JPS62266298A - Ceramic honeycomb structure - Google Patents

Ceramic honeycomb structure

Info

Publication number
JPS62266298A
JPS62266298A JP61107695A JP10769586A JPS62266298A JP S62266298 A JPS62266298 A JP S62266298A JP 61107695 A JP61107695 A JP 61107695A JP 10769586 A JP10769586 A JP 10769586A JP S62266298 A JPS62266298 A JP S62266298A
Authority
JP
Japan
Prior art keywords
honeycomb structure
ceramic honeycomb
fins
partition wall
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107695A
Other languages
Japanese (ja)
Inventor
潤 北川
幸一 池島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61107695A priority Critical patent/JPS62266298A/en
Publication of JPS62266298A publication Critical patent/JPS62266298A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)

Landscapes

  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、隔壁の一部に内方に突出するフィンをもった
フィン付セラミックハニカム構造体に関するもので、よ
り詳しくは内燃機関の排気ガスの浄化に用いられる触媒
担体や微粒子浄化フィルタ、各種ガス、石油を燃料源と
する燃焼ガスの浄化、脱臭に用いられるフィン付ハニカ
ム構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a finned ceramic honeycomb structure having inwardly projecting fins on a part of a partition wall. The present invention relates to catalyst carriers and particulate purification filters used for the purification of gases, and finned honeycomb structures used for purification and deodorization of combustion gases using various gases and petroleum as fuel sources.

(従来の技術) セラミックハニカム構造体はその耐熱性、耐食性、圧力
損失が小さいこと、燃焼ガスとの接触面積が大きくでき
ることから ■ 内燃機関の排気ガスの浄化用触媒担体(特開昭50
−75611号:米国特許第3885977号)■ 内
燃機関の排気ガスの微粒子浄化フィルタ(特開昭56−
124417号:米国特許第4364761号)■ 各
種燃焼機器及び調理器具用の触媒担体(特開昭57−2
7139号:米国特許第4350613号)に使用され
ている。
(Prior art) Ceramic honeycomb structures have heat resistance, corrosion resistance, low pressure loss, and can have a large contact area with combustion gas.
-75611: U.S. Patent No. 3885977) ■ Particulate purification filter for exhaust gas of internal combustion engine
124417: U.S. Patent No. 4364761) Catalyst carrier for various combustion equipment and cooking utensils (Japanese Patent Application Laid-Open No. 57-2
No. 7139: US Pat. No. 4,350,613).

触媒としては、セラミックハニカム構造体の外表面に活
性アルミナ(T−アルミナ)を介して触媒貴金属(白金
、ロジューム、パラジューム等)を担持するものであり
、フィルタとしては、ハニカム構造体の貫通孔の一端部
を封止して主として多孔質の隔壁をフィルタとして作用
せしめるもので、いずれも燃焼ガスとの接触面積が大き
いことを利用している。
As a catalyst, a catalytic noble metal (platinum, rhodium, palladium, etc.) is supported on the outer surface of a ceramic honeycomb structure via activated alumina (T-alumina), and as a filter, a catalyst is supported on the outer surface of a ceramic honeycomb structure through the through holes of the honeycomb structure. One end is sealed to allow the porous partition wall to act primarily as a filter, and both utilize the fact that it has a large contact area with combustion gas.

これらのセラミックハニカム構造体は、燃焼ガスとの接
触面を形成する貫通孔(フィルタにおいてはその一端の
開口面が封止されているもの、)   ・の形状につい
て、燃焼ガスの圧力損失、耐熱衝撃性を考慮して三角形
、四角形、円形等が選択されている。
These ceramic honeycomb structures have through-holes (in the case of filters, one end of the opening is sealed) that form the contact surface with combustion gas. Triangles, squares, circles, etc. are selected with consideration to their nature.

ハニカム構造体の体積当りの表面積(以下、幾何学的表
面積という)を高めるために、貫通孔の表面にセラミッ
ク粒子を付着させたセラミックハニカム構造体が提案さ
れている(特開昭58−14921号:米国特許第44
04007号)。
In order to increase the surface area per volume of the honeycomb structure (hereinafter referred to as geometric surface area), a ceramic honeycomb structure in which ceramic particles are attached to the surface of the through holes has been proposed (Japanese Patent Laid-Open No. 14921/1983). : US Patent No. 44
No. 04007).

燃焼ガスは一般に燃焼源からパイプをもってセラミック
ハニカム構造体に導かれており、セラミックハニカム構
造体におけるガスとの所要接触面積を確保するために該
セラミックハニカム構造体の貫通孔の開口端面の面積が
該パイプの断面積より大きく形成されている。このため
、燃焼ガスはセラミックハニカム構造体の中央部に集中
し、その中央部の劣化を早めたり、充分な浄化処理がで
きな(なる欠点があった。
Combustion gas is generally guided from a combustion source to a ceramic honeycomb structure using a pipe, and in order to ensure the required contact area with the gas in the ceramic honeycomb structure, the area of the opening end surface of the through hole in the ceramic honeycomb structure is It is formed larger than the cross-sectional area of the pipe. For this reason, the combustion gas concentrates in the center of the ceramic honeycomb structure, leading to accelerated deterioration of the center and the inability to perform sufficient purification treatment.

これを防止するためにセラミックハニカム構造体のガス
の流入面の前面に散気部品を設けることが行われたり、
燃焼ガスの流量が多いセラミックハニカム構造体の中央
部の貫通孔のセル密度(セラミックハニカム構造体の単
位断面積当たりの貫通孔数で定義される)を大きくする
セラミックハニカム構造体が提案されている(米国特許
第3853485号)。
To prevent this, aeration parts are installed in front of the gas inflow surface of the ceramic honeycomb structure, and
A ceramic honeycomb structure has been proposed that increases the cell density (defined as the number of through holes per unit cross-sectional area of the ceramic honeycomb structure) of the through holes in the center of the ceramic honeycomb structure where the flow rate of combustion gas is high. (U.S. Pat. No. 3,853,485).

