JPS6226648B2 - - Google Patents

Info

Publication number
JPS6226648B2
JPS6226648B2 JP1037683A JP1037683A JPS6226648B2 JP S6226648 B2 JPS6226648 B2 JP S6226648B2 JP 1037683 A JP1037683 A JP 1037683A JP 1037683 A JP1037683 A JP 1037683A JP S6226648 B2 JPS6226648 B2 JP S6226648B2
Authority
JP
Japan
Prior art keywords
epoxy resin
laminate
weight
average particle
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1037683A
Other languages
Japanese (ja)
Other versions
JPS59136319A (en
Inventor
Koji Yokomichi
Susumu Suda
Nobuaki Komasa
Takeo Moro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP1037683A priority Critical patent/JPS59136319A/en
Publication of JPS59136319A publication Critical patent/JPS59136319A/en
Publication of JPS6226648B2 publication Critical patent/JPS6226648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 本発明は積層板、銅張積層板用に適した難燃化
された基板用エポキシ樹脂組成物に関する。更に
詳しくは、良好な透明性を有し、且つ優れた耐熱
性、電気特性及び耐薬品性を保持している新規な
難燃基板用エポキシ樹脂組成物に関する。 近年電気電子機器の発展に伴い、これらの分野
で使用される積層板は安全性の点で難燃性である
ことが強く望まれるようになつている。又一方で
はプリント配線板の検査の合理化のため難燃性基
板であつても非難燃性基板と同様の透明性が要求
されている。 このような積層板を難燃化する手段としては、
ハロゲン化エポキシ樹脂を利用したり、或いは有
機ハロゲン化合物、有機リン酸エステル系化合
物、無機化合物等の難燃剤を利用する方法が一般
的に行なわれている。しかしこれらの方法に於い
ては、十分な難燃効果、特に最近強く望まれてい
る難燃化の程度がUL規格94V―Oを達成するに
は多量の使用を必要とする為、コストがかさんだ
り、或いは積層板の耐熱性や電気特性等の物性低
下が起こつたり或いは積層板の透明が失なわれる
といつた問題があり価格的、性能的な面から尚一
層の改良が望まれている。 特に無機系難燃剤である三酸化二アンチモンは
ハロゲン原子と相乗作用により優れた難燃効果を
発揮することから各種含ハロゲン化合物と共に各
種のプラスチツクスの難燃化剤として汎く用いら
れているが、このものを積層板、特にエポキシ樹
脂〜ガラスクロス積層板の難燃化剤に用いると、
積層板の透明性が失なわれてしまい、上述した様
に製品検査工程に煩雑さが生じるという問題が生
じる。 本発明者等は上記の事情に鑑み、これら問題点
を解決すべく研究を行つた結果、特定の五酸化二
アンチモンを難燃化剤の一部として用いることに
より良好な透明性を有し、優れた耐熱性、電気特
性及び耐薬品性を保持した積層板及び銅張積層板
用に適した難燃エポキシ樹脂組成物が得られると
いう事実を見い出し本発明を完成させるに到つ
た。 即ち、本発明は積層板、銅張積層板を製造する
ためのエポキシ樹脂組成物において a 分子中に少くとも2ケ以上のエポキシ基を有
する非ハロゲン化エポキシ樹脂 b 分子中に少くとも2ケ以上のエポキシ基を有
するハロゲン化エポキシ樹脂 c 平均粒子径が5〜100ミリミクロン及び/又
は平均粒径5〜100ミリミクロンの一次粒子の
二次凝集体で構成され平均粒子径が1〜100ミ
クロンの範囲内にある五酸化二アンチモン d 硬化剤 を本構成成分として含有することを特徴とする難
燃基板用エポキシ樹脂組成物に関するものであ
る。 本発明のエポキシ樹脂組成物をガラスクロスを
基材とする積層板用に用いた時得られる積層板は
無機系化合物である五酸化二アンチモンが添加さ
れているにもかかわらず良好な透明性を有してお
り、三酸化アンチモンを用いる際に認められるよ
うな積層板の不透明化は起こらない。 又本発明にて用いられる五酸化二アンチモンは
ハロゲン原子との相乗作用により、少量の添加量
で優れた難燃効果を示す為コストの低減が可能で
ある。例えば后述する実施例にても明らかにされ
るが、難燃化の程度UL94V―Oを達成するにも
高価なブロム化エポキシ樹脂の使用量を大巾に低
減することが出来る等の利点を有している。 更に本発明のエポキシ樹脂組成物を使用して得
られる積層板は高温に於ける着色劣化が少く長時
間安定に使用することができる。その他優れた半
田耐熱性、電気特性、耐薬品性を保持しており、
高信頼性のプリント配線板用材料としてその有用
性は極めて高いものである。 又本発明に用いられる五酸化アンチモンは超微
粒子又は超微粒子の凝集体或いは、それらの混合
物であるため基材含浸用のワニス中に於いても均
一分散性に優れており、基材への含浸性の悪化等
も全く認められない。 以下に本発明について更に詳細に説明する。 本発明を実施するに当り、分子中に少くとも2
ケ以上のエポキシ基を有する非ハロゲン化エポキ
シ樹脂としてはビスフエノールA、ビスフエノー
ルF、レゾルシン、ハイドロキノン、44′―ジヒ
