JPS62267450A - High-purity ferritic stainless steel excellent in intergranular corrosion resistance - Google Patents

High-purity ferritic stainless steel excellent in intergranular corrosion resistance

Info

Publication number
JPS62267450A
JPS62267450A JP10773386A JP10773386A JPS62267450A JP S62267450 A JPS62267450 A JP S62267450A JP 10773386 A JP10773386 A JP 10773386A JP 10773386 A JP10773386 A JP 10773386A JP S62267450 A JPS62267450 A JP S62267450A
Authority
JP
Japan
Prior art keywords
corrosion resistance
intergranular corrosion
stainless steel
welding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10773386A
Other languages
Japanese (ja)
Inventor
Masahiro Katahira
片平 正宏
Junichi Sakai
潤一 酒井
Hirotaka Nakagawa
中川 大隆
Iwao Matsushima
松島 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10773386A priority Critical patent/JPS62267450A/en
Publication of JPS62267450A publication Critical patent/JPS62267450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain the titled high-purity ferritic stainless steel improved in intergranular corrosion resistance after subjected to thermal hysteresis such as welding, etc., by specifying respective contents of C, N, Cr, Mo, Si, Mn, P, and S. CONSTITUTION:The above stainless steel has a composition consisting of, by weight, <=0.01 C, <=0.015% N, 16-19% Cr, 1.5-3.0% Mo, <=1$% Si, <=1% Mn, <=0.01% P, <=0.01% S, and the balance Fe with inevitable impurity elements. The steel of this invention has superior intergranular corrosion resistance without causing increase in cost and deterioration in toughness in a weld zone even after subjected to thermal hysteresis such as welding, etc. Moreover, the steel of this invention in inexpensive and also is excellent in stress corrosion cracking resistance which is a defect of austenitic stainless steel, so that it is applicable to wide fields as substitute material of SUS304 and SUS316.

Description

【発明の詳細な説明】 〔産業上の利用分腎〕 本発明は、溶接等の熱履歴を受けた後も耐粒界腐食性に
優れる高純度フェライト系ステンレス鋼に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to a high-purity ferritic stainless steel that has excellent intergranular corrosion resistance even after being subjected to thermal history such as welding.

〔従来の技術〕[Conventional technology]

S tJ S 430鋼で代表される従来のフェライト
系ステレLス鋼は、通常850℃以上の熱処理を行うと
冷却過程で粒界に炭化物が祈出し、Cr欠乏層が形成さ
れろことにより耐粒界腐食性の劣化が起こる。このため
製造工程では、一旦1000℃以上に加熱して結晶粒を
均一化したのち、780〜850℃に再加熱して耐粒界
腐食性の劣化を防止している。
Conventional ferritic stainless steel, represented by S tJ S 430 steel, usually has poor grain resistance due to the formation of carbides at grain boundaries during the cooling process and the formation of Cr-depleted layers when heat treated at temperatures above 850°C. Corrosive deterioration occurs. For this reason, in the manufacturing process, the crystal grains are once heated to 1000° C. or higher to make them uniform, and then reheated to 780 to 850° C. to prevent deterioration of intergranular corrosion resistance.

然し、製造工程で厳密な熱管理を行っても、一度溶接等
の熱履歴を受けろと剛粒界賞【1よ著しく・・劣化する
ためこれらの使用は限られてきた。
However, even if strict thermal control is performed during the manufacturing process, once subjected to a thermal history such as welding, the hard grain boundary layer deteriorates significantly compared to [1], so their use has been limited.