さらには、内燃機関の排気ガスの浄化においてセラミッ
クハニカム構造体の中心部と周辺部に担持される触媒の
種類を変えることが試みられている。 (実開昭59−
39639号)。
Furthermore, in purifying exhaust gas from internal combustion engines, attempts have been made to change the types of catalysts supported in the center and periphery of the ceramic honeycomb structure. (Jitsukai 59-
No. 39639).

(発明が解決しようとする問題点) しかしながら、前記の特開昭58−14921号に記載
されているセラミックハニカム構造体はセラミック粒子
を隔壁の表面に付着させたものであるので使用される環
境から発生する熱衝撃あるいは機械的振動等により剥離
脱落が生じやすく、しかも製造工程が複雑である欠点を
有している。
(Problems to be Solved by the Invention) However, since the ceramic honeycomb structure described in JP-A No. 58-14921 has ceramic particles attached to the surface of the partition walls, it is difficult to handle the environment in which it is used. It has the disadvantage that it tends to peel off due to generated thermal shock or mechanical vibration, and the manufacturing process is complicated.

また、前記の米国特許第3853485号に記載されて
いるセラミックハニカム構造体はその中央部のセル密度
を大きくしであるため耐熱衝撃性が低い欠点を有してい
る。
Further, the ceramic honeycomb structure described in the above-mentioned US Pat. No. 3,853,485 has a disadvantage of low thermal shock resistance because the cell density in the central portion thereof is large.

また、前記の実開昭59−39639号では、触媒の種
類をセラミックハニカム構造体の場所によってかえなけ
ればならないので、その担持工程が複雑になる欠点を有
している。
Further, in the above-mentioned Japanese Utility Model Application No. 59-39639, the type of catalyst must be changed depending on the location of the ceramic honeycomb structure, which has the disadvantage that the supporting process becomes complicated.

そこで、本発明の主要な目的は耐熱衝撃性を損なうこと
なく主として中央部分で幾何学的表面積が大きいセラミ
ックハニカム構造体を提供することにある。
Therefore, the main object of the present invention is to provide a ceramic honeycomb structure having a large geometric surface area mainly in the central portion without impairing thermal shock resistance.

さらに他の目的は、製造が簡単な工程で得られるセラミ
ックハニカム構造体を提供することにある。
Still another object is to provide a ceramic honeycomb structure that can be manufactured through a simple process.

(問題点を解決するための手段) 本発明は、このような目的を達成するためになされたも
ので、隔壁で囲まれた多数の貫通孔を有するセラミック
ハニカム構造体において、該隔壁より内方に突出するフ
ィンが各隔壁を略等分割した位置に1個又は複数個対応
して各隔壁の表面に一体的に形成されているセラミック
ハニカム構造体にある。
(Means for Solving the Problems) The present invention has been made to achieve the above object, and is directed to a ceramic honeycomb structure having a large number of through holes surrounded by partition walls. The ceramic honeycomb structure has one or more protruding fins integrally formed on the surface of each partition wall at positions where each partition wall is divided into approximately equal parts.

本発明のセラミックハニカム構造体の更に特徴とすると
ころは、前記フィンを円弧状、半円状、三角状、四角状
、角落し四角状、梯形状断面の何れか一つまたはその組
合せより選択されたフィンを設けることにある。
A further feature of the ceramic honeycomb structure of the present invention is that the fins are selected from one or a combination of arcuate, semicircular, triangular, square, rounded square, and ladder-shaped cross sections. The purpose is to provide a fin with a fin.

また、本発明のセラミックハニカム構造体の各隔壁に設
けるフィンの形状は、フィンの高さH1隔壁の厚みT、
隔壁間隔P、フィンの付根幅C1とするとき、これらの
関係は、 H/T≦1.H/P≦0.3゜ C/T=0.1〜4 とするものである。
Further, the shape of the fin provided on each partition wall of the ceramic honeycomb structure of the present invention is such that the height of the fin is H1, the thickness of the partition wall is T,
When the partition wall interval P and the root width of the fin are C1, the relationship between these is as follows: H/T≦1. H/P≦0.3°C/T=0.1-4.

なお、横断面が半円状または円弧状である場合は、前記
フィンの直径りと隔壁の厚みTとの関係は、 D=0.1T〜4T であることが必要である。
In addition, when the cross section is semicircular or arcuate, the relationship between the diameter of the fin and the thickness T of the partition wall needs to be D=0.1T to 4T.

本発明の他の手段の一つは、フィンと隔壁とで形成され
る貫通孔の断面積がセラミックハニカム構造体の少なく
とも中央部において小さいセラミックハニカム構造体を
提供することにある。
Another aspect of the present invention is to provide a ceramic honeycomb structure in which the cross-sectional area of the through holes formed by the fins and partition walls is small at least in the central portion of the ceramic honeycomb structure.

本発明の更に他の手段とするところは、フィンが隔壁の
表面に一体に形成されているセラミックハニカム構造体
を提供するにある。
Still another aspect of the present invention is to provide a ceramic honeycomb structure in which fins are integrally formed on the surfaces of partition walls.

本発明の更に他の手段の一つは、押出し成形によってフ
ィンが隔壁と一体的に形成され焼結されているセラミッ
クハニカム構造体を提供するにある。
Another aspect of the present invention is to provide a ceramic honeycomb structure in which fins are formed integrally with partition walls by extrusion molding and are sintered.

本発明の更に他の手段とする所は、材質がコージェライ
トであるセラミックハニカム構造体を提供するにある。
Still another aspect of the present invention is to provide a ceramic honeycomb structure made of cordierite.

(作 用) 以下図面を参照して、本発明の一具体例について詳細説
明する。
(Function) A specific example of the present invention will be described in detail below with reference to the drawings.

第1図および第2図において、セラミックハニカム構造
体lは隔壁2とフィン3を備えており、該隔壁2とフィ
ン3とで貫通孔4が形成されている。
In FIGS. 1 and 2, a ceramic honeycomb structure 1 includes partition walls 2 and fins 3, and the partition walls 2 and fins 3 form through holes 4.