ドロキシジフエニル、ビスフエノールS、のよう
な二価フエノールのジリシジルエーテル型及びフ
エノール・ホルムアルデヒド樹脂のような多価フ
エノールのポリグリシジルエーテル型のものを挙
げることができる。 又、分子中に少くとも2ケ以上のエポキシ基を
有するハロゲン化エポキシ樹脂としては先に例示
したような二価フエノール類の臭素化或いは塩素
化物のジグリシジルエーテル型のものが挙げられ
る。 更に硬化剤としては、本発明の目的を損わない
ものであればいかなるものでも使用できるが、例
えばジシアンジアミド或いは無水フタール酸、無
水ハイミツク酸のような酸無水物、或いは各種ア
ミン化合物を挙げることが出来る。又本発明に使
用するエポキシ樹脂組成物には必要に応じ硬化促
進剤を併用することも出来る。例えばベンジルジ
メチルアミン、トリエチルアミンの如き第3級ア
ミンが挙げられる。 更に本発明にて用いられる五酸化二アンチモン
は先にも述べた様に平均粒子径5〜100ミリミク
ロンの超微粒子又は1〜100ミクロンの平均粒子
径を有する該超微粒子の二次凝集物或いはそれら
の混合物であればよく、かかる五酸化二アンチモ
ンの製造方法は粒子径が上述せる要件を満足する
ものであれば公知の何処れの方法も用いても差し
つかえない。上述の平均粒子径が1ミクロン以下
のものは製造が困難であり、100ミクロン以上の
ものは樹脂との混和性が劣り好ましくない。 又、このような五酸化二アンチモンを使用する
際の形態は特に限定されるものではなく、粉末状
態或いは使用するエポキシ樹脂を溶解し得る様な
有機溶剤中に均一分散したコロイド状態等として
使用することが出来る。 本発明にて用いられる非ハロゲン化エポキシ樹
脂、ハロゲン化エポキシ樹脂及び五酸化二アンチ
モンの使用比率は使用するハロゲン化エポキシ樹
脂の含有量及び所望とする難燃化の程度を勘案し
て適宜選択すればよい。 例えば后述する実施例でも明らかにされるよう
に最も高い難燃化度UL規格94V―Oを達成する
には、ハロゲン化エポキシ樹脂として臭素含有量
18〜20wt%の臭素化エポキシ樹脂を使用する場
合には、非ハロゲン化エポキシ樹脂:臭素化エポ
キシ樹脂=1:1、全エポキシ樹脂100重量部に
対する五酸化二アンチモン3重量部程度の使用比
率が好ましい。 又硬化剤の使用量は、使用するエポキシ樹脂の
エポキシ当量とその使用量及び用いる硬化剤の種
類により適宜決定すればよい。 更に、本発明の組成物を用いて積層板を製造す
る為のワニスを作成する際には、非ハロゲン化エ
ポキシ樹脂、ハロゲン化エポキシ樹脂及び硬化剤
を均一溶解せしめる有機溶剤を適宜選択し、この
有機溶剤中に上記の三成分を溶解せしめた后、五
酸化二アンチモンを添加し、均一に分散させれば
よい。 又本発明の目的、効果を損なわない限りはその
他各種の添加物を混合使用できる。 以下に実施例を示し、本発明を更に詳しく説明
する。 実施例 1 a 積層板製造用ワニスの調製 非ハロゲン化エポキシ樹脂としてビスフエノ
ールA型エポキシ樹脂であるエピコート1001
(エポキシ当量450〜500)50重量部、ハロゲン
化エポキシ樹脂として臭素化ビスフエノールA
型エポキシ樹脂であるエピコート1045B―80
(エポキシ当量450〜500、樹脂中の臭素含有量
18〜20重量%濃度80重量%のメチルエチルケト
ン溶液)62.5重量部をメチルエチルケトン42.5
重量部に溶解せしめた溶液中に、硬化剤として
ジシアンジアミド4重量部硬化促進剤としてベ
ンジルジメチルアミン0.2重量部をジメチルホ
ルムアミド30重量部に溶解させた溶液を添加し
よく混合する。 次いで五酸化二アンチモン3.1重量部を加え
撹拌混合により系内に均一分散せしめ積層板製
造用ワニスを調製した。 尚本実施例にて使用した五酸化二アンチモン
は平均粒子径38ミクロンの粉体状であるが、こ
のものは平均粒径15ミリミクロンの超微粒子の
二次凝集体である。 尚又上記ワニスの全固型分は55.8重量%であ
り全固型分中の臭素含量は8.85重量%、アンチ
モン含量は2.18重量%、臭素/アンチモン比は
4.06である。 b 積層板の製造 上記ワニスを厚さ0.18mmのガラス織布に含浸
し乾燥して樹脂含有量50重量%のプリプレグを
得た。このプリプレグを8枚重ねて加熱下にプ
レス成形を行つた。成形条件はプレス温度170
℃、プレス圧力70Kg/cm2、プレス時間20分とし
た。 次いで得られた積層物を170℃にて60分間ポ
ストキユアーを行い積層板を得た。 又これとは別に厚さ35μの銅箔を貼着した銅
張積層板も製造した。方法及び条件は上記同様
に行つた。積層板の物理的性質、電気的性質及
び難燃性について評価を行つた。結果を第一表
に示す。 実施例 2 a 積層板製造用ワニスの調製 五酸化二アンチモンとして平均粒子径48ミリ
ミクロンの超微粒子の二次凝集体である平均粒
子径46ミクロンの粉体状のものを使用する以外
は全て実施例1―aと同一の方法にてワニスの
調製を行つた。 従つてワニス中の全固型分量及び固型分中の
臭素/アンチモン比も実施例1―aのワニスと
同様である。 b 積層板の製造 全て実施例1―bと同様の方法及び条件にて
積層板の製造を行つた。 結果を第一表に示す。 比較例 1 a 積層板製造用ワニスの調製 NEMA規格FR―4又はJIS規格GE―3適合
の難燃積層板製造用の典型配合例として、C.
M.C.テクニカルリポートNo.17プリント配線用
材料と加工技術(桧垣寅雄編集、株式会社シー
エムシ発行、昭和56年11月20日)59頁に記載さ
れている配合例を参考にしてワニスを調製し
た。 即ち実施例1―aにて使用した臭素化エポキ
シ樹脂エピコート1045―B―80の80重量%のメ
チルエチルケトン溶液125重量部(臭素化エポ
キシ樹脂として100重量部)をメチルエチルケ
トン35重量部で希釈し、次いで硬化剤としてジ
シアンジアミド4重量部、硬化促進剤としてベ
