JPS6226752A - Method for generating soft x-ray of high intensity - Google Patents

Method for generating soft x-ray of high intensity

Info

Publication number
JPS6226752A
JPS6226752A JP16704185A JP16704185A JPS6226752A JP S6226752 A JPS6226752 A JP S6226752A JP 16704185 A JP16704185 A JP 16704185A JP 16704185 A JP16704185 A JP 16704185A JP S6226752 A JPS6226752 A JP S6226752A
Authority
JP
Japan
Prior art keywords
soft
rays
magnetic field
waves
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16704185A
Other languages
Japanese (ja)
Other versions
JPH0449240B2 (en
Inventor
Yoshiaki Arata
吉明 荒田
Masaji Miyake
正司 三宅
Nobuyuki Abe
信行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16704185A priority Critical patent/JPS6226752A/en
Publication of JPS6226752A publication Critical patent/JPS6226752A/en
Publication of JPH0449240B2 publication Critical patent/JPH0449240B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce soft X-ray of high intensity by applying high-output electromagnetic milliwaves and submilliwaves to a vacuum case from outside the case in such a manner as to produce a region of electronic cyclotron resonance the frequency of which coincides with that of said electromagnetic waves. CONSTITUTION:A vacuum case 2 is installed either inside a mirror magnetic field coil 1 or inside both the coil 1 and a multipolar magnetic field coil 1'. Various types of gases are fed through the case 2 at proper pressure. High- output electromagnetic milliwaves and submilliwaves (A) are applied through a window 4 in such a manner as to produce a region of electronic cyclotron resonance the frequency of which coincides with that of the above waves (A) inside the vacuum case 2. The gases are completely ionized into high- temperature plasma by resonantly heating electrons. As the result, soft X-rays are produced and they are discharged through a window 5. Therefore, soft X-rays of high intensity can be produced by using a compact generator with a high gaseous pressure of 10<-1>Pa.

Description

【発明の詳細な説明】 X線発生方法としては、高エネルギー電子ビームの固体
物質(標的)への衝突にもとづくものが、種々のエネル
ギー域でのX線管球としてよく知られている。しかし、
X線のエネルギーが0.1−10keV程度の軟X線領
域になると、その発生効率は極端に悪くなり高強度源と
はなり得ない、一方最近の新技術開発のニーズの1つと
して、マイクロ加工用軟X線の必要性が強く叫ばれてい
て、高強度軟X線源に対して大きな注目が集まっている
DETAILED DESCRIPTION OF THE INVENTION As an X-ray generation method, one based on the collision of a high-energy electron beam with a solid material (target) is well known as an X-ray tube in various energy ranges. but,
When the energy of X-rays falls into the soft X-ray region of about 0.1-10 keV, the generation efficiency becomes extremely low and it cannot be used as a high-intensity source.On the other hand, one of the needs of recent new technology development is that There is a strong need for soft X-rays for processing, and high-intensity soft X-ray sources are attracting a lot of attention.

これまで軟X線発生方法として候補にあげられているも
のには、ソール(SORニシンクロトロン軌道放射)や
パルスプラズマ源などがあるが、線源としての品質が最
も良いとされているのはソールである。しかし、これも
ビーム寸法、装置の巨大さ、コストの点などから実用の
点では解決されるべき点が山積している現状である。
So far, candidates for soft X-ray generation methods include Sole (SOR Nishin Chrotron Orbital Radiation) and pulsed plasma sources, but Sole is said to have the best quality as a source. It is. However, the current situation is that there are many problems that need to be solved from a practical point of view, such as the beam size, the huge size of the device, and the cost.

一方、プラズマX線源としては短パルスのレーザプラズ
マやピンチプラズマを利用するものが研究されている。
On the other hand, research is being conducted on plasma X-ray sources that utilize short-pulse laser plasma or pinch plasma.

それらに対して次に述べる、ECRすなわち電子サイク
ロトaン共鳴現象を利用したプラズマによる発生方法は
全く新しい形式に属するものである。
In contrast, the plasma generation method using ECR, that is, the electron cycloton resonance phenomenon, which will be described next, belongs to a completely new type of plasma generation method.

このECRプラズマ源は古くから知られていて、核融合
研究からプロセス技術に至る迄広く利用されている9そ
して外部条件によってはX線が発生する事も既知の事で
ある。しかし軟x1aについては、未だあまり調べられ
ておらず、又その線源としての利用も展開されていない
This ECR plasma source has been known for a long time and is widely used in fields ranging from nuclear fusion research to process technology9, and it is also known that X-rays can be generated depending on external conditions. However, soft x1a has not yet been investigated much, and its use as a radiation source has not been developed.

