JPS62268016A - Composite contact material - Google Patents
Composite contact materialInfo
- Publication number
- JPS62268016A JPS62268016A JP10953086A JP10953086A JPS62268016A JP S62268016 A JPS62268016 A JP S62268016A JP 10953086 A JP10953086 A JP 10953086A JP 10953086 A JP10953086 A JP 10953086A JP S62268016 A JPS62268016 A JP S62268016A
- Authority
- JP
- Japan
- Prior art keywords
- contact
- base material
- monoxide
- contact material
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims description 59
- 239000002131 composite material Substances 0.000 title claims description 12
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 10
- 238000004663 powder metallurgy Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 8
- 238000005219 brazing Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 239000004332 silver Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Manufacture Of Switches (AREA)
- Contacts (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は粉末冶金法によるAg一酸化物系接点材料と裏
張り基材との複合接点材料およびその製造方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite contact material of an Ag monoxide-based contact material and a backing base material by a powder metallurgy method, and a method for manufacturing the same.
Ag−Cd0などのAg一酸化物系接点材料は、耐溶着
性、耐消耗性などの接点特性が優れていることから特に
中負荷接点用として広汎に用いられている。Ag monoxide-based contact materials such as Ag-Cd0 have excellent contact properties such as welding resistance and abrasion resistance, and are therefore widely used, particularly for medium-load contacts.
ところが、この電気接点を製造するに際して例えばAg
−Cd0などのAg一酸化物系接点材料の板材を単に内
部酸化処理して全体を酸化してしまったのでは、これを
電気接点にするに際して所定の台材にろう付けすること
が非常に困難となるため、そのAg一酸化物系接点材料
のろう何面にろう付性の良好な加工を施す必要がある。However, when manufacturing this electrical contact, for example, Ag
- If a board made of Ag monoxide contact material such as Cd0 is simply internally oxidized and the whole is oxidized, it is extremely difficult to braze it to a designated base material when making it into an electrical contact. Therefore, it is necessary to process the brazing surface of the Ag monoxide-based contact material to improve brazing properties.
そこで、従来は以下の方法によって接点材料の台材への
ろう付けが行なわれていた。Therefore, conventionally, the contact material was brazed to the base material by the following method.
■ 第3図に示す如く、内部酸化性Ag合金(以下Ag
−Meと云う)板の片面の酸素を遮蔽し、開放している
他面から02を供給して内部酸化させてAg−酸化物(
以下A g −M e Oと云う)とし、しかも遮蔽し
である面にろう付は性の良好なAg−M e層を残留せ
しめ、このAg Me面を台材知ろう付けして電気接点
とする。■ As shown in Figure 3, internally oxidizing Ag alloy (hereinafter referred to as Ag
Oxygen is blocked on one side of the plate (called -Me), and 02 is supplied from the other open side to cause internal oxidation, resulting in Ag-oxide (
In addition, an Ag-Me layer with good brazing properties remains on the shielding surface, and this Ag-Me surface is brazed to the base material to form an electrical contact. do.
■ 第4図に示す如(、−Ag−Meの片面にろう付性
のよいAgを裏張り基材として複合させ、接魚形状に加
工した後Ag−Me面およびAg面の両面から02を供
給して内部酸化処理によりAg−M e Oとし、この
AKの基材料面を台材にろう付けして電気接点とする。■ As shown in Fig. 4, Ag with good brazing properties is composited on one side of -Ag-Me as a lining base material, and after processing it into a fish-contact shape, 02 is applied from both the Ag-Me side and the Ag side. The AK is supplied and subjected to internal oxidation treatment to form Ag-M e O, and the base material side of this AK is brazed to a base material to form an electrical contact.
■ 特開昭60−16505号に示される技術であり、
内部酸化側から02遮断側に向ってAg17)濃度が漸
減するAg濃度勾配層を形成しながら、ろう付は性の良
好なCu層を設けこのCu面を台材にろう付けして電気
接点とする。■ It is a technology shown in Japanese Patent Application Laid-Open No. 16505/1983,
While forming an Ag concentration gradient layer in which the Ag17) concentration gradually decreases from the internal oxidation side to the 02 cutoff side, a Cu layer with good brazing properties is provided, and this Cu surface is brazed to the base material to form an electrical contact. do.
以上のような従来技術によると、■の技術はAg−M
eの片面を02から遮断して一方のみから内部酸化させ
て遮蔽面にろう付は性のよいAgMe層を残すものであ
るが、このAg−Me層を安定的に残す技術は非常に難
しく、また片面を遮蔽する技術も容易ではない。According to the conventional technology as described above, the technology (■) is Ag-M
Shielding one side of e from 02 and internally oxidizing only one side and brazing leaves a good AgMe layer on the shielded side, but the technique of stably leaving this Ag-Me layer is extremely difficult. Also, the technology to shield one side is not easy.