第1図はセラミックハニカム構造体1の四角形断面をな
す隔壁2の中央部にのみフィン3を隔壁と一体的に成形
して貫通孔4を構成した場合を示すもので、これは燃焼
ガスが主としてセラミックハニカム構造体の中央部に集
中し中央部の劣化を早めたり、充分な浄化処理ができな
くなる欠点を改善する目的で、ハニカム構造体の中央部
の貫通孔のみにフィンを設けた場合を示したもので、後
述のように本発明はこれのみに限定されるものでなく、
ハニカム構造体の周辺部の貫通孔を含む全ての貫通孔の
隔壁にフィンを設けてもよい。
Fig. 1 shows a case in which a through hole 4 is formed by integrally molding fins 3 only in the center of a partition wall 2 having a rectangular cross section of a ceramic honeycomb structure 1, and this is because the combustion gas is mainly This shows a case where fins are provided only in the through-holes in the center of the honeycomb structure in order to improve the problem of concentration in the center of the ceramic honeycomb structure, which accelerates deterioration in the center and prevents sufficient purification treatment. However, as described below, the present invention is not limited to this only.
Fins may be provided on the partition walls of all through holes including those in the peripheral portion of the honeycomb structure.

第1図において、フィン3の貫通孔4への突出高さは隔
壁2の一辺の長さの30%以下、0.5%以上で、約2
02ないし30χとするのがよく、フィン3の厚みは隔
壁2の厚みと同じにしているが、フィン3の厚みは隔壁
2の厚みと同−又はこれより小さい方がよいが、突出高
さが小さい場合は、フィン3の厚みは隔壁2の厚さより
大きくしてもよい。
In FIG. 1, the protrusion height of the fin 3 into the through hole 4 is less than 30% and more than 0.5% of the length of one side of the partition wall 2, and is about 2
The thickness of the fins 3 is preferably the same as the thickness of the partition wall 2, but it is better that the thickness of the fin 3 is the same as or smaller than the thickness of the partition wall 2. If the thickness is small, the thickness of the fins 3 may be greater than the thickness of the partition wall 2.

またセラミックハニカム構造体1の外周壁の厚みは補強
のため隔壁2より厚く形成する。
Further, the thickness of the outer peripheral wall of the ceramic honeycomb structure 1 is made thicker than the partition walls 2 for reinforcement.

第2図は第1図の部分的拡大図面であり、隔壁2および
フィン3は肉厚で示されるように、ハニカム構造体の中
央部の貫通孔にのみ主としてフィン3が隔壁2と一体に
設けられ、ハニカム構造体の中央部においてフィンの高
さ及び厚みだけ貫通孔の断面積が小さくなることを例示
している。従って、フィン3の高さ及び厚みと、隔壁2
の厚みとはハニカム構造体の使用目的に応じて適宜選択
する必要がある。
FIG. 2 is a partially enlarged view of FIG. 1, and as shown by the thickness of the partition walls 2 and fins 3, the fins 3 are mainly provided integrally with the partition walls 2 only in the through holes in the center of the honeycomb structure. This example shows that the cross-sectional area of the through-hole is reduced by the height and thickness of the fin in the central part of the honeycomb structure. Therefore, the height and thickness of the fin 3 and the partition wall 2
It is necessary to select the thickness appropriately depending on the intended use of the honeycomb structure.

このようなフィン3は押出し成形により隔壁2と一体的
に形成され、焼結されるのであり、材質はコージェライ
トが好ましいが、後述のように、ハニカム構造体の材質
はこれのみに限られるものではない。
Such fins 3 are formed integrally with the partition wall 2 by extrusion molding and are sintered, and the material is preferably cordierite, but as will be described later, the material of the honeycomb structure is limited to this. isn't it.

第3図に示すように、貫通孔4の形状は、第1図に示す
四角形状のものに限定されるものではなく、隔壁2の形
状は三角形、六角形等の多角形および円形の何れでもよ
く、フィン3の配置は隔壁2上の中央部又は隔壁を3分
割又は4分割の如く均等分割した点あるいは隔壁の交差
部でもよ<、゛フィン3の数により定め得る。
As shown in FIG. 3, the shape of the through hole 4 is not limited to the rectangular shape shown in FIG. Often, the arrangement of the fins 3 may be determined by the number of fins 3, such as at the center of the partition wall 2, at points where the partition wall is equally divided into three or four parts, or at intersections of the partition walls.

セラミックハニカム構造体に要求される表面積は貫通孔
4の長さとその開口面の周辺長さにより定まり、周辺長
さは貫通孔4の形状を定める隔壁2とフィン3のそれぞ
れの形状により定まる。ここで、貫通孔4の長さはセラ
ミックハニカム構造体の用途およびその製造法によって
限定されるので、隔壁2とフィン3との関係が重要とな
る。
The surface area required for the ceramic honeycomb structure is determined by the length of the through hole 4 and the peripheral length of its opening surface, and the peripheral length is determined by the respective shapes of the partition walls 2 and fins 3 that define the shape of the through hole 4. Here, since the length of the through hole 4 is limited by the use of the ceramic honeycomb structure and its manufacturing method, the relationship between the partition walls 2 and the fins 3 is important.

本発明は、フィン3を隔壁2に設けることによって表面
積を増大することを主目的とするが、表面積を増大する
ためにフィン3の高さく隔壁から貫通孔への突出高さ)
を大きくし過ぎると浄化ガスの圧力損失が大きくなるの
で、貫通孔の内接円直径の302以下が好ましい。
The main purpose of the present invention is to increase the surface area by providing the fins 3 on the partition wall 2. In order to increase the surface area, the height of the fins 3 is increased (the height of the fins 3 protruding from the partition wall to the through hole).
If it is too large, the pressure loss of the purified gas will increase, so it is preferable that the diameter of the inscribed circle of the through hole is 302 or less.