近年溶製技術の進歩により、耐食性や靭性に悪影響を及
ぼすC,N等の不純物元素を低減し、耐食性を向上させ
たフェライト系ステンレス鋼が開発されている。然し溶
接等の熱履歴による耐粒界腐食性の劣化は十分解決され
ていない。このためC,Nを低減した上で、Nb、Ti
等の安定化元素を添加しC,Nを固定して炭窒化物の析
出を抑制することにより耐粒界腐食性の劣化を防いでい
るのが現状である。然し、NbやT1を添加すると製造
コストの上昇は避けられない。又、極低C2N鍔にNb
j6添加すると溶接部の靭性が劣化する等の問題があっ
た。
In recent years, advances in melting technology have led to the development of ferritic stainless steels that have improved corrosion resistance by reducing impurity elements such as C and N that adversely affect corrosion resistance and toughness. However, the deterioration of intergranular corrosion resistance due to thermal history such as welding has not been sufficiently resolved. Therefore, after reducing C and N, Nb and Ti
At present, deterioration of intergranular corrosion resistance is prevented by adding stabilizing elements such as these to fix C and N and suppress the precipitation of carbonitrides. However, adding Nb or T1 inevitably increases manufacturing costs. In addition, Nb is added to the extremely low C2N tsuba.
When J6 was added, there were problems such as deterioration of the toughness of the welded part.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

本発明は、以上の問題点を8v決するために、コストの
上昇及び溶接部の靭性劣化を招< Nb。
The present invention solves the above-mentioned problems by using Nb, which causes an increase in cost and deterioration of the toughness of the welded part.

Tiの添加無しに溶接等の熱履歴による耐粒界腐食性の
劣化を防止しようとするものであり、コスI・的に有利
で、且つ熱影響部の靭性を劣化させることなく、溶接等
の熱履歴を受けた後の耐粒界腐食性を向上させろ耐粒界
腐食性に浸れ石高純度フェライト系ステンレス鋼を提供
することを目的とするものでろる。
This is intended to prevent deterioration of intergranular corrosion resistance due to thermal history during welding, etc. without the addition of Ti.It is advantageous in terms of cost I and does not deteriorate the toughness of the heat-affected zone. The purpose of the present invention is to improve the intergranular corrosion resistance after being subjected to thermal history and to provide a high-purity ferritic stainless steel with improved intergranular corrosion resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、Nb、Ti等の安定化元素を一切添加せ
ず、C,N等を極めて低減した高純度フエライI・系ス
テンレス鋼の耐粒界腐食性を検討した結果、高純化に加
えてMOの添加が耐粒界腐食性を向上させることを見出
し本発明に至ったものである。
The present inventors investigated the intergranular corrosion resistance of high-purity Ferrite I stainless steel with extremely reduced C, N, etc. without adding any stabilizing elements such as Nb and Ti. In addition, it was discovered that the addition of MO improves intergranular corrosion resistance, leading to the present invention.

即ち、本発明は、重l基準にて、C:0.01%以下、
N:  0.015%以ト、Cr :  16〜19%
、Mo:1.5〜3.0%、  S i :  IJ以
下、Mn:IX以下、P:  0.OIX以下、S:O
,OIX以下、残部はFe及び不可避不純物元素から成
る耐粒界腐食性に浸れる高純度フェライト系ステンレス
鋼である。
That is, in the present invention, on a weight basis, C: 0.01% or less,
N: 0.015% or more, Cr: 16-19%
, Mo: 1.5-3.0%, Si: IJ or less, Mn: IX or less, P: 0. Below OIX, S:O
, OIX and below, the remainder is high-purity ferritic stainless steel that is resistant to intergranular corrosion and is composed of Fe and unavoidable impurity elements.

〔作用〕[Effect]

後述する実施例の第1図は、耐粒界腐食性に及ぼすMo
影響を示したMo(に)と腐食度(g/m“/hlとの
関係グラフである。このグラフによれば、母材、溶接材
ともMoの添加により腐食度は減少する。母材と溶接材
を比較すると、Mo1%以下では溶接することにより耐
粒界腐食性が著しく劣化する。然しMOを1.5%以上
添加すると溶接後も耐粒界腐食性は劣化せず母材間等の
値となる。
FIG. 1 of Examples described later shows the effect of Mo on intergranular corrosion resistance.
This is a graph showing the relationship between Mo and the degree of corrosion (g/m"/hl). According to this graph, the degree of corrosion decreases with the addition of Mo in both the base metal and the welding material. Comparing welding materials, welding with less than 1% Mo significantly deteriorates the intergranular corrosion resistance.However, when MO is added at 1.5% or more, the intergranular corrosion resistance does not deteriorate even after welding, and the intergranular corrosion resistance between the base metals etc. The value is .

