JPS62265786A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62265786A
JPS62265786A JP10865186A JP10865186A JPS62265786A JP S62265786 A JPS62265786 A JP S62265786A JP 10865186 A JP10865186 A JP 10865186A JP 10865186 A JP10865186 A JP 10865186A JP S62265786 A JPS62265786 A JP S62265786A
Authority
JP
Japan
Prior art keywords
active layer
refractive index
electrode
impressed
well structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10865186A
Other languages
Japanese (ja)
Other versions
JPH0732291B2 (en
Inventor
Koichi Imanaka
今仲 行一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP10865186A priority Critical patent/JPH0732291B2/en
Publication of JPS62265786A publication Critical patent/JPS62265786A/en
Publication of JPH0732291B2 publication Critical patent/JPH0732291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0614Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by electric field, i.e. whereby an additional electric field is used to tune the bandgap, e.g. using the Stark-effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18302Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Abstract

PURPOSE:To produce a semiconductor laser in high luminous intensity at low oscillation threshold value current by a method wherein an active layer is composed of multiple quantum well structure while the peripheral parts of light emitting part of active layer is impressed with voltage by voltage impressing electrodes through the intermediary of insulating film on the growing surface side to reduce the refractive index of the well structure. CONSTITUTION:A part corresponding to an active layer 3 is composed of a multiple quantum well structure repeatedly laminated with barrier layers (A layers) and well layers(B layers) as well as peripheral parts excluding the central light emitting part to be impressed with an electric field. When the multiple quantum well structure is impressed with the electric field in the thickness direction, the refractive index thereof is reduced. The active layer 3 emits recoupled light by flowing current from a P side electrode 7 to an N side electrode 8 to laser-oscillate by the light resonance between the electrode 7 and a reflecting film 9 further to pick up the light transmitting the reflecting film 9 as output laser beams. When voltage is impressed upon the circuit between electrode 6 and 8, an electric field is made on the part excluding the central part of active layer 3 to reduce the refractive index confining the laser beams within the central part of active layer 3. Through these procedures, a refractive index waveguide type surface light emitting laser oscillating at low threshold value current is produced by one time crystal growth to emit laser beams in high luminous intensity at the central part of active layer 3.

Description

【発明の詳細な説明】 発明の背景 この発明は半導体レーザに関し、特に■−V族半導体に
より構成された面発光型半導体レーザに関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor laser, and more particularly to a surface emitting type semiconductor laser constructed from a ■-V group semiconductor.

従来の面発光型半導体レーザの例として、  IEEE
Journal of QuantuIIIElect
ronics、 Vol、QE−21゜No、8. J
une 1985. pp8B3−868に示されたも
のかある。この面発光型半導体レーザの断面概略図をこ
の発明に関連する部分のみをとり出して第3図に示す。
As an example of a conventional surface-emitting semiconductor laser, IEEE
Journal of QuantuIIIElect
ronics, Vol, QE-21°No, 8. J
une 1985. There is one shown in pp8B3-868. A schematic cross-sectional view of this surface-emitting semiconductor laser is shown in FIG. 3, with only the portions relevant to the present invention taken out.

ここで、21は光取出し用の穴をあけたn型GaAs基
板、22はn型AfIC,a   Asクラッド   
LX 層、23はp型GaAs活性層、24はp型A(。
Here, 21 is an n-type GaAs substrate with a hole for light extraction, 22 is an n-type AfIC, a As clad
LX layer, 23 is p-type GaAs active layer, 24 is p-type A (.

Ga   Asクラッド層、25は絶縁膜、26はp側
−y 電極、27はn (lll電極である。絶縁膜25の中
央にあけられた穴を通してp側型hi2[iからn (
lll+電極27へ電流を流すと、その結果、活性層2
3の中央部において再結合発光をひきおこし、上、下面
で反射をくり返しレーザ発振に至る。しかしながらこの
ような従来の構造においては、電流注入による利得導波
型レーザであるため横方向の光閉じ込め効果が弱く発振
閾値電流が高く、中央部の発光強崩か弱いか、複数のス
ポットになり易いという欠点があった。
GaAs cladding layer, 25 is an insulating film, 26 is a p-side-y electrode, and 27 is an n (llll electrode). P-side type hi2 [i to n (
When a current is passed through the llll+ electrode 27, as a result, the active layer 2
Recombination light emission is caused at the center of the laser beam 3, and reflection is repeated on the upper and lower surfaces, resulting in laser oscillation. However, in such a conventional structure, since it is a gain-guided laser that uses current injection, the lateral optical confinement effect is weak and the oscillation threshold current is high, and the emission intensity in the center is weak or tends to become multiple spots. There was a drawback.

発明の概要 目  ・的 この発明は、このような従来の問題点に着1°1してな
されたもので、活性層を量子井戸構造とし。
Summary of the Invention - Target This invention was made in response to these conventional problems, and the active layer has a quantum well structure.

発光部分以外に電場を印加して屈折率を低くすることに
より屈折率導波型とし、上記問題点を解決することを目
的としている。
The purpose of the present invention is to apply an electric field to areas other than the light-emitting part to lower the refractive index, thereby making it a refractive index waveguide type, and to solve the above-mentioned problems.