■の技術は接点形状に加工された後に内部酸化させるが
、この内部酸化処理は通常700℃以上の高温で処理す
るために処理中に複数の接点材料のAgの基材料同志が
拡散を起してしまう。そこで、この拡散を防止するため
にアルミナ(At203)粉を混ぜて処理する方法があ
るが、これによると接点材料の表面にAt2o5が付着
してしまい、実際に接点として開閉したときに接点不良
などの接点障害を起すことがある。In the technique (2), internal oxidation is performed after processing into a contact shape, but since this internal oxidation treatment is usually performed at a high temperature of 700°C or higher, the Ag base materials of multiple contact materials will diffuse into each other during the process. It ends up. Therefore, there is a method of mixing alumina (At203) powder to prevent this diffusion, but this method results in At2o5 adhering to the surface of the contact material, resulting in contact failure and other problems when it is actually opened and closed as a contact. may cause contact failure.
■の技術は上記■の技術と同様に02の遮蔽技術に問題
がある。The technology (2) has a problem with the shielding technology 02, similar to the technology (2) above.
さらに、上記の各方法はいずれも内部酸化法によるAg
一酸化物系接点材料の製造法に関するもので粉末冶金法
によるAtr一酸化物系接点材料の製造には適用できな
い。Furthermore, in each of the above methods, Ag by internal oxidation method is used.
This article relates to a method for producing monoxide-based contact materials and cannot be applied to the production of Atr monoxide-based contact materials by powder metallurgy.
すなわち、粉末冶金法による製造においてはAgと酸化
物の混合粉体を熱間押出しなどによって加工するため、
ろう付けに必要な部分のみに効率よく未酸化層やAg層
を形成することは極めて困難なことである。In other words, in manufacturing by powder metallurgy, a mixed powder of Ag and oxide is processed by hot extrusion, etc.
It is extremely difficult to efficiently form an unoxidized layer or an Ag layer only in the areas necessary for brazing.
そこで、第5図に示すようにAg一酸化物系接点材料と
Agとを熱間圧着により複合することは可能であるが、
接合強度が小さ過ぎて実用には供し得ない。Therefore, as shown in FIG. 5, it is possible to composite Ag monoxide-based contact material and Ag by hot press bonding.
The bonding strength is too low to be of practical use.
本発明は、粉末冶金法によるAg一酸化物系接点材料に
、Ti、Zr、In等の活性な金属を0.5〜7重量%
を添加したCu合金の基材を複合したことを特徴とする
。In the present invention, 0.5 to 7% by weight of active metals such as Ti, Zr, and In are added to Ag monoxide-based contact materials produced by powder metallurgy.
It is characterized by a composite of a Cu alloy base material to which is added.
不活性ガス例えば窒素ガス雰囲気中にてAg 一酸化物
系接点材料とCu合金の基材とを加熱圧接すると、Cu
合金中の活性な金属と接点材料中に分散する酸化物粒子
とが接合界面で反応し、マトリックスである銀と銅合金
とが接合する。その後、650℃以上820℃以下の温
度で加熱することによってA)j−酸化物と酸化物およ
び銅合金とを拡散安定化させることで接点材料と基材を
強固に複合させることができる。When the Ag monoxide-based contact material and the Cu alloy base material are heated and pressure-welded in an inert gas atmosphere, such as nitrogen gas, Cu
The active metal in the alloy and the oxide particles dispersed in the contact material react at the bonding interface, and the matrix silver and copper alloy bond. Thereafter, by heating at a temperature of 650° C. or higher and 820° C. or lower, A) the j-oxide, the oxide, and the copper alloy are diffused and stabilized, so that the contact material and the base material can be strongly composited.
この複合に際して、基材のCu中のTi、Zr、In等
O活性な金属とAg一酸化物系接点材料中に分散する酸
化物粒子とを接合界面で反応させることが肝要であシ、
酸化物が形成されないと接点材料と基材との拡散が急激
に進行し過ぎて低融点合金をつくって安定した複合が得
られない。In this composite, it is important to cause the O-active metals such as Ti, Zr, and In in the Cu base material to react with the oxide particles dispersed in the Ag monoxide contact material at the bonding interface.
If the oxide is not formed, the diffusion between the contact material and the base material will proceed too rapidly to form a low melting point alloy and a stable composite cannot be obtained.