ンジルジメチルアミン0.2重量部をジメチルホ
ルムアミド30重量部に溶解させた溶液を添加し
よく混合してワニスを得た。本ワニスの全固型
分は53.7重量%である。 b 積層板の製造 全て実施例1―bと同様の方法及び条件にて
積層板の製造を行つた。結果を第一表に示す。 第一表の結果からも明らかなように本比較例
では臭素を18〜20重量%含有する高価な臭素化
エポキシ樹脂のみを用いてUL規格94V―Oに
適合する積層板が得られる。これに対し実施例
1及び2では臭素化エポキシ樹脂の使用量を半
減しても優れた難燃効果が認められる。 又本比較例の難燃性以外の性能を実施例1及
び2と比較すると、積層板の透明性は寧ろ五酸
化二アンチモンが添加された積層板の方が向上
しており、積層板中への五酸化二アンチモンが
極めて微細に且つ均一に分散されていることが
判る。その他積層板の曲げ強度も実施例1及び
2が向上しており電気的性質、半田耐熱、煮沸
吸水率等も何等劣ることなく五酸化二アンチモ
ンが添加された積層板が優れた性能を有するこ
とが明らかである。 比較例 2 a 積層板製造用ワニスの調製 五酸化二アンチモンの代りに平均粒経0.5ミ
クロンの三酸化二アンチモン粉末を用いる以外
は、全て実施例1―aと同一の方法にてワニス
の調製を行つた。 ワニス中の全固型分は55.8重量%であり、固
型分中の臭素/アンチモン比は3.67である。 b 積層板の製造 全て実施例1―bと同様の方法及び条件にて
積層板の製造を行つた。結果を第一表に示す。 第一表より明らかなように三酸化アンチモン
の添加された積層板は難燃性、電気的性質、機
械的性質、半田耐熱性、煮沸吸水率等は実施例
1及び2の結果と比較して大きな差はないが、
透明性が著しく悪化していることが判る。事実
本比較例で得られる積層板は白色化しており透
明性が著しく損なわれており、この状態では到
底本発明の目的を達することは出来ない。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame-retardant epoxy resin composition for substrates suitable for laminates and copper-clad laminates. More specifically, the present invention relates to a novel epoxy resin composition for flame-retardant substrates that has good transparency and maintains excellent heat resistance, electrical properties, and chemical resistance. In recent years, with the development of electrical and electronic equipment, there has been a strong desire for laminates used in these fields to be flame retardant from the viewpoint of safety. On the other hand, in order to streamline the inspection of printed wiring boards, even flame-retardant substrates are required to have the same transparency as flame-retardant substrates. As a means of making such a laminate plate flame retardant,
Generally, a method using a halogenated epoxy resin or a flame retardant such as an organic halogen compound, an organic phosphate compound, or an inorganic compound is used. However, these methods require a large amount of use in order to achieve sufficient flame retardant effect, especially the degree of flame retardation that has been strongly desired in recent years, and meet the UL standard 94V-O, so they are expensive. There are problems such as pinching, deterioration of physical properties such as heat resistance and electrical properties of the laminate, or loss of transparency of the laminate, and further improvements are desired from the viewpoint of cost and performance. ing. In particular, diantimony trioxide, an inorganic flame retardant, exhibits excellent flame retardant effects due to synergistic effects with halogen atoms, and is therefore widely used as a flame retardant for various plastics along with various halogen-containing compounds. When this product is used as a flame retardant for laminates, especially epoxy resin to glass cloth laminates,