又C,N量も耐粒界腐食性に影響を及ぼす。The amounts of C and N also affect intergranular corrosion resistance.

後述する実施例の第2図は、+9Cr−2Mo鋼の溶接
後の耐粒界腐食性に及ぼすC,Nの影響を示したCとN
との関係グラフである。この第2図に示す如<、C,N
とも#4粒界腐食性を劣化させろため極力低減させる必
要がある。CとNを比較するとCの方が悪影響大である
Figure 2 of the example described below shows the influence of C and N on intergranular corrosion resistance after welding of +9Cr-2Mo steel.
This is a relationship graph. As shown in this Figure 2, <, C, N
In both cases, it is necessary to reduce the #4 grain boundary corrosion as much as possible since it will deteriorate it. Comparing C and N, C has a greater negative impact.

更に、後述する実施例の第3図は、+9cr−2May
4の溶接部の靭性に及ぼすNbの影響を示したC+Nと
vT、との関係グラフである。この第3図に示す如<、
(:’INは溶接部の靭性も劣化させるため極力低減さ
せる必要があるが、低C,N謂にNbを添加するとか丸
って靭性の劣化が起こる。このことから、優れた靭性を
得るためには、低C,N。化に加えて、Nb、Ti等の
無添加が必要となる9以上の結果よや、高純度化に加え
てMoを1.5%9、上添加すればNb、Tiの転化無
しで熱影響部の耐粒界腐食性の劣化が防止出来ろもので
ある。
Furthermore, in FIG. 3 of the embodiment described later, +9cr-2May
4 is a graph showing the relationship between C+N and vT, showing the influence of Nb on the toughness of the weld zone of No. 4. As shown in this Figure 3,
(:'IN also deteriorates the toughness of the welded part, so it must be reduced as much as possible, but when Nb is added to low C and N, the toughness deteriorates.From this, it is possible to obtain excellent toughness. In order to achieve a result of 9 or above, in addition to low C and N, it is necessary to not add Nb, Ti, etc. Deterioration of intergranular corrosion resistance in the heat affected zone can be prevented without conversion of Nb and Ti.

即ち、本発明は、高純度化に加え、Moの添加が溶接等
の熱履歴を受けた後の耐粒界腐食性を向上させるという
新しい知見により達成されたものであり、Nb、Tiを
添加しない本発明によりコストの上昇及び溶接等の熱影
響部の靭性の劣化を招くという従来の欠点も解消された
ものであるつ次に本発明鋼の成分限定理由について述へ
る。
That is, the present invention was achieved based on the new knowledge that, in addition to high purity, the addition of Mo improves the intergranular corrosion resistance after undergoing thermal history such as welding. The present invention eliminates the conventional disadvantages of increasing costs and deteriorating the toughness of heat-affected zones such as welding. Next, the reason for limiting the composition of the steel of the present invention will be described.

C:母材及び溶接材の耐食性と靭性に著しく有害な元素
であり極力低減する必要がある。0.01%を越えると
Mo量を増しても溶接等の熱履歴による耐粒界腐食性の
劣化は避けられない。従ってその上限を0.0IXと規
定したう N:Cと同様靭性を劣化させると共に溶接材の耐粒界腐
食性を劣化させる元素であり、極力低減する必要がある
。然し、その耐粒界腐食性への悪影響はCより小さいた
め、上限をO,0I5xとCより許容量を多くした。
C: It is an element that is extremely harmful to the corrosion resistance and toughness of the base metal and welding material and needs to be reduced as much as possible. If it exceeds 0.01%, deterioration of intergranular corrosion resistance due to thermal history such as welding cannot be avoided even if the amount of Mo is increased. Therefore, its upper limit is set at 0.0IX. N: Like C, N is an element that deteriorates the toughness and intergranular corrosion resistance of the welding material, and must be reduced as much as possible. However, since its adverse effect on intergranular corrosion resistance is smaller than that of C, the upper limit was set higher than that of O, 0I5x and C.