ところが、酸化物を形成することにより接点材料と基材
との拡散を程よく抑制して強固な複合となる。However, by forming an oxide, diffusion between the contact material and the base material is moderately suppressed, resulting in a strong composite.
このようKした複合接点材料をCu iたはCu合金等
の台材にCu合金面を合わせてろう付けして電気接点と
するものである。The composite contact material prepared in this manner is brazed to a base material such as Cu i or Cu alloy with the Cu alloy surface aligned to form an electrical contact.
以下に本発明の一実施例を第1図および第2図に従って
説明する。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
粉末冶金法により製造した厚さO* 51111111
幅2聴の断面形状を有する組成Ag−12(重量%)C
dOから成るAg一酸化物系接点材料1の条材と、厚さ
1咽2幅2mの断面形状を有するTi 2重量%、Z
r0.5重量%、In4重量%を添加した銅合金の基材
2とを、窒素ガス雰囲気中にて700℃1分間加熱した
後、断面減少率20係の圧接加工を行なって複合する。Thickness O* 51111111 manufactured by powder metallurgy method
Composition Ag-12 (wt%) C having a cross-sectional shape with a width of 2 mm
A strip of Ag monoxide-based contact material 1 made of dO, 2% by weight of Ti, and Z
A base material 2 made of a copper alloy containing 0.5% by weight of R and 4% by weight of In is heated at 700° C. for 1 minute in a nitrogen gas atmosphere, and then subjected to pressure welding with a reduction in area of 20 to be composited.
その後、さらに650℃以上820℃以下の温度で加熱
してAg−CdO接点材料と銅合金の基材とを拡散安定
化させて接合強度の高い複台材料を得た。Thereafter, the material was further heated at a temperature of 650° C. or more and 820° C. or less to stabilize the diffusion of the Ag-CdO contact material and the copper alloy base material, thereby obtaining a multi-unit material with high bonding strength.
次に比較のために、従来技術として上記実施例と同断面
形状を有する組成Ag−12(重量%)CdOからなる
Ag一酸化物系接点材料条材と、基材として実施例と同
断面形状を有する銀からなる条材を用い、実施例と同条
件の下で複合化を行ない、本実施例との接合強度比較を
行なった。Next, for comparison, we used an Ag monoxide contact material strip made of composition Ag-12 (wt%) CdO having the same cross-sectional shape as the above example as a conventional technique, and a base material having the same cross-sectional shape as the example. Using a strip made of silver having the following properties, compounding was performed under the same conditions as in the example, and the bonding strength was compared with the present example.
接合強度試験の方法として捻回方法(180°巻戻し)
をもって比較した。Twisting method (180° unwinding) as a joint strength test method
Comparison was made with
試験サンプルは長さ30酎とし、捻回部の長さを20恒
として捻回速度3 (rad/)をもってeC
180°の正転、反転捻回試験を行ない、接合界面の剥
離の有無をもって接合強度とし、その結果を以下の第1
表に示す。The length of the test sample was 30mm, the length of the twisted part was 20mm, and a twisting speed of 3 (rad/) was performed at an eC of 180° forward and reverse twisting tests, and the presence or absence of peeling at the bonding interface was determined. intensity, and the result is the first one below.
Shown in the table.
第1表
〔発明の効果〕
以上説明した本発明によると、Ag一酸化物系接点材料
に複合する基材としてCuにTi、Zr。Table 1 [Effects of the Invention] According to the present invention described above, Cu, Ti, and Zr are used as base materials to be combined with the Ag monoxide-based contact material.
In等の活性な金属を0.5〜4重量係添加し、加熱圧
接によシ基材を→ト白ノックスである接点材料に接合す
ることで、接合界面に酸化物を生成させて十分な強度を
有する複台材料とすることができる。By adding 0.5 to 4% by weight of an active metal such as In and bonding the base material to the contact material, which is tonox, by heat pressure welding, oxides are generated at the bonding interface and sufficient It can be made of a multi-unit material that has strength.
しかも、基材として銅を用いていることによシ、銀とほ
ぼ同等の電気伝導率および熱伝導率が得られるため接点
特性を損うことなく安価な複合接点材料とすることがで
きる。Furthermore, by using copper as the base material, electrical conductivity and thermal conductivity substantially equivalent to that of silver can be obtained, so that an inexpensive composite contact material can be obtained without impairing contact characteristics.
第1図は本発明による電気接点の側面図、第2図は一実
施例を示す拡大断面図、第3図は第1従来技術の断面図
、第4図は第2従来技術の断面図、第5図は第3従来技
術の断面図である。FIG. 1 is a side view of an electrical contact according to the present invention, FIG. 2 is an enlarged sectional view showing one embodiment, FIG. 3 is a sectional view of the first prior art, and FIG. 4 is a sectional view of the second prior art. FIG. 5 is a sectional view of the third prior art.