The problem arises that the transparency of the laminate is lost, which complicates the product inspection process as described above. In view of the above circumstances, the present inventors conducted research to solve these problems and found that by using a specific diantimony pentoxide as part of the flame retardant, good transparency can be achieved. The present invention was completed based on the discovery that a flame-retardant epoxy resin composition suitable for use in laminates and copper-clad laminates, which maintains excellent heat resistance, electrical properties, and chemical resistance, can be obtained. That is, the present invention provides an epoxy resin composition for producing a laminate or a copper-clad laminate, in which: (a) a non-halogenated epoxy resin having at least two or more epoxy groups in the molecule; (b) at least two or more epoxy groups in the molecule. Halogenated epoxy resin c having an epoxy group with an average particle diameter of 5 to 100 millimicrons and/or composed of secondary aggregates of primary particles with an average particle diameter of 5 to 100 millimicrons and an average particle diameter of 1 to 100 microns The present invention relates to an epoxy resin composition for flame-retardant substrates, characterized in that it contains a diantimony pentoxide curing agent within the range of 1. When the epoxy resin composition of the present invention is used for a laminate based on glass cloth, the laminate obtained has good transparency despite the addition of diantimony pentoxide, an inorganic compound. The laminate does not become opacified as is observed when antimony trioxide is used. Further, the diantimony pentoxide used in the present invention exhibits an excellent flame retardant effect even when added in a small amount due to its synergistic effect with halogen atoms, so that costs can be reduced. For example, as will be made clear in the examples described later, there are advantages such as the ability to greatly reduce the amount of expensive brominated epoxy resin used to achieve flame retardancy of UL94V-O. have. Furthermore, the laminate obtained using the epoxy resin composition of the present invention has little color deterioration at high temperatures and can be used stably for a long period of time. It also maintains excellent soldering heat resistance, electrical properties, and chemical resistance.
