウム・アセテ
ート)129mg/と抑制剤としてデンプン90mg/
を添加し浮選を行なつた。その浮選結果を次表に
示す。
The present invention relates to a method for neutralizing a sulfuric acid acidic zinc-containing solution dissolved in mine drainage or the like. Neutralization of zinc-containing solutions dissolved in mine drainage or smelting process water is generally done using slaked lime, which is inexpensive and has good reactivity, but gypsum also precipitates as a neutralization precipitate. The zinc quality of the zinc precipitate produced is low, and it has to be disposed of in dams, etc., resulting in high costs. Therefore, a method of using expensive ammonia or caustic soda as a neutralizing agent to prevent the precipitation of gypsum and the like has been adopted. In addition, when using calcium carbonate as a neutralizing agent,
Calcium carbonate has poor reactivity and the pH of the liquid does not rise easily, so in the past, the liquid temperature had to be heated to a high temperature of 80°C or higher to promote the neutralization reaction, which increased costs and prevented the smelting process. Its usage was limited, such as by utilizing waste heat. The present invention compensates for the conventional drawbacks of low zinc quality in neutralization product precipitates and provides a method that can economically recover zinc precipitates (mainly zinc hydroxide) with high quality. Figure 1 is a graph showing the relationship between temperature and residual zinc concentration in the solution (after 1 hour) when 1 and 2 equivalents of calcium carbonate relative to zinc were added to a zinc sulfate solution containing 1000 mg/Zn. As can be seen from this graph, the neutralization reaction of zinc cannot be satisfied unless the temperature is heated to 80°C or higher. In the present invention, a zinc-containing solution is neutralized with calcium carbonate, and at the time of neutralization, air is blown in to drive out carbon dioxide gas dissolved in the solution, promoting the neutralization reaction, and neutralizing the solution at a relatively low temperature. It is capable of completing neutralization. Figure 2 shows the relationship between the temperature and the concentration of zinc remaining in the solution when air is blown into the same zinc sulfate solution as described in Figure 1 when it is neutralized with calcium carbonate (2 equivalents) (after 1 hour).
As can be seen from this figure, the neutralization reaction progresses even at low temperatures of 50 to 60°C by expelling dissolved carbon dioxide gas by blowing air and improving reaction efficiency. In the present invention, as mentioned above, the liquid temperature is preferably 40 to 70℃.
Neutralization with calcium carbonate can be carried out at relatively low temperatures of 50 to 60°C, expanding the scope of its use. The neutralization reaction using calcium carbonate is as follows. ZnSO 4 +CaCO 3 +H 2 O=Zn(OH) 2 +CaSO 4 +CO 2 ↑ Next, in the present invention, the zinc precipitate mainly composed of zinc hydroxide produced by neutralization with calcium carbonate and gypsum are separated by flotation. . Conventional flotation separation methods for zinc precipitates and gypsum include separating gypsum from floating ore and zinc precipitate from precipitated ore in a weakly acidic region, and separating zinc precipitate from floating ore using sodium naphthenate as a collecting agent. There is a known method of separating gypsum into mineral deposits, but
In the present invention, for the neutralization product precipitate in the weakly acidic to alkaline range, an alkyl amine salt-based cation collector, etc. is used as a collector, starch, etc. is used as a suppressor, and gypsum is used as floating ore. This involves mutual flotation separation using zinc precipitates as precipitates. Example A zinc sulfate solution containing Zn 2 +3 g/min was maintained at a temperature of 50°C, and while blowing air at a rate of 5/min, 25 g of calcium carbonate was added to adjust the pH to 6.5.
After the time neutralization reaction, 129 mg/day of cationic DAA (dodecyl ammonium acetate) was added as a scavenger and 90 mg/starch was added as an inhibitor.
was added to perform flotation. The flotation results are shown in the table below.