一方、フィン3の厚みは耐熱衝撃性と製造条件から隔壁
2の厚さと同等もしくはそれ以下が好ましいが、フィン
3の高さが低い場合には隔壁2の厚さより大きくしても
よい。
On the other hand, the thickness of the fins 3 is preferably equal to or less than the thickness of the partition wall 2 from the viewpoint of thermal shock resistance and manufacturing conditions, but may be larger than the thickness of the partition wall 2 when the height of the fin 3 is low.

また、耐熱衝撃性からフィン3の配置は隔壁上で対称的
に設けられることが好ましい。この場合、圧力損失およ
び触媒の有効利用の点から、フィン3は各隔壁の交差部
以外のところに配置されることがより好ましい。
Further, from the viewpoint of thermal shock resistance, it is preferable that the fins 3 are arranged symmetrically on the partition wall. In this case, from the viewpoint of pressure loss and effective use of the catalyst, it is more preferable that the fins 3 be arranged at a location other than the intersection of the partition walls.

また、フィン3は1個のセルを構成する全ての隔壁2に
必ずしも設けられる必要はない。
Moreover, the fins 3 do not necessarily need to be provided on all the partition walls 2 constituting one cell.

隔壁2の形状については、同一のセル構造において、多
角形では第3図(A) 、 (D)に示す三角形のもの
が幾何学的表面積が最も大きい反面、圧力損失および耐
熱衝撃性が悪く、第3図(B) 、 (F)に示す六角
形のものは圧力損失にすぐれるが、多角形になればなる
ほど機械的強度が低下しかつ押出し成形の場合、その成
形用ダイスの製作が困難となる。また、第3図(C)に
示す円形の場合には、多角形のものより幾何学的表面積
はより小さく、触媒の有効利用は悪く、しかも重量が大
きくなる。
Regarding the shape of the partition wall 2, in the same cell structure, the triangular polygon shown in FIGS. 3(A) and 3(D) has the largest geometric surface area, but has poor pressure loss and thermal shock resistance. The hexagonal shapes shown in Figures 3 (B) and (F) have excellent pressure loss, but the more polygonal the shape, the lower the mechanical strength, and in the case of extrusion molding, it is difficult to manufacture the molding die. becomes. Further, in the case of a circular shape shown in FIG. 3(C), the geometric surface area is smaller than that of a polygonal shape, the effective utilization of the catalyst is poor, and the weight is large.

従って、隔壁2の形状は第3図(E) 、 (G)に示
す四角形のものが好ましい。
Therefore, it is preferable that the partition wall 2 has a rectangular shape as shown in FIGS. 3(E) and 3(G).

なお、フィン3が設けられる位置は第3図(G)の如く
等間隔に複数個のフィン3を隔壁2の各−辺に設けてよ
い。
As for the positions where the fins 3 are provided, a plurality of fins 3 may be provided on each side of the partition wall 2 at equal intervals as shown in FIG. 3(G).

第4図に示すように、貫通孔4の形状分布は、第1図の
ように中央部のみにフィン3を備えた形状にするものに
限られることなく、外周部から中央部に向かって要求さ
れる触媒性能に基づく幾何学的表面積を得るべく連続的
に貫通孔4のフィン3の高さを大きくしたものでもよい
As shown in FIG. 4, the shape distribution of the through holes 4 is not limited to having fins 3 only in the center as shown in FIG. The height of the fins 3 of the through holes 4 may be continuously increased in order to obtain a geometric surface area based on the desired catalytic performance.

燃焼ガスの通路が直線状でその通路の途中にセラミック
ハニカム構造体が設けられる場合には、セラミックハニ
カム構造体の中央部が最も燃焼ガスと接触するので、中
央部に貫通孔4を形成する隔壁2上のフィン高さを大き
くしたり、フィン数を大きく形成することが有効である
When the combustion gas passage is linear and a ceramic honeycomb structure is provided in the middle of the passage, the central part of the ceramic honeycomb structure comes into most contact with the combustion gas, so the partition wall forming the through hole 4 in the central part is It is effective to increase the height of the fins on 2 or to increase the number of fins.

燃焼ガスの通路が直線状でない場合には、フィン3が設
けられた貫通孔4は最も燃焼ガスが通過する箇所を中心
として配置されてもよく、本発明においては、中央部と
は厳密な意味で解釈されるものではない。
If the combustion gas passage is not linear, the through holes 4 provided with the fins 3 may be arranged centered at the part through which the combustion gas passes most, and in the present invention, the central part does not have a strict meaning. It is not something that can be interpreted.

第5図ないし第9図は、本発明のセラミックハニカム構
造体の隔壁2の厚さに対するフィン3の高さが、1.0
以下の場合のフィン形状の実施例を示すもので、隔壁間
隔Pは0.8〜10龍、隔壁厚さTは0.05〜3mm
、フィンの高さHは0.05〜3龍で、フィンの高さH
対陽壁間隔Pは0.3以下で、隔壁2へのフィン3の付
根幅C対隅壁厚さTは、0.1〜4の関係を満たしてい
ること(C/T=り、1〜4)が好ましい。
5 to 9 show that the height of the fins 3 relative to the thickness of the partition walls 2 of the ceramic honeycomb structure of the present invention is 1.0.
This shows an example of the fin shape in the following cases, where the partition wall spacing P is 0.8 to 10 mm, and the partition wall thickness T is 0.05 to 3 mm.
, the height H of the fin is 0.05 to 3 dragons, the height H of the fin
The distance P to the positive wall is 0.3 or less, and the root width C of the fin 3 to the partition wall 2 to the corner wall thickness T satisfies the relationship of 0.1 to 4 (C/T=ri, 1 -4) are preferred.

第5図〜第7図は、それぞれフィン3の横断面が、三角
形状、梯形形状および隅角落し四角形状の実施例を示す
ものである。
5 to 7 show examples in which the cross sections of the fins 3 are triangular, trapezoidal, and rectangular with round corners, respectively.