Its usefulness as a material for highly reliable printed wiring boards is extremely high. Furthermore, since the antimony pentoxide used in the present invention is ultrafine particles, aggregates of ultrafine particles, or a mixture thereof, it has excellent uniform dispersibility even in the varnish for impregnating the base material. No sexual deterioration was observed at all. The present invention will be explained in more detail below. In carrying out the present invention, at least 2
Examples of non-halogenated epoxy resins having more than one epoxy group include dilycidyl ether type dihydric phenols such as bisphenol A, bisphenol F, resorcinol, hydroquinone, 44'-dihydroxydiphenyl, bisphenol S, and phenols. - Examples include polyglycidyl ether type polyhydric phenols such as formaldehyde resins. Further, examples of the halogenated epoxy resin having at least two or more epoxy groups in the molecule include diglycidyl ether type brominated or chlorinated divalent phenols as exemplified above. Further, as the curing agent, any curing agent can be used as long as it does not impair the purpose of the present invention, and examples thereof include dicyandiamide, acid anhydrides such as phthalic anhydride and hymic anhydride, and various amine compounds. I can do it. Further, a curing accelerator can be used in combination with the epoxy resin composition used in the present invention, if necessary. Examples include tertiary amines such as benzyldimethylamine and triethylamine. Further, as mentioned above, the diantimony pentoxide used in the present invention may be ultrafine particles having an average particle size of 5 to 100 microns, or secondary aggregates of the ultrafine particles having an average particle size of 1 to 100 microns. Any mixture thereof may be used, and any known method for producing diantimony pentoxide may be used as long as the particle size satisfies the above-mentioned requirements. It is difficult to manufacture particles having an average particle diameter of 1 micron or less, and particles having an average particle diameter of 100 microns or more are undesirable because of their poor miscibility with resins. Further, the form in which diantimony pentoxide is used is not particularly limited, and it may be used in a powder state or a colloid state uniformly dispersed in an organic solvent capable of dissolving the epoxy resin used. I can do it. The ratio of the non-halogenated epoxy resin, halogenated epoxy resin, and diantimony pentoxide used in the present invention should be appropriately selected in consideration of the content of the halogenated epoxy resin used and the desired degree of flame retardation. Bye. For example, as will be clarified in the examples below, in order to achieve the highest degree of flame retardancy, UL standard 94V-O, the bromine content of the halogenated epoxy resin must be
When using 18 to 20 wt% of brominated epoxy resin, the ratio of non-halogenated epoxy resin: brominated epoxy resin = 1:1, about 3 parts by weight of diantimony pentoxide to 100 parts by weight of the total epoxy resin. preferable. The amount of the curing agent to be used may be appropriately determined depending on the epoxy equivalent of the epoxy resin used, the amount used, and the type of curing agent used. Furthermore, when creating a varnish for manufacturing laminates using the composition of the present invention, an organic solvent that uniformly dissolves a non-halogenated epoxy resin, a halogenated epoxy resin, and a hardening agent is appropriately selected. After dissolving the above three components in an organic solvent, diantimony pentoxide may be added and uniformly dispersed. In addition, various other additives may be used in combination as long as they do not impair the objectives and effects of the present invention. The present invention will be explained in more detail with reference to Examples below. Example 1 a Preparation of varnish for manufacturing laminates Epicote 1001, a bisphenol A type epoxy resin, was used as a non-halogenated epoxy resin.
(Epoxy equivalent 450-500) 50 parts by weight, brominated bisphenol A as halogenated epoxy resin
Epicoat 1045B-80, a type epoxy resin
(Epoxy equivalent 450-500, bromine content in resin
62.5 parts by weight of methyl ethyl ketone 42.5 parts by weight
4 parts by weight of dicyandiamide as a curing agent, 0.2 parts by weight of benzyldimethylamine as a curing accelerator, and 0.2 parts by weight of benzyldimethylamine as a curing accelerator are added to the solution dissolved in 30 parts by weight of dimethylformamide and mixed well. Next, 3.1 parts by weight of diantimony pentoxide was added and stirred and mixed to uniformly disperse the mixture in the system to prepare a varnish for producing a laminate. The diantimony pentoxide used in this example was in the form of a powder with an average particle size of 38 microns, but this was a secondary aggregate of ultrafine particles with an average particle size of 15 millimeters. Furthermore, the total solid content of the above varnish is 55.8% by weight, the bromine content in the total solid content is 8.85% by weight, the antimony content is 2.18% by weight, and the bromine/antimony ratio is
It is 4.06. b Manufacture of laminate A glass woven fabric having a thickness of 0.18 mm was impregnated with the above varnish and dried to obtain a prepreg with a resin content of 50% by weight. Eight sheets of this prepreg were stacked and press-molded under heating. Molding conditions are press temperature 170
℃, press pressure of 70 Kg/cm 2 , and press time of 20 minutes. Next, the obtained laminate was post-cured at 170°C for 60 minutes to obtain a laminate. Separately, a copper-clad laminate with a 35μ thick copper foil was also manufactured. The method and conditions were the same as above. The physical properties, electrical properties, and flame retardance of the laminates were evaluated. The results are shown in Table 1. Example 2 a Preparation of varnish for manufacturing laminates All procedures were carried out except for using diantimony pentoxide in powder form with an average particle diameter of 46 microns, which is a secondary aggregate of ultrafine particles with an average particle diameter of 48 millimicrons. A varnish was prepared in the same manner as in Example 1-a. Therefore, the total solid content in the varnish and the bromine/antimony ratio in the solid content are also the same as in the varnish of Example 1-a. b Production of laminate A laminate was produced using the same method and conditions as in Example 1-b. The results are shown in Table 1. Comparative Example 1 a Preparation of varnish for manufacturing laminates As a typical formulation example for manufacturing flame-retardant laminates that comply with NEMA standard FR-4 or JIS standard GE-3, C.