Cr:II2以下では、所謂ステンレス鍔としての耐食
性を有しない。S U S 304クラスの耐食性を得
るには11位必要であるが、16〜]9にでは、第1図
に示すように耐食性に有意な差+、1ない。取り扱い易
さ、コス)・の面からも192以下が望ましい。
If Cr:II2 or less, it does not have the corrosion resistance as a so-called stainless steel collar. In order to obtain the corrosion resistance of SUS 304 class, 11th rank is required, but as shown in FIG. 1, there is no significant difference in corrosion resistance of 16 to 9. A value of 192 or less is desirable also in terms of ease of handling and cost.

MO二附孔食性、耐粒界腐食性を向上させる元素である
。特に本発明を構成する重要な元素であり、第1図に示
すように1.5%以上の添加により、溶接後も耐粒界腐
食性の劣化が見られない。3%の添加でその効果は飽和
するので、溶接等の熱履歴による劣化を防止するには1
.5〜3.0にて十分てあり、過剰の添加はコスト的に
不利となる。
It is an element that improves MO2 pitting corrosion resistance and intergranular corrosion resistance. In particular, it is an important element constituting the present invention, and as shown in FIG. 1, when added in an amount of 1.5% or more, no deterioration in intergranular corrosion resistance is observed even after welding. The effect is saturated with the addition of 3%, so to prevent deterioration due to heat history such as welding, 1.
.. 5 to 3.0 is sufficient, and excessive addition is disadvantageous in terms of cost.

SI:溶解精練時の脱酸剤として添加不可欠な元素であ
る。耐食性への影響は少ないが、1%を越えろと熱間加
工性の劣化を招くため上限を1%とする。
SI: An essential element added as a deoxidizing agent during melting and scouring. Although it has little effect on corrosion resistance, if it exceeds 1%, hot workability deteriorates, so the upper limit is set at 1%.

P:靭性の劣化を招くため上限をO,O]Xとする。P: Since it causes deterioration of toughness, the upper limit is set to O, O]X.

S:熱間加工性を劣化させ、またM n S等を形成し
て耐孔食性を劣化させるため0.01X以下とする。
S: Set to 0.01X or less because it deteriorates hot workability and also forms M n S and the like to deteriorate pitting corrosion resistance.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

第1表に、供試鋼の化学成分を示す。 Table 1 shows the chemical composition of the test steel.

第1表に示す化学成分からなる発明鋼及び比較鋼をTI
Gなめ付は溶接し、J I S GO575による硫酸
、Fa酸銅腐食試験を行った。
The invention steel and comparative steel having the chemical components shown in Table 1 were TI
G tanning was performed by welding, and a sulfuric acid and Fa acid copper corrosion test was conducted according to JIS GO575.

試験後4を曲げを行い粒界割れの有無を観察した結果を
併せて第1表に示す。O印は粒界削れ:無し、×印は粒
界割れ:有を示す。
After the test, Sample No. 4 was bent and the presence or absence of grain boundary cracking was observed. The results are also shown in Table 1. The O mark indicates grain boundary abrasion: absent, and the x mark indicates grain boundary cracking: presence.

本発明鋼である1、5%以上のMo添加鋼では粒界割れ
が生ぜずMoを15〜3.0z添加すれば、Nb。
In steel containing 1.5% or more of Mo, which is the steel of the present invention, intergranular cracking does not occur, and if 15 to 3.0z of Mo is added, Nb.

Tiの添加無しで溶接部の耐粒界腐食性の劣化を防止出
来ろ。
It is possible to prevent deterioration of intergranular corrosion resistance of welded parts without adding Ti.

*硫酸、硫酸鋼腐食試験(J I 5GO575)第1
図に、耐粒界腐食性に及ぼすMo影響を示したM o 
(glと腐食度(g/m”ハ)との関係グラフを示す。
*Sulfuric acid, sulfuric acid steel corrosion test (J I 5GO575) 1st
The figure shows the effect of Mo on intergranular corrosion resistance.
(This is a graph showing the relationship between gl and corrosion degree (g/m"c).