第8図(A) 、 (B) 、 (C) 、 (D)は
、フィン3の横断面が円弧で構成される形状であって、
フィン3の高さH対隅壁厚さTが0.5 (H/T・0
.5)、フィンの高さII対隔壁間隔Pが0.05(H
/P・0.05)の場合を示す。
FIGS. 8(A), (B), (C), and (D) show shapes in which the cross section of the fin 3 is an arc,
The height H of the fin 3 versus the corner wall thickness T is 0.5 (H/T・0
.. 5), fin height II vs. bulkhead spacing P is 0.05 (H
/P・0.05) is shown.

この場合、円弧の中心は隔壁2の上下両側で必ずしも一
敗していなくてもよく、またフィン3が形成される隔壁
面上でも隔壁面から外れていてもよい。
In this case, the center of the circular arc does not necessarily have to be completely broken on both the upper and lower sides of the partition wall 2, and may be located on the partition wall surface where the fins 3 are formed or off from the partition wall surface.

第8図(A)は、円弧の中心がフィン形成面の反対側の
セル空間にあって、フィン3の付根幅C対隅壁厚さTが
3で(C/T・3)、円弧の半径Rが隔壁厚さTの2.
5倍(R=2.57)の場合を示す。
In Fig. 8(A), the center of the arc is in the cell space on the opposite side of the fin forming surface, the root width C of the fin 3 to the corner wall thickness T is 3 (C/T・3), and the arc is 2. The radius R is the partition wall thickness T.
The case of 5 times (R=2.57) is shown.

第8図(B)は、円弧の中心が隔壁2の中心にあって、
フィン3の付根幅C対隅壁厚さTが1.7(C/T=1
.7)の場合を示す。
FIG. 8(B) shows that the center of the circular arc is at the center of the partition wall 2,
The root width C of the fin 3 versus the corner wall thickness T is 1.7 (C/T=1
.. The case of 7) is shown below.

第8図(C)は、円弧の中心がフィン3が形成される隔
壁2面上にあって、フィン3の付根幅C対隅壁厚さTが
1.0(C/T・1.0)の場合を示す。
In FIG. 8(C), the center of the arc is on the second surface of the partition wall where the fins 3 are formed, and the root width C of the fin 3 versus the corner wall thickness T is 1.0 (C/T・1.0 ) is shown.

第8図(D)は、円弧の中心がフィン3が形成されるセ
ル空間にあって、フィン3の付根幅C対隅壁厚さTが0
.45(C/T・0.45)の場合を示す。
In FIG. 8(D), the center of the arc is in the cell space where the fin 3 is formed, and the root width C of the fin 3 versus the corner wall thickness T is 0.
.. 45 (C/T・0.45) is shown.

さらに、第9図は、円弧の中心がフィン3が形成される
隔壁2面上にあって、フィンの高さH対隅壁厚さTが0
.1(H/T・0.1)、フィン3の高さH対陽壁間隔
P A<0.05(H/P−0,05)、フィンの付根
幅C対隅壁厚さTが0.2 (C/T=0.2)であっ
て、複数個のフィン3が隔壁2に設けた場合を示す。
Furthermore, in FIG. 9, the center of the arc is on the partition wall 2 surface where the fin 3 is formed, and the height H of the fin versus the corner wall thickness T is 0.
.. 1 (H/T・0.1), height H of fin 3 vs. positive wall distance P A<0.05 (H/P-0,05), fin root width C vs. corner wall thickness T is 0 .2 (C/T=0.2), and a plurality of fins 3 are provided on the partition wall 2.

材質; セラミックハニカム構造体の材質として、耐熱衝撃性か
らコージェライト系およびアルミナチタネート系セラミ
ックが用いられるが、セラミ・ツクハニカム構造体の用
途およびその使用環境に応じて、アルミナ、ムライト、
シリコンカーバイド、シリコンナイトライド、ジルコニ
ア系セラミックおよび触媒機能を備えたアルミン酸石灰
セメントで二酸化マンガン、酸化チタン等の金属酸化物
を固化したもの等が用いられる。特にコージェライト系
セラミックは、後記する押出し成形によって得る場合、
耐熱衝撃性に優れたものが得られるのでより好ましい。
Material: Cordierite and alumina titanate ceramics are used as the material for the ceramic honeycomb structure due to their thermal shock resistance, but depending on the purpose of the ceramic honeycomb structure and the environment in which it is used, alumina, mullite,
Silicon carbide, silicon nitride, zirconia ceramics, and aluminate lime cement with catalytic function solidified with metal oxides such as manganese dioxide and titanium oxide are used. In particular, when cordierite ceramics are obtained by extrusion molding as described later,
This is more preferred since it provides a product with excellent thermal shock resistance.

製造法; 本発明のセラミックハニカム構造体は上記の材料を混練
し、ハニカム状に押出し成形し、ついで焼結する。
Manufacturing method: The ceramic honeycomb structure of the present invention is produced by kneading the above-mentioned materials, extruding them into a honeycomb shape, and then sintering them.

押出し成形はセラミックハニカム構造体の断面に比べて
貫通孔の長さが大きい内燃機関の排気ガス浄化用セラミ
ックハニカム構造体の製造に有利である。
Extrusion molding is advantageous for manufacturing a ceramic honeycomb structure for exhaust gas purification of an internal combustion engine, in which the length of the through hole is larger than the cross section of the ceramic honeycomb structure.

押出し成形用のダイスは、ハニカム形成溝と押出し原料
供給孔とのあいだに原料がハニカム形状に形成されるた
めに傾斜部を設けた特公昭55−41908号(米国特
許第3790654号)、特公昭57−61592号(
米国特許第3905743号)の技術が用いられる。
Dies for extrusion molding are disclosed in Japanese Patent Publication No. 55-41908 (U.S. Patent No. 3790654) and Japanese Patent Publication No. 41908 (US Pat. No. 3790654), in which an inclined portion is provided between the honeycomb forming groove and the extrusion raw material supply hole in order to form the raw material into a honeycomb shape. No. 57-61592 (
The technique of U.S. Pat. No. 3,905,743) is used.