こうした背景をもとに1本発明は核融合プラズマやSO
Rなどに比べて格段にコンパクトで、かつ種々の極めて
強力な輝線スペクトルが容易に得られ、無電極型で長寿
命の高強度軟X線を発生する方法に関するもので、これ
を広く新しい分野に活用しようとするものである。
Based on this background, the present invention is based on nuclear fusion plasma and SO
This is a method of generating high-intensity soft X-rays that is much more compact than R, etc., has a long life, is electrodeless, and can easily obtain a variety of extremely strong emission line spectra, and is expected to be used in a wide range of new fields. It is intended to be utilized.

まず発生方法の基本を述べよう。単純ミラー磁場あるい
はそれに多極磁場を重じようとした、平均極小磁場中に
ある真空容器に、適当な圧力の種々の気体を流入し、外
部から′Fi、磁波の一種であるマイクロ波を印加する
。マイクロ波の周波数と、磁場中電子のサイクロトロン
共鳴周波数の一致する領域が真空容器内部に存在する時
、わずかのマイクロ波入力でも電子が共鳴的に加熱され
て高温状態となりプラズマを発生すると共に、そこから
気体の制動放射・再結合放射などの連続X線と、各々の
気体に応じた線スペクトルの特性X線を発生する事にな
る。
First, let's explain the basics of how it occurs. Various gases at appropriate pressures are flowed into a vacuum container in a simple mirror magnetic field or in an average minimal magnetic field in which a multipolar magnetic field is to be added, and 'Fi, a type of microwave, is applied from the outside. do. When there is a region inside a vacuum container where the microwave frequency and the cyclotron resonance frequency of electrons in a magnetic field match, even a small amount of microwave input will cause the electrons to be resonantly heated and reach a high temperature, generating plasma. From this, continuous X-rays such as bremsstrahlung radiation and recombination radiation of gases, and characteristic X-rays with line spectra corresponding to each gas are generated.

さて、従来ミラー磁場を例とする開放系磁場配位におけ
る、ECRプラズマ発生においては、使用される電磁波
がいわゆるセンナ波領域のものばかりであった。プラズ
マからのX線の強さI!は一般的にその電子密度Nに比
例して増大する。このとき入射電磁波の周波数fは電子
サイクロトロン共鳴周波数f に一致するとともにNの
関数であるプラズマ周Ce             
         e波数f  (=8960 N  
”)よりも太きくなければe ならない、従って、X線の強さIを大きくするには! Nを増加する必要があるが、それは同時にfの増大e 
                         
         pをともなうので、それに見合った
fの増加が必要である事をあられす。そうすると、従来
のセンナ波に対してミリ波からサブミリ波の領域の電磁
波を用いるときにはf=f、の関係からNeが2〜3桁
増大する・19になる。これは高強度軟X線を得る上で
木質的に毛要な点である。そしてこのような電磁波の波
長と電子密度の関係から、にの大きいプラズマを得るに
は、従来用いられていたセンチ波では実用的には意味を
持たず、ミリ波からサブミリ波を用いる事が必須の条件
であることをあられす。
Now, conventionally, in ECR plasma generation in an open system magnetic field configuration such as a mirror magnetic field, the electromagnetic waves used are mostly in the so-called Senna wave region. Intensity of X-rays from plasma I! generally increases in proportion to its electron density N. At this time, the frequency f of the incident electromagnetic wave coincides with the electron cyclotron resonance frequency f, and the plasma circumference Ce is a function of N.
e wave number f (=8960 N
Therefore, in order to increase the X-ray intensity I, it is necessary to increase N, but at the same time e

Since this is accompanied by p, it is necessary to increase f accordingly. Then, when using electromagnetic waves in the range of millimeter waves to submillimeter waves compared to conventional Senna waves, Ne increases by two to three orders of magnitude to 19 due to the relationship f=f. This is an important point in terms of wood quality in obtaining high-intensity soft X-rays. Due to the relationship between the wavelength of electromagnetic waves and the electron density, in order to obtain a large plasma, the conventional centimeter waves have no practical meaning, and it is essential to use millimeter to submillimeter waves. Hail to you that you are in this condition.

さて、現実のプラズマは気体の電離現象によって得られ
るわけであるから、高い電子密度を得るには同時に気体
圧力の増大が必要である6例えばミリ波で波長が5mm
のときそれに対応するrが60GHzになる欲得られる
最大Nは約4゜5XIO13cm−3になる。
Now, since real plasma is obtained by the ionization phenomenon of gas, it is necessary to increase the gas pressure at the same time to obtain a high electron density.6For example, in millimeter waves, the wavelength is 5 mm.
When the corresponding r is 60 GHz, the maximum N that can be obtained is approximately 4°5XIO13cm-3.