このグラフによれば、母材、溶接材ともMOの添加によ
す腐食度は減少する。母材と溶接材を比較すると、Mo
1%以下では溶接することにより耐粒界腐食性が著しく
劣化する。然しMOを1.5%以上添加すると溶接後も
耐粒界腐食性は劣化せず母材向等の値となる。
According to this graph, the degree of corrosion of both the base metal and the welding material decreases due to the addition of MO. Comparing the base metal and welding material, Mo
If it is less than 1%, intergranular corrosion resistance will be significantly deteriorated by welding. However, when MO is added in an amount of 1.5% or more, the intergranular corrosion resistance does not deteriorate even after welding and becomes the same value as that of the base metal.

又第2図に、19Cr−2Mo鋼の溶接後の耐粒界腐食
性に及ぼすC,Nの影響を示したCとNとの関係グラフ
を示す。第2図に示す如<、C,Nとも耐粒界腐食性を
劣化させるため極力低減させる必要がある。CとNを比
較するとCの方が悪影響大である。
Further, FIG. 2 shows a relationship graph between C and N showing the influence of C and N on intergranular corrosion resistance after welding of 19Cr-2Mo steel. As shown in FIG. 2, since both C and N deteriorate intergranular corrosion resistance, it is necessary to reduce them as much as possible. Comparing C and N, C has a greater negative impact.

更に、第3図に19Cr−2Mollの溶接部の靭性に
及ぼすNbの影響を示したC + 、NとVTIとの関
係グラフを示す。この第3図に示す如/、、C,N1.
!溶接部の靭性も劣化させるため極力低減させる必要が
あるが、低C,NfiにNbを添加するとかえって靭性
の劣化が起こる。このことから、浸れた靭性を得るため
には、低C,N化に加えて、Nb。
Furthermore, FIG. 3 shows a graph of the relationship between C + , N and VTI, showing the influence of Nb on the toughness of a 19Cr-2Moll weld. As shown in FIG. 3, /, C, N1.
! Since it also deteriorates the toughness of the weld, it is necessary to reduce it as much as possible, but adding Nb to low C and Nfi actually causes a deterioration of the toughness. From this, in order to obtain high toughness, in addition to lowering C and N, Nb is added.

Ti等の無添加が必要となるは明らかである。It is clear that no addition of Ti or the like is required.

〔発明の効果〕〔Effect of the invention〕

本発明の耐粒界腐食性に慢れろ高純度7エライト系ステ
ンレス鋼により、コス1−の上昇及び溶接部の靭性の劣
化を起こすことなく溶接等の熱履歴を受けた後も耐粒界
腐食性に優れるフェライト系ステルス鋼が開発された。
Thanks to the high purity 7-elite stainless steel of the present invention, it is resistant to intergranular corrosion even after being subjected to thermal history such as welding without increasing COS and deteriorating the toughness of the welded part. A ferritic stealth steel with excellent properties has been developed.

本発明鋼は、溶接後も良好な耐粒界腐食性、靭性を有す
るため、溶接を伴う分野への使用が可能である。又安価
であり、且つオーステナイト系ステルス鋼の欠点である
耐応力腐食割れ性にも侵ttフィルタal>、5US3
04.5US316ノ代替トシて幅広い分野への使用が
可能となった。
Since the steel of the present invention has good intergranular corrosion resistance and toughness even after welding, it can be used in fields involving welding. In addition, it is inexpensive and has no resistance to stress corrosion cracking, which is a drawback of austenitic stealth steel.
As an alternative to 04.5 US316, it has become possible to use it in a wide range of fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐粒界腐食性に及ぼすMo影響を示したM o
 (2)と腐食度1g/m’ハ)との関係グラフ、第2
図は+9Cr−2Mo鋼の溶接後の耐粒界腐食性に及ぼ
すCとNとの関係グラフ、第3図は同じく溶接部の靭性
に及ぼすNbの影響を示したC十NとvT。 との関係グラフである。
Figure 1 shows the effect of Mo on intergranular corrosion resistance.
Relationship graph between (2) and corrosion rate 1g/m'c), 2nd
The figure is a graph of the relationship between C and N on the intergranular corrosion resistance after welding of +9Cr-2Mo steel, and Figure 3 shows the effect of Nb on the toughness of the welded joint between C and N and vT. This is a relationship graph.