゛また、材質としては板状に配向する粘土を含むコージ
ェライト原料を押出し成形することを開示している特開
昭50−75611号(米国特許第3885977号)
を応用することにより低熱膨張、即ち耐熱衝撃性にすぐ
たちのが得られる。従って、本発明においてコージェラ
イト系のセラミック原料を押出し成形して隔壁2とフィ
ン3を一体的に成形して焼結したものが好ましい。
゛In addition, JP-A-50-75611 (US Pat. No. 3,885,977) discloses extrusion molding of a cordierite raw material containing clay oriented in a plate shape.
By applying this, low thermal expansion, that is, immediate thermal shock resistance can be obtained. Therefore, in the present invention, it is preferable to extrude a cordierite ceramic raw material, form the partition wall 2 and the fin 3 integrally, and then sinter it.

本発明は前記押出し成形に限られるものではなく、射出
成形法によって成形してもよく、セラミックハニカム構
造体の貫通孔の断面に比べて貫通孔の長さが小さいセラ
ミックハニカム構造体の場合には、プレス成形後焼結し
たり、セラミック原料を円板状に成形した後、多数の針
を備えた治具で貫通孔を形成して焼結あるいは養生固化
してもよい。
The present invention is not limited to extrusion molding, but may also be formed by injection molding, and in the case of a ceramic honeycomb structure in which the length of the through hole is smaller than the cross section of the through hole of the ceramic honeycomb structure. Alternatively, the ceramic raw material may be press-formed and then sintered, or after the ceramic raw material is formed into a disk shape, through-holes may be formed using a jig equipped with a large number of needles, and the ceramic material may be sintered or cured to solidify.

(実施例) コージェライト結晶を晶出する原料としてカオリン25
χ、仮焼カオリン22χ、タルク38z、アルミナ15
χと、押出し成形有機助剤3.5χと水30χとを混練
して坏土を調整し、前記特公昭57−61592号によ
るダイスをもって押出し成形して、ついで1400℃で
焼成し、外径100龍、高さ127mm、セルピッチ1
.47m5+、リプ4即ち隔壁の厚さが0.2龍、セル
密度が300個/in”で隔壁形状が四角形であって、
フィンが設けられていないセラミックハニカム構造体(
第1表でN1113のもの)と、前記セラミックハニカ
ム構造体の中央部の径50鶴以内の隔壁に幅0.2mm
のフィンが設けられた貫通孔が配置されたセラミックハ
ニカム構造体(第1表で隘1〜12)および前記セラミ
ックハニカム構造体でフィンを設けずにその中央部の5
0鶴平方の内側がセルピッチ0.7.hm、セル密度が
1200個/in”のセラミックハニカム構造体(第1
表でI’h14のもの)とを得た。
(Example) Kaolin 25 as a raw material for crystallizing cordierite crystals
χ, calcined kaolin 22χ, talc 38z, alumina 15
χ, extrusion molding organic auxiliary agent 3.5χ and water 30χ were kneaded to prepare a clay, extrusion molded using a die according to the above-mentioned Japanese Patent Publication No. 57-61592, and then baked at 1400°C to obtain an outer diameter of 100°C. Dragon, height 127mm, cell pitch 1
.. 47 m5+, lip 4, that is, the thickness of the partition wall is 0.2 dragons, the cell density is 300 cells/in'', and the partition wall shape is square,
Ceramic honeycomb structure without fins (
N1113 in Table 1) and a partition wall with a diameter of 50 mm or less at the center of the ceramic honeycomb structure with a width of 0.2 mm.
A ceramic honeycomb structure in which a through hole with fins is arranged (numbers 1 to 12 in Table 1)
The inside of 0 Tsuru square has a cell pitch of 0.7. hm, ceramic honeycomb structure with a cell density of 1200 cells/in” (first
In the table, I'h14) was obtained.

これらのセラミックハニカム構造体の特性値を測定した
結果を第1表に示す。
Table 1 shows the results of measuring the characteristic values of these ceramic honeycomb structures.

なお、第1表中の耐熱衝撃性および圧力損失の評価法は
、それぞれ、次の方法によった。
The thermal shock resistance and pressure loss in Table 1 were evaluated by the following methods.

耐熱衝撃性 プロパンガスバーナを加熱源として試験開始ガス温度7
00℃より5分加熱後、室温空気にて5分調整冷却する
ことを1サイクルとして20サイクル行い、セラミック
ハニカム構造体にクラックの発生の有無を観察しクラ・
7りの発生が検出されなかった場合には、ガス温度を2
5℃あげ繰返し試験をし、クランクの発生が検出されな
かった最高試験温度で表示した。
Test start gas temperature 7 using thermal shock resistant propane gas burner as heating source
After 5 minutes of heating from 00°C, 20 cycles were performed, each cycle consisting of 5 minutes of controlled cooling with room temperature air, and the presence or absence of cracks in the ceramic honeycomb structure was observed.
If no occurrence of 7 is detected, reduce the gas temperature to 2.
Tests were repeated at 5°C, and the highest test temperature at which no cranking was detected was indicated.

圧力損失 室温の空気を測定媒体として流ff16m’/分のとき
の圧力損失を水柱高さで表示した。
Pressure Loss The pressure loss when air at room temperature was used as the measuring medium was expressed as the height of the water column when the flow rate was 16 m'/min.

第1表から明らかなように、本発明のセラミックハニカ
ム構造体は、耐熱衝撃性および圧力損失を損なうことな
く幾何学的表面積を大きくすることができたものである
As is clear from Table 1, the ceramic honeycomb structure of the present invention can have a large geometric surface area without impairing thermal shock resistance and pressure loss.