もし磁場構造が、高いプラズマ閉じ込め能力を持つ場合
には、わずかな気体圧力でも高い電子密度を得られるが
、ここで考えているようなミラー磁場や複合極小磁場構
造では、軸方向へのプラズマ損失が大変大きい。そのた
め高いNeに対応した高い中性気体圧力が必要となる0
例えば上述のNに対応する気体圧力はほぼ2 X to
(Paである。従って、ミリ波からサブミリ波にいたる
電磁波を用いたECRプラズマを作る時、to−2−1
0°Pa程度の気体圧力状態が高強度軟X線を発生する
には必須の条件である。
If the magnetic field structure has a high plasma confinement ability, a high electron density can be obtained even with a small gas pressure, but in the mirror magnetic field or composite minimum magnetic field structure considered here, the plasma loss in the axial direction is very large. Therefore, high neutral gas pressure corresponding to high Ne is required.
For example, the gas pressure corresponding to N mentioned above is approximately 2 X to
(Pa. Therefore, when creating ECR plasma using electromagnetic waves ranging from millimeter waves to submillimeter waves, to-2-1
A gas pressure state of about 0°Pa is an essential condition for generating high-intensity soft X-rays.

一方、気体圧力が大きくなると粒子間の衝突現象がはげ
しくなって電子温度が減少すると共に、¥1度も下がり
軟X線放出も行われなくなる。従来ここで述べたような
磁場中で、上に示したような圧力において強いX線放出
のあるプラズマ生成は報告されていない。その理由とし
ては、使用電磁波が主としてセンチ波でかつ単一ミラー
当りの入力として、数kW以下であったからで、その評
価も出来ず不明のままであった。これに対して本発明に
おいてはミリ波およびサブミリ波というもっと短い波長
で、プラズマへの入力が数kW以上のものであるため、
後に示すようにこのような時にのみ上述の高い圧力でも
、完全電離でかつ強いX線放出をともなうプラズマが造
出可能となった。
On the other hand, when the gas pressure increases, the collision phenomenon between particles becomes more intense, and the electron temperature decreases, dropping by as much as 1 degree Celsius, and soft X-rays are no longer emitted. Plasma generation with strong X-ray emission has not been reported so far in a magnetic field as described here and at a pressure as shown above. The reason for this is that the electromagnetic waves used were mainly centimeter waves, and the input per single mirror was less than a few kW, so it was not possible to evaluate them and it remained unclear. In contrast, in the present invention, the input to the plasma is several kW or more at shorter wavelengths such as millimeter waves and submillimeter waves.
As will be shown later, only in such cases, even at the above-mentioned high pressure, it became possible to create plasma that was completely ionized and accompanied by strong X-ray emission.

図1に発生方法の概略を示す0図において電磁波を入射
する方法としては、真空容器中央部で磁場に東直な方向
から印加する場合と、軸方向から磁力線に沿って入射す
る場合の両方が可俺である。
Figure 1 shows an outline of the generation method.As for the method of injecting electromagnetic waves, there are two methods: applying the electromagnetic waves from the direction perpendicular to the east of the magnetic field at the center of the vacuum vessel, and applying the electromagnetic waves from the axial direction along the lines of magnetic force. I'm cute.

図2にこの方法によるデータの一例を示す、この場合、
ミラー比2の単純ミラー磁場に垂直の方向から、波長5
mmの電磁波を入射した時に発生した、軟X線スペクト
ルの時間変化を示す。ミリ波の入力は65kW、使用気
体はアルゴンガスでその圧力は2.3X10°l Pa
である。またミリ波のパルス巾は100zsの場合に対
応する。図から明らかなように、3 keVのアルゴン
のにα軟X線が連続X線に比べて大変強く発生している
。さらに入射ミリ波のパルス巾がLoomsであるのに
、kα線の発生時間は200IllSにも達しており、
これは重要な特徴であり、このECR現象により発生し
た高温電子が、ミリ波遮断後も長い時間にわたって残留
し、中性気体を電離しながら強い軟X線を発生しつづけ
るからである。この図で示すようにこのような大出力の
ミリ波を印加する事により、to−I Paのような大
きな気体圧力でも強力な軟x!aが発生する事を示して
いる。
Figure 2 shows an example of data obtained by this method. In this case,
From the direction perpendicular to the simple mirror magnetic field with a mirror ratio of 2, the wavelength is 5.
It shows the time change of the soft X-ray spectrum that occurs when electromagnetic waves of mm are incident. The millimeter wave input is 65kW, the gas used is argon gas, and the pressure is 2.3×10°l Pa.
It is. Further, the millimeter wave pulse width corresponds to the case of 100 zs. As is clear from the figure, alpha soft X-rays are generated from argon at 3 keV much more strongly than continuous X-rays. Furthermore, although the pulse width of the incident millimeter wave is Looms, the generation time of kα rays reaches 200 IllS,
This is an important feature because the high-temperature electrons generated by this ECR phenomenon remain for a long time even after the millimeter wave is cut off, and continue to generate strong soft X-rays while ionizing neutral gas. As shown in this figure, by applying such high output millimeter waves, powerful soft x! This shows that a occurs.