Claims (1)

【特許請求の範囲】[Claims] 重量基準にて、C:0.01%以下、N:0.015%
以下、Cr:16〜19%、Mo:1.5〜3.0%、
Si:1%以下、Mn:1%以下、P:0.01%以下
、S:0.01%以下、残部はFe及び不可避不純物元
素から成ることを特徴とする耐粒界腐食性に優れる高純
度フェライト系ステンレス鋼。
Based on weight, C: 0.01% or less, N: 0.015%
Below, Cr: 16-19%, Mo: 1.5-3.0%,
A high grade material with excellent intergranular corrosion resistance characterized by Si: 1% or less, Mn: 1% or less, P: 0.01% or less, S: 0.01% or less, and the remainder consists of Fe and unavoidable impurity elements. Purity ferritic stainless steel.
JP10773386A 1986-05-13 1986-05-13 High-purity ferritic stainless steel excellent in intergranular corrosion resistance Pending JPS62267450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10773386A JPS62267450A (en) 1986-05-13 1986-05-13 High-purity ferritic stainless steel excellent in intergranular corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10773386A JPS62267450A (en) 1986-05-13 1986-05-13 High-purity ferritic stainless steel excellent in intergranular corrosion resistance

Publications (1)

Publication Number Publication Date
JPS62267450A true JPS62267450A (en) 1987-11-20

Family

ID=14466569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10773386A Pending JPS62267450A (en) 1986-05-13 1986-05-13 High-purity ferritic stainless steel excellent in intergranular corrosion resistance

Country Status (1)

Country Link
JP (1) JPS62267450A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333915A (en) * 1976-09-10 1978-03-30 Kawasaki Steel Co Ferritic stainless steel wiih improved rusttresistance on welded area

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333915A (en) * 1976-09-10 1978-03-30 Kawasaki Steel Co Ferritic stainless steel wiih improved rusttresistance on welded area

Similar Documents

Publication Publication Date Title
US4059440A (en) Highly corrosion resistant ferritic stainless steel
JPH0442464B2 (en)
JPS58120766A (en) Austenitic stainless steel with superior strength at high temperature
JPH0517850A (en) High chromium ferrite-based heat resistant steel excellent in copper checking resistance
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JPS61113749A (en) High corrosion resistance alloy for oil well
JPS62267450A (en) High-purity ferritic stainless steel excellent in intergranular corrosion resistance
JPS6036466B2 (en) Ferritic-austenitic duplex stainless steel
US4368172A (en) Heat resistant cast alloy
JPS62238353A (en) High-manganese austenitic steel excellent in strength at high temperature
JPS5913949B2 (en) Welding method for molybdenum-containing, high-chromium ferritic stainless steel
JP4297631B2 (en) Chromium-containing steel with excellent intergranular corrosion resistance and low temperature toughness of welds
JPH055891B2 (en)
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPS5980755A (en) Chrome-molybdenum steel having superior temper embrittlement resistance at weld heat-affected zone
JPH0762497A (en) High cr ferritic heat resistant steel having excellent high temperature strength and toughness
JPS61174350A (en) Heat-resistant high-chromiun alloy
JPH06293940A (en) High cr ferritic steel excellent in high temperature ductility and high temperature strength
JPS62297440A (en) Austenitic stainless steel having superior pitting corrosion resistance
JP3565155B2 (en) High strength low alloy heat resistant steel
JPH0397832A (en) High-strength high chromium steel excellent in oxidation resistance and weldability
JP2002129291A (en) Martensitic stainless steel welding structural body having excellent fire resistance
JP2928904B2 (en) Welding material for high strength and high corrosion resistant ferritic steel
JPH1060597A (en) High strength dual phase stainless steel excellent in toughness
JPH08209309A (en) Molybdenum-containing austenitic stainless steel excellent in nitric acid corrosion resistance in weld heat-affected zone