(発明の効果) 以上の説明から明らかなように、本発明のセラミックハ
ニカム構造体は隔壁にフィンが一体的に設けられている
ために、燃焼ガス等の浄化面積が大きく浄化効率に優れ
ていることは当然として、(11フィンが一体的に設け
られていることとそのフィンが設けられている貫通孔の
形状が大きく形成されているため耐熱衝撃性にすぐれ、
(2)燃焼ガス流体が集中する箇所に本発明のフィンを
設けることにより、ガス流通路が均一化し触媒の部分的
な劣化が生起せず、セラミックハニカム構造体の燃焼ガ
スの流入面に偏向部品を設ける必要もなければ、担持触
媒の種類を変える必要もなく、 (3)押出し成形によって簡単に得られ、そのダイスの
製造が容易であり、材質がコージェライトの場合耐熱衝
撃性がよい 等の顕著な効果が得られる。
(Effects of the Invention) As is clear from the above explanation, since the ceramic honeycomb structure of the present invention has fins integrally provided on the partition walls, it has a large purification area for combustion gas, etc., and has excellent purification efficiency. Of course, (11 fins are provided integrally and the shape of the through hole in which the fins are provided is formed large, so it has excellent thermal shock resistance,
(2) By providing the fins of the present invention at locations where the combustion gas fluid concentrates, the gas flow path becomes uniform and local deterioration of the catalyst does not occur, and the deflection component is placed on the combustion gas inflow surface of the ceramic honeycomb structure. (3) It is easily obtained by extrusion molding, the die is easy to manufacture, and cordierite has good thermal shock resistance. Remarkable effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すセラミックハニカム構
造体の正面図、 第2図は第1図の要部拡大図、 第3図(A)〜(G)は本発明の他の実施例を示す要部
正面図、 第4図は本発明の他の実施例を示す正面図、第5図ない
し第9図は本発明の他の実施例を示す部分断面図である
。 第3図 (A)    (B)    (C) (D)    (E)    (F) (G) 第4図 H/T二0.1 H/P二θ05 9/丁=0.2 第8図 二一−−]「 第9図
Fig. 1 is a front view of a ceramic honeycomb structure showing one embodiment of the present invention, Fig. 2 is an enlarged view of the main part of Fig. 1, and Figs. 3 (A) to (G) are other embodiments of the present invention. FIG. 4 is a front view showing another embodiment of the present invention, and FIGS. 5 to 9 are partial sectional views showing other embodiments of the present invention. Fig. 3 (A) (B) (C) (D) (E) (F) (G) Fig. 4 H/T 2 0.1 H/P 2 θ05 9/t = 0.2 Fig. 8 2 1--] "Figure 9

Claims (1)

【特許請求の範囲】 1、隔壁で囲まれた多数の貫通孔を有するセラミックハ
ニカム構造体において、該隔壁より内方に突出するフィ
ンが各隔壁を略等分割した位置に1個又は複数個対応し
て各隔壁の表面に一体的に形成されていることを特徴と
するセラミックハニカム構造体。 2、前記フィンは角筒状、丸筒状、円弧状、半円状、三
角状、四角状、角落し四角状、梯形状断面の何れかより
成る特許請求の範囲第1項記載のセラミックハニカム構
造体。 3、前記フィンはセラミックハニカム構造体の中央部に
設けられている特許請求の範囲第1項又は第2項の何れ
かに記載のセラミックハニカム構造体。 4、前記フィンは、フィンの高さH、隔壁の厚みT、隔
壁間隔P、フィンの付根幅Cとするとき、 H/T≦1、H/P≦0.3、C/T=0.1〜4の関
係を有する特許請求の範囲第1項ないし第3項の何れか
に記載のセラミックハニカム構造体。 5、押出し成形によってフィンが隔壁と一体的に形成さ
れ焼結されている特許請求の範囲第1項ないし第4項の
いずれかに記載のセラミックハニカム構造体。 6、材質がコージェライトである特許請求の範囲第1項
記載のセラミックハニカム構造体。
[Claims] 1. In a ceramic honeycomb structure having a large number of through holes surrounded by partition walls, one or more fins protruding inward from the partition walls correspond to positions where each partition wall is divided into approximately equal parts. A ceramic honeycomb structure characterized in that the ceramic honeycomb structure is integrally formed on the surface of each partition wall. 2. The ceramic honeycomb according to claim 1, wherein the fins have any one of a square tube shape, a round tube shape, an arc shape, a semicircle shape, a triangular shape, a square shape, a corner cut square shape, and a ladder-shaped cross section. Structure. 3. The ceramic honeycomb structure according to claim 1 or 2, wherein the fins are provided in the center of the ceramic honeycomb structure. 4. The fin has the following conditions: H/T≦1, H/P≦0.3, C/T=0. A ceramic honeycomb structure according to any one of claims 1 to 3, which has relationships 1 to 4. 5. The ceramic honeycomb structure according to any one of claims 1 to 4, wherein the fins are integrally formed with the partition walls by extrusion molding and sintered. 6. The ceramic honeycomb structure according to claim 1, wherein the material is cordierite.
JP61107695A 1986-05-13 1986-05-13 Ceramic honeycomb structure Pending JPS62266298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107695A JPS62266298A (en) 1986-05-13 1986-05-13 Ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107695A JPS62266298A (en) 1986-05-13 1986-05-13 Ceramic honeycomb structure

Publications (1)

Publication Number Publication Date
JPS62266298A true JPS62266298A (en) 1987-11-19

Family

ID=14465607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107695A Pending JPS62266298A (en) 1986-05-13 1986-05-13 Ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JPS62266298A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018002331A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
DE102018002330A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
DE102018002329A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
US20180280956A1 (en) * 2017-03-30 2018-10-04 Ngk Insulators, Ltd. Honeycomb structure
DE102018002117A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
DE102018002115A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
DE102018002332A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
WO2019070663A1 (en) * 2017-10-02 2019-04-11 Corning Incorporated Ceramic honeycomb bodies and methods for canning thereof
WO2019154644A1 (en) * 2018-02-12 2019-08-15 Dürr Systems Ag Block apparatus for use with converters
CN110314712A (en) * 2018-03-30 2019-10-11 日本碍子株式会社 Honeycomb structure
US10737257B2 (en) * 2017-03-30 2020-08-11 Ngk Insulators, Ltd. Honeycomb structure
US11020733B2 (en) 2019-01-23 2021-06-01 Ngk Insulators, Ltd. Honeycomb structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853485A (en) * 1972-12-11 1974-12-10 Corning Glass Works Core member for catalytic oxidation converter
JPS50127886A (en) * 1974-03-28 1975-10-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853485A (en) * 1972-12-11 1974-12-10 Corning Glass Works Core member for catalytic oxidation converter
JPS50127886A (en) * 1974-03-28 1975-10-08