このπをさらに入射ミリ波の入力依存性から図3に詳細
に明らかにする。すなわち気体圧力2X10(Paでは
プラズマへの入力Pgが20四以上で顕著な軟X線の放
出が観測されている。従って本発明のように高い圧力で
の軟X線発生は、数kW以上の高出力のミリ波を入射す
る事により初めて得られる事になる。
This π is further clarified in detail in FIG. 3 from the input dependence of the incident millimeter wave. That is, at a gas pressure of 2×10 (Pa), significant soft X-ray emission has been observed when the input Pg to the plasma is 204 or higher.Therefore, soft X-ray generation at high pressures as in the present invention requires a This can only be obtained by injecting high-power millimeter waves.

さて、違ったエネルギの軟X線を得るのはごく簡単であ
り、使用する気体の種類を変えるだけでよい1例えば、
同じ希ガスのネオンを用いると800eVの特性X線を
得る事が出来るし、炭素化合物などを用いて500eV
程度のカーボンにα線を得ている。さらに、各種の特性
X線を有する混合気体を用いれば各レベルの軟X線が容
易に得られる。
Now, it is very easy to obtain soft X-rays with different energies; all you need to do is change the type of gas used.1 For example,
Using the same rare gas neon, it is possible to obtain characteristic X-rays of 800 eV, and using carbon compounds etc., it is possible to obtain characteristic X-rays of 500 eV.
alpha rays are obtained from carbon of about 100%. Furthermore, by using a gas mixture having various characteristic X-rays, soft X-rays of various levels can be easily obtained.

なお、ここで付言すると1本発明によれば図2に示す如
く、入射エネルギのX線への転換において、その大部分
が特性X線になり、また連続X線もその近傍が最も強い
という特性を基盤としている。
It should be noted here that, according to the present invention, as shown in Figure 2, most of the incident energy becomes characteristic X-rays when it is converted into X-rays, and continuous X-rays also have the characteristic that they are strongest near the X-rays. is based on.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明における軟X線発生方法の概略図であり、
図2は本方法により得られる一例としての3keV、ア
ルゴンにα軟xVjの時間変化を示す。 図3は3keV、アルゴンにα線強度の気体圧力2、O
X to−t Paでの電磁波入力依存性を示す。 A:電磁波   B:軟X線   のミラー磁場コイル
■“多極磁場コイル   ■真空容器 ■磁力線   ■“電子サイクロトロン共+!3i域・
■電磁波入射窓   ■軟X線放出窓手続補正書 昭和60年11月28日
FIG. 1 is a schematic diagram of the soft X-ray generation method in the present invention,
FIG. 2 shows the time variation of α soft xVj in argon at 3 keV as an example obtained by this method. Figure 3 shows 3 keV, argon and α-ray intensity gas pressure 2, O
The electromagnetic wave input dependence at X tot Pa is shown. A: Electromagnetic waves B: Soft X-ray mirror magnetic field coil ■“Multi-pole magnetic field coil ■Vacuum container ■Magnetic field lines ■“Electron cyclotron +! 3i area・
■Electromagnetic wave entrance window ■Soft X-ray emission window Procedure amendment November 28, 1985

Claims (1)