【表】 上表から、亜鉛殿物と石膏の混合スラリーを浮
選により石膏を浮鉱とし、亜鉛殿物を沈鉱として
相互に高品位で分離できることが判る。 本発明は上述の如く、含亜鉛硫酸酸性溶液を炭
酸カルシウムを用いて従来法よりも比較的低温で
中和できると共に生成した中和殿物から高品位で
亜鉛と石膏を分離回収できるので、従来のように
中和殿物を廃棄する必要がなく、極めて経済的で
ある。
[Table] From the above table, it can be seen that a mixed slurry of zinc precipitate and gypsum can be separated in high quality by flotation to convert the gypsum into floating ore and the zinc precipitate into precipitate ore. As described above, the present invention can neutralize a zinc-containing sulfuric acid solution using calcium carbonate at a relatively lower temperature than the conventional method, and can separate and recover high-grade zinc and gypsum from the neutralized precipitate produced. It is extremely economical as there is no need to dispose of the neutralized precipitate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硫酸亜鉛溶液を炭酸カルシウムで中和
した場合の温度と液中残存亜鉛濃度との関係を示
すグラフ、第2図は上記中和に際して液中に空気
を吹込んだ場合の温度と液中残存亜鉛濃度との関
係を示すグラフである。
Figure 1 is a graph showing the relationship between temperature and residual zinc concentration in the solution when a zinc sulfate solution is neutralized with calcium carbonate, and Figure 2 is a graph showing the relationship between temperature and residual zinc concentration in the solution when air is blown into the solution during the neutralization. It is a graph showing the relationship with the concentration of residual zinc in the liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 含亜鉛溶液を40〜70℃に保持し、空気を吹込
みながら中和剤として炭酸カルシウムを添加して
亜鉛殿物と石膏を生成せしめ、次いで該中和生成
殿物を浮選して亜鉛殿物と石膏とを分離すること
により高品位亜鉛殿物を回収することを特徴とす
る含亜鉛溶液の中和処理法。
1. Maintain the zinc-containing solution at 40 to 70°C, add calcium carbonate as a neutralizing agent while blowing air to generate zinc precipitate and gypsum, and then float the neutralized precipitate to remove zinc. A method for neutralizing a zinc-containing solution, characterized by recovering high-grade zinc precipitates by separating precipitates and gypsum.
JP58015135A 1983-02-01 1983-02-01 Process for neutralizing solution containing zinc Granted JPS59142895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015135A JPS59142895A (en) 1983-02-01 1983-02-01 Process for neutralizing solution containing zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015135A JPS59142895A (en) 1983-02-01 1983-02-01 Process for neutralizing solution containing zinc

Publications (2)

Publication Number Publication Date
JPS59142895A JPS59142895A (en) 1984-08-16
JPS6226838B2 true JPS6226838B2 (en) 1987-06-11

Family

ID=11880372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015135A Granted JPS59142895A (en) 1983-02-01 1983-02-01 Process for neutralizing solution containing zinc

Country Status (1)

Country Link
JP (1) JPS59142895A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6722001A (en) * 2000-07-14 2002-01-30 Noranda Inc Production of zinc oxide from acid soluble ore using precipitation method
CN103547690A (en) * 2011-01-27 2014-01-29 嘉能可昆士兰有限公司 Precipitation of zinc from solution
FR2999455B1 (en) * 2012-12-19 2016-07-15 Solvay METHOD FOR SEPARATING CALCIUM CARBONATE AND GYPSUM
ES2785307T3 (en) 2014-09-04 2020-10-06 Solvay Method for the prophylactic treatment of a silo for food products

Also Published As

Publication number Publication date
JPS59142895A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
US3919394A (en) Process for the removal of oxides of sulfur from a gaseous stream
KR102093004B1 (en) Method for comprehensive recovery of magnesium-containing smelting wastewater
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
CN101289200A (en) Technological process for purifying bittern
KR20070099669A (en) Process for the production of magnesium oxide
US4222769A (en) Process of regenerating and recovering lead sulphate-containing wastes
US4058587A (en) Process for removing impurities from acidic fluid solutions
SK135697A3 (en) Process for the production of cesium compounds
CN115432724B (en) Recycling treatment method of magnesium ammonium waste salt
US2082101A (en) Process of treating a mixture of calcium and magnesium hydroxides
US2164627A (en) Process for treatment of phosphatic solutions
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
JPS6226838B2 (en)
EP2991753A1 (en) Method of sequestering carbon dioxide
GB2137973A (en) Method of treating exhaust gases
CA1194274A (en) Causticization method
KR101856959B1 (en) Manufacture method and equipment for sodium hydrogen carbonate and calcium carbonate
CN1033782A (en) A kind of method that purifies sodium sulphate type bittern
JPS5839894B2 (en) Method for removing phosphorus and silicon from water-soluble smelting slag
US1999709A (en) Purification of brines
US2373528A (en) Method of recovering magnesium compounds
RU2560359C2 (en) Calcification method of producing lithium carbonate from lithium-bearing material
US3573896A (en) Wet process for manufacturing metallic copper
JPS6161865B2 (en)
CN110972482B (en) Beneficiation method for low-grade zinc-containing raw ore