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10857531B2 (en) * 2017-03-30 2020-12-08 Ngk Insulators, Ltd. Honeycomb structure
DE102018002329A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
JP2018167209A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb structure
DE102018002331B4 (en) 2017-03-30 2022-11-03 Ngk Insulators, Ltd. honeycomb structure
US20180280956A1 (en) * 2017-03-30 2018-10-04 Ngk Insulators, Ltd. Honeycomb structure
DE102018002117A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
DE102018002115A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
DE102018002332A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
CN108686506A (en) * 2017-03-30 2018-10-23 日本碍子株式会社 Honeycomb structure
CN108691618A (en) * 2017-03-30 2018-10-23 日本碍子株式会社 Honeycomb structure
CN108686715A (en) * 2017-03-30 2018-10-23 日本碍子株式会社 Honeycomb structure
CN108686507A (en) * 2017-03-30 2018-10-23 日本碍子株式会社 Honeycomb structure
CN108686509A (en) * 2017-03-30 2018-10-23 日本碍子株式会社 Honeycomb structure
JP2018167217A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb structure
JP2018167215A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb structure
JP2018167214A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb structure
US20180280963A1 (en) * 2017-03-30 2018-10-04 Ngk Insulators, Ltd. Honeycomb structure
DE102018002330B4 (en) 2017-03-30 2022-09-29 Ngk Insulators, Ltd. honeycomb structure
DE102018002330A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
CN108686715B (en) * 2017-03-30 2022-08-05 日本碍子株式会社 Honeycomb structure
DE102018002331A1 (en) 2017-03-30 2018-10-04 Ngk Insulators, Ltd. honeycomb structure
US10688483B2 (en) 2017-03-30 2020-06-23 Ngk Insulators, Ltd. Honeycomb structure
US10710062B2 (en) 2017-03-30 2020-07-14 Ngk Insulators, Ltd. Honeycomb structure
US10722877B2 (en) 2017-03-30 2020-07-28 Ngk Insulators, Ltd. Honeycomb structure
US10737257B2 (en) * 2017-03-30 2020-08-11 Ngk Insulators, Ltd. Honeycomb structure
US10751708B2 (en) 2017-03-30 2020-08-25 Ngk Insulators, Ltd. Honeycomb structure
US10828631B2 (en) 2017-03-30 2020-11-10 Ngk Insulators, Ltd. Honeycomb structure
DE102018002332B4 (en) 2017-03-30 2022-11-03 Ngk Insulators, Ltd. honeycomb structure
US10953394B2 (en) 2017-03-30 2021-03-23 Ngk Insulators, Ltd. Honeycomb structure
CN108691618B (en) * 2017-03-30 2021-04-27 日本碍子株式会社 Honeycomb structure
DE102018002329B4 (en) 2017-03-30 2023-02-16 Ngk Insulators, Ltd. Exhaust gas purifying catalyst having a honeycomb structure
CN108686509B (en) * 2017-03-30 2021-12-14 日本碍子株式会社 Honeycomb structure
DE102018002117B4 (en) 2017-03-30 2022-06-23 Ngk Insulators, Ltd. honeycomb structure
US11698015B2 (en) 2017-10-02 2023-07-11 Corning Incorporated Ceramic honeycomb bodies and method for canning thereof
WO2019070663A1 (en) * 2017-10-02 2019-04-11 Corning Incorporated Ceramic honeycomb bodies and methods for canning thereof
WO2019154644A1 (en) * 2018-02-12 2019-08-15 Dürr Systems Ag Block apparatus for use with converters
JP2019177313A (en) * 2018-03-30 2019-10-17 日本碍子株式会社 Honeycomb structure
US11529624B2 (en) 2018-03-30 2022-12-20 Ngk Insulators, Ltd. Honeycomb structure
CN110314712B (en) * 2018-03-30 2023-06-20 日本碍子株式会社 Honeycomb structure
CN110314712A (en) * 2018-03-30 2019-10-11 日本碍子株式会社 Honeycomb structure
US11020733B2 (en) 2019-01-23 2021-06-01 Ngk Insulators, Ltd. Honeycomb structure

Similar Documents

Publication Publication Date Title
JPS61167798A (en) Ceramic honeycomb structure
US7037567B2 (en) Honeycomb structure
JP5185616B2 (en) Honeycomb structure
EP1125704B2 (en) Corrugated wall honeycomb structure and production method thereof
US3948810A (en) Monolithic catalyst support member
JPS62266298A (en) Ceramic honeycomb structure
US20040093858A1 (en) Honeycomb structural body
CN108686509B (en) Honeycomb structure
JP2010089990A (en) Honeycomb structure and method for manufacturing the same
JPWO2004026472A1 (en) Honeycomb structure and die for forming honeycomb structure
JP2017127803A (en) Honeycomb structure
CN108691618B (en) Honeycomb structure
JP4373177B2 (en) Honeycomb structure, manufacturing method thereof and canning structure
CN109838291B (en) Honeycomb structure
JP6639977B2 (en) Honeycomb filter
JP2018167200A (en) Honeycomb filter
JP2018167199A (en) Honeycomb filter
JP2005144250A (en) Honeycomb structure body
JP2020049428A (en) Honeycomb filter
JP7321258B2 (en) Honeycomb body having a series of passages with different hydraulic diameters and its manufacturing method
JP6649777B2 (en) Honeycomb structure
JP5791391B2 (en) Honeycomb structure and gas processing apparatus using the same
JPH0813337B2 (en) Ceramic honeycomb structure and method for manufacturing the same
JP2014140842A (en) Honeycomb catalyst body
CN110500163B (en) Honeycomb structure