A varnish was prepared with reference to the formulation example described on page 59 of MC Technical Report No. 17 Printed Wiring Materials and Processing Technology (edited by Torao Higaki, published by CMC Corporation, November 20, 1980). That is, 125 parts by weight of an 80% by weight methyl ethyl ketone solution of the brominated epoxy resin Epicoat 1045-B-80 used in Example 1-a (100 parts by weight as brominated epoxy resin) was diluted with 35 parts by weight of methyl ethyl ketone, and then A solution prepared by dissolving 4 parts by weight of dicyandiamide as a hardening agent and 0.2 parts by weight of benzyldimethylamine as a hardening accelerator in 30 parts by weight of dimethylformamide was added and mixed well to obtain a varnish. The total solids content of this varnish is 53.7% by weight. b Production of laminate A laminate was produced using the same method and conditions as in Example 1-b. The results are shown in Table 1. As is clear from the results in Table 1, in this comparative example, a laminate meeting UL standard 94V-O can be obtained using only an expensive brominated epoxy resin containing 18 to 20% by weight of bromine. On the other hand, in Examples 1 and 2, excellent flame retardant effects were observed even if the amount of brominated epoxy resin used was halved. Furthermore, when comparing the performance of this comparative example other than flame retardance with Examples 1 and 2, the transparency of the laminate was improved in the laminate to which diantimony pentoxide was added, and the transparency of the laminate was improved. It can be seen that diantimony pentoxide is extremely finely and uniformly dispersed. In addition, the bending strength of the laminates in Examples 1 and 2 is improved, and there is no deterioration in electrical properties, soldering heat resistance, boiling water absorption rate, etc., and the laminates to which diantimony pentoxide is added have excellent performance. is clear. Comparative Example 2a Preparation of varnish for manufacturing laminates A varnish was prepared in the same manner as in Example 1-a, except that diantimony trioxide powder with an average particle size of 0.5 microns was used instead of diantimony pentoxide. I went. The total solids content in the varnish is 55.8% by weight, and the bromine/antimony ratio in the solids is 3.67. b Production of laminate A laminate was produced using the same method and conditions as in Example 1-b. The results are shown in Table 1. As is clear from Table 1, the flame retardancy, electrical properties, mechanical properties, soldering heat resistance, boiling water absorption, etc. of the laminates to which antimony trioxide was added were compared with the results of Examples 1 and 2. There is no big difference, but
It can be seen that transparency has deteriorated significantly. In fact, the laminate obtained in this comparative example has a white color and its transparency is significantly impaired, and in this state, the object of the present invention cannot be achieved at all. 【table】

Claims (1)

【特許請求の範囲】 1 積層板、銅張積層板を製造する為のエポキシ
樹脂組成物において a 分子中に少くとも2ケ以上のエポキシ基を有
する非ハロゲン化エポキシ樹脂 b 分子中に少くとも2ケ以上のエポキシ基を有
するハロゲン化エポキシ樹脂 c 平均粒子径が5〜100ミリミクロン及び/又
は平均粒子径5〜100ミリミクロンの一次粒子
の二次凝集体で構成され、平均粒子径が1〜
100ミクロンの範囲内にある五酸化二アンチモ
ン d 硬化剤 を構成成分として含有することを特徴とする難燃
性基板エポキシ樹脂組成物。
[Scope of Claims] 1. In an epoxy resin composition for producing a laminate or a copper-clad laminate, a non-halogenated epoxy resin having at least two or more epoxy groups in the molecule, b at least two in the molecule. Halogenated epoxy resin c having an epoxy group of 5 to 100 mm, consisting of a secondary aggregate of primary particles with an average particle size of 5 to 100 millimicrons and/or an average particle diameter of 5 to 100 millimicrons, and an average particle diameter of 1 to 100 millimicrons.