Claims (1)
の基材面をCuやCu合金製等の台材にろう付けして電
気接点とする複合接点材料において、粉末冶金法による
Ag一酸化物系接点材料に、Ti、Zr、In等の活性
な金属を0.5〜7重量%添加したCu合金の基材をそ
の接合界面に酸化物を生成させて複合したことを特徴と
する複合接点材料。1. Composite contact materials in which a backing base material is composited with an Ag monoxide-based contact material and the base material surface is brazed to a base material made of Cu or Cu alloy, etc., to form an electrical contact, using the powder metallurgy method. It is characterized by a composite of Ag monoxide-based contact material and a Cu alloy base material to which 0.5 to 7% by weight of active metals such as Ti, Zr, and In are added, and oxides are generated at the bonding interface. Composite contact material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10953086A JPS62268016A (en) | 1986-05-15 | 1986-05-15 | Composite contact material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10953086A JPS62268016A (en) | 1986-05-15 | 1986-05-15 | Composite contact material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62268016A true JPS62268016A (en) | 1987-11-20 |
Family
ID=14512590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10953086A Pending JPS62268016A (en) | 1986-05-15 | 1986-05-15 | Composite contact material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62268016A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547253A (en) * | 1991-08-12 | 1993-02-26 | Takaoka Electric Mfg Co Ltd | Roller contact shoe |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50139393A (en) * | 1974-04-25 | 1975-11-07 | ||
JPS5162356A (en) * | 1974-09-30 | 1976-05-29 | Siemens Ag | NISOSHOKETSUSETSUSHOKUSHIHEN |
JPS5823115A (en) * | 1981-06-12 | 1983-02-10 | デグツサ・アクチエンゲゼルシヤフト | Electric contact member |
JPS61143906A (en) * | 1984-12-17 | 1986-07-01 | 中外電気工業株式会社 | Composite electric contact |
-
1986
- 1986-05-15 JP JP10953086A patent/JPS62268016A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50139393A (en) * | 1974-04-25 | 1975-11-07 | ||
JPS5162356A (en) * | 1974-09-30 | 1976-05-29 | Siemens Ag | NISOSHOKETSUSETSUSHOKUSHIHEN |
JPS5823115A (en) * | 1981-06-12 | 1983-02-10 | デグツサ・アクチエンゲゼルシヤフト | Electric contact member |
JPS61143906A (en) * | 1984-12-17 | 1986-07-01 | 中外電気工業株式会社 | Composite electric contact |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547253A (en) * | 1991-08-12 | 1993-02-26 | Takaoka Electric Mfg Co Ltd | Roller contact shoe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5607522A (en) | Method of making electrical contact material | |
US3667110A (en) | Bonding metals without brazing alloys | |
US3666428A (en) | Silver-cadmium oxide electrical contact materials | |
US3982908A (en) | Nickel-gold-cobalt contact for silicon devices | |
US4576659A (en) | Process for inhibiting metal migration during heat cycling of multilayer thin metal film structures | |
JPS61114417A (en) | Ag-sno based composite electric contact material and making thereof | |
US3821848A (en) | Copper backed electrical contact and method of making the same | |
CA1087235A (en) | Silver-tin oxide composite electrical contact | |
JPS62268016A (en) | Composite contact material | |
JPS62268018A (en) | Composite contact material | |
JP2781017B2 (en) | Ceramic package | |
JPS62268019A (en) | Composite contact material | |
JPS62268017A (en) | Composite contact material | |
JPS62268015A (en) | Composite contact material and manufacture thereof | |
JP2641549B2 (en) | Ag-oxide composite contact material and method for producing the same | |
JPS5837922B2 (en) | Heat-resistant electrical conductor for wiring | |
US3880608A (en) | Electrical contact materials containing silver cadmium oxide | |
JPS62241211A (en) | Spot-weldable tape electric contact material | |
JPH0520949A (en) | Electric contact point material and manufacture thereof | |
JP7557341B2 (en) | Method for producing alloy material and its use | |
JPS5939779A (en) | Ceramics and metal bonding method and composite material therefor | |
JP3387655B2 (en) | Joining method of ceramics and silicon | |
JP2641548B2 (en) | Ag-oxide composite contact material and method for producing the same | |
JPH04238692A (en) | Brazing filler metal | |
JPS5837923B2 (en) | Heat-resistant electrical conductor for wiring |