【特許請求の範囲】 ( I )単純ミラー磁場もしくは複合極小磁場中に真空
容器を置き、これに適当な圧力の種々の気体を流入する
装置において、外部から大出力電磁波を印加し、その周
波数が電子サイクロトロン共鳴周波数と一致する共鳴領
域を、真空容器内部にもたせる、それによって電子を共
鳴加熱し、気体を完全電離高温プラズマ状態にする事に
より、高強度の軟X線を発生させる事を特徴とする軟X
線発生方法。 (II)上記の目的を達するため電磁波としてはミリ波お
よびサブミリ波を使用し、流入気体の圧力を高く保って
高い電子密度を得ると共に、軟X線放出を容易にするた
めに使用電磁波を大出力のものとする事を特徴とする。 (III)また発生する軟X線の種類については、単独あ
るいは種々の混合気体を用いた時に発生する、鋭い共鳴
線である特性X線と、その周辺の連続X線を中心とした
ものを対象とする。
[Claims] (I) A device in which a vacuum container is placed in a simple mirror magnetic field or a composite minimal magnetic field, and various gases at appropriate pressures are introduced into the container, in which a high-output electromagnetic wave is applied from the outside, and its frequency is It is characterized by creating a resonance region inside the vacuum container that matches the electron cyclotron resonance frequency, thereby resonantly heating the electrons and turning the gas into a fully ionized high-temperature plasma state, thereby generating high-intensity soft X-rays. Soft X
Line generation method. (II) To achieve the above purpose, millimeter waves and submillimeter waves are used as electromagnetic waves, and the pressure of the incoming gas is kept high to obtain a high electron density, and the electromagnetic waves used are increased to facilitate soft X-ray emission. It is characterized by being an output. (III) Regarding the types of soft X-rays generated, we mainly focus on characteristic X-rays, which are sharp resonance lines, and continuous X-rays around them, which are generated when using a single gas or a mixture of various gases. shall be.
JP16704185A 1985-07-29 1985-07-29 Method for generating soft x-ray of high intensity Granted JPS6226752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16704185A JPS6226752A (en) 1985-07-29 1985-07-29 Method for generating soft x-ray of high intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16704185A JPS6226752A (en) 1985-07-29 1985-07-29 Method for generating soft x-ray of high intensity

Publications (2)

Publication Number Publication Date
JPS6226752A true JPS6226752A (en) 1987-02-04
JPH0449240B2 JPH0449240B2 (en) 1992-08-10

Family

ID=15842286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16704185A Granted JPS6226752A (en) 1985-07-29 1985-07-29 Method for generating soft x-ray of high intensity

Country Status (1)

Country Link
JP (1) JPS6226752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277204A (en) * 2007-05-07 2008-11-13 Japan Atomic Energy Agency Laser-driven, small-sized, high contrast, and coherent x-ray generating device and its generating method
JP2012079857A (en) * 2010-09-30 2012-04-19 Kansai Univ Light source device for semiconductor lithography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277204A (en) * 2007-05-07 2008-11-13 Japan Atomic Energy Agency Laser-driven, small-sized, high contrast, and coherent x-ray generating device and its generating method
JP2012079857A (en) * 2010-09-30 2012-04-19 Kansai Univ Light source device for semiconductor lithography

Also Published As

Publication number Publication date
JPH0449240B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
Lin et al. X‐ray preionization for electric discharge lasers
US3911318A (en) Method and apparatus for generating electromagnetic radiation
Basov et al. Stimulated emission in the vacuum ultraviolet region
Read et al. Depressed collectors for high-power gyrotrons
CA2342567A1 (en) Photon generator
Strelkov Experimental relativistic plasma microwave electronics
Chen Excitation of large amplitude plasma waves
Rocca et al. Multikilowatt electron beams for pumping CW ion lasers
JPS6226752A (en) Method for generating soft x-ray of high intensity
Vodop’yanov et al. Plasma parameters of an electron cyclotron resonance discharge in a magnetic mirror in a quasi-gasdynamic confinement regime
Economou et al. Prospects for high‐brightness x‐ray sources for lithography
US4272319A (en) Device and method for electron beam heating of a high density plasma
US3664960A (en) Control circuit for neutron generator tube
Leung Radio frequency driven multicusp sources
Alonso High‐current negative‐ion sources for pulsed spallation neutron sources: LBNL Workshop, October 1994
US3210673A (en) Hydrogen maser for generating, amplifying and/or frequency modulating microwave energy
Schenkel et al. Plasma ignition schemes for the Spallation Neutron Source radio-frequency driven H− source
Dubrovsky et al. 0.2-kJ and 2-kJ high rep rate Dense Plasma foci: their design, technology, and applications
Bushuev et al. X-ray lasers
EP0234702A2 (en) Dual-discharge gas ion laser
US3326769A (en) Energetic electron plasma blanket
Yablonovitch Plasma resonance in the X-ray emission from gaseous laser targets
Leung Radio frequency multicusp ion source development
Krehl Pulse compression effect in a laser‐driven flash x‐ray tube
Midorikawa et al. Optical‐field‐induced ionization x‐ray laser using preformed Li+ plasma