A flame-retardant substrate epoxy resin composition, characterized in that it contains as a component a diantimony pentoxide curing agent within the range of 100 microns.
JP1037683A 1983-01-25 1983-01-25 Epoxy resin composition for flame retardant board Granted JPS59136319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1037683A JPS59136319A (en) 1983-01-25 1983-01-25 Epoxy resin composition for flame retardant board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1037683A JPS59136319A (en) 1983-01-25 1983-01-25 Epoxy resin composition for flame retardant board

Publications (2)

Publication Number Publication Date
JPS59136319A JPS59136319A (en) 1984-08-04
JPS6226648B2 true JPS6226648B2 (en) 1987-06-10

Family

ID=11748409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1037683A Granted JPS59136319A (en) 1983-01-25 1983-01-25 Epoxy resin composition for flame retardant board

Country Status (1)

Country Link
JP (1) JPS59136319A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170115A (en) * 1983-03-17 1984-09-26 Kanegafuchi Chem Ind Co Ltd Flame-retardant liquid epoxy resin composition and manufacture of laminate sheet for electrical use therefrom
JPH0657825B2 (en) * 1985-12-27 1994-08-03 三井東圧化学株式会社 Flame-retardant adhesive composition for flexible printed circuit board
JPH11217553A (en) * 1998-02-05 1999-08-10 Minnesota Mining & Mfg Co <3M> Adhesive composition and its precursor
EP1650247A1 (en) * 2004-10-21 2006-04-26 Resolution Research Belgium S.A. Amines-epoxy compositions with high chemical resistance properties

Also Published As

Publication number Publication date
JPS59136319A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
US10400099B2 (en) Halogen-free epoxy resin composition, prepreg, laminate and printed circuit board containing the same
KR101144566B1 (en) Epoxy resin composition, prepreg using the epoxy resin composition, metal-clad laminate, and printed wiring board
TWI532784B (en) A halogen-free resin composition and use thereof
WO2012150661A1 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
CN103992622B (en) A kind of halogen-free resin composition and the prepreg using it and laminate for printed circuits
WO2017092482A1 (en) Halogen-free epoxy resin composition and prepreg, laminated board and printed circuit board containing same
WO2015101232A1 (en) Halogen-free epoxy resin composition and use thereof
JPH073053A (en) Production of modified polyphenylene oxide resin system for electrical laminate board with improved soldability and solvent resistance
WO2015101233A1 (en) Halogen-free epoxy resin composition and use thereof
TW201823346A (en) Preparation method of benzoxazine-containing resin composition, and prepreg and plywood produced from resin composition
EP2952535B1 (en) Halogen-free resin composition, and prepreg and laminate for printed circuits using same
JP3300426B2 (en) Solvent-free high-temperature compounding method for production of thermosetting polyphenylene oxide / epoxy laminate
CN108117723B (en) Thermosetting resin composition, prepreg using same and laminated board for printed circuit
CN105801814A (en) Halogen-free thermosetting resin composition and prepreg and printed circuit laminated board using the same
US4529790A (en) Epoxy resin composition
US20140039094A1 (en) Epoxy resin composition, and prepreg and printed circuit board using the same
JPS6226648B2 (en)
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
WO2015188310A1 (en) Halogen-free resin composition, and prepreg and laminated board for printed circuit using same
JPH0722718A (en) Epoxy resin composition for printed wiring board, manufacture of prepreg for printed wiring board, and manufacture of composite laminated sheet
JPS6296521A (en) Epoxy resin composition
JP4410619B2 (en) Electrical laminates and printed wiring boards
EP0045957A1 (en) Flame-retarded curable resins
JP2001253951A (en) Laminate sheet formed by using flame-retardant resin composition
JPH07316267A (en) Epoxy resin composition, prepreg and laminate