構成と効果 この発明においては、活性層に該当する部分を、エネル
ギ・ギャップの大きい、いわゆるバリヤ層(A層)と、
実際の発光波長を規定するA層よりエネルギ・ギャップ
の小さい、いわゆる井戸層(B層)とを繰返し積層して
なる多重量子井戸構造とし、中央発光部以外の周囲部分
に電界を印加しうる構成をとっている。多重量子井戸構
造にその厚さ方向に電界を印υ11するとその屈折率が
低下することが知られている。中央発光部以外の周囲部
分に電界を印加することにより、中央発光部とその周囲
との間に光の閉じ込めを行なうのに充分な程度の屈折率
差をつけることが可能となる。
Structure and Effect In this invention, the part corresponding to the active layer is a so-called barrier layer (layer A) having a large energy gap.
It has a multi-quantum well structure in which so-called well layers (B layers), which have a smaller energy gap than the A layer that defines the actual emission wavelength, are repeatedly laminated, and an electric field can be applied to the surrounding areas other than the central light emitting part. is taking. It is known that when an electric field υ11 is applied to a multi-quantum well structure in its thickness direction, its refractive index decreases. By applying an electric field to the surrounding area other than the central light emitting part, it is possible to create a refractive index difference sufficient to confine light between the central light emitting part and its surroundings.

中央部に電流を注入することにより屈折率導波型の面発
光型半導体レーザを形成することができる。
By injecting a current into the central portion, a refractive index guided surface emitting semiconductor laser can be formed.

このようにして、低閾値電流で発振し、かつ中央部で発
光強度の高い単一スポットの面発光型半導体レーザが実
現する。
In this way, a single-spot surface-emitting semiconductor laser that oscillates with a low threshold current and has high emission intensity at the center is realized.

実施例の説明 第1図は第1の実施例の中央断面斜視図であり、いわゆ
るバラス型構造をとっている。下方に向って光取出し用
の穴をあけたn型GaAs話fMI上にn型Aj:  
Ga   Asクラッド層2が形x      L−x 成され、さらにその上にA層 Ga   As(Ay 
  l−y 層)およびAI  Ga   As(B層)の交互多z
   l−z 層薄膜よりなる多重量子井が活性層3が形成されている
。この活性層3上にp型A I  G a l、、。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 is a perspective cross-sectional view of the first embodiment, which has a so-called ballad structure. An n-type Aj on an n-type GaAs story fMI with a hole for light extraction directed downward:
A GaAs cladding layer 2 is formed xL-x, and an A layer GaAs(Ay
ly-y layer) and AI Ga As (B layer)
The active layer 3 is formed of a multi-quantum well consisting of a l-z layer thin film. On this active layer 3 is a p-type AI Gal.

Asクラッド層4が設けられ2その中央部にn側電極7
がつけられている。p型クラッド層4−1.の中央部の
電極7を除く部分には絶縁体膜5を介して電圧印加用電
極6が形成されている。n型LI[1の下面にn側電極
8が、そしてクラッド層2の下面の中央部のレーザ光出
射部に反射膜9がそれぞれ形成されている。
An As cladding layer 4 is provided 2 and an n-side electrode 7 is provided at the center thereof.
is attached. P-type cladding layer 4-1. A voltage applying electrode 6 is formed with an insulating film 5 in between except for the central electrode 7 . An n-side electrode 8 is formed on the lower surface of the n-type LI[1, and a reflective film 9 is formed on the laser beam emitting part at the center of the lower surface of the cladding layer 2.

ここで、クラッド層2,4のAj2組成比XおよびWは
活性層の発光波長に対して透明で、かつキャリアの閉じ
込めかRf能なように選ばれている。
Here, the Aj2 composition ratios X and W of the cladding layers 2 and 4 are selected so that they are transparent to the emission wavelength of the active layer and have carrier confinement or Rf capability.

n側電極7からn側電極8に電流を流すことにより活性
層3において再結合発光し、その光が電極7と反射膜9
との間で共振することによりレーザ発振し1反射膜9を
透過した光が出力レーザ光として取出される。電極6と
8との間に電圧を印加すると、活性層3の中央部を除い
た部分に電界がかかりその屈折率が低下する。その結果
、し〜ザ光はこの屈折率差により活性層3の中央部に閉
じ込められ屈折率導波型レーザとなる。
By passing a current from the n-side electrode 7 to the n-side electrode 8, light is recombined in the active layer 3, and the light is transmitted to the electrode 7 and the reflective film 9.
The laser oscillates due to resonance between the two, and the light transmitted through the first reflective film 9 is extracted as an output laser beam. When a voltage is applied between the electrodes 6 and 8, an electric field is applied to the active layer 3 except for the central part, and the refractive index thereof decreases. As a result, the laser light is confined in the center of the active layer 3 due to this refractive index difference, resulting in a refractive index guided laser.

第2図は第2の実施例を示している。第1図にに示す第
1の実施例と同一素材のものについては同一?〕号がつ
けられている。基板1には光取出し用の穴はあけられて
いず、n側電極8は基板1の下面全体に形成されている
。またn側電極7はリング状に形成されている。n型ク
ラッド2の下には、n型A4  Ga   As(C層
)およびn!!α  1−α A層2 Ga   As(D層)を活性層3の発光波β
  l−β 長λに対してλ/ (4n c )およびλ/(4nD
)(ここでn、nDはそれぞれC層およびD層の屈折率
)の厚みに多層交互に積層して形成した高反射率膜10
が設けられている。この実施し1jにおいてはリング状
電極7から電極8に向って注入された電流により活性層
3で再結合発光をおこし、この光は上面と反射膜10と
の間で共振し、」−面のリング状電極7の中央開口から
レーザ光が出射する。第1の実施例と同様に電極6と8
との間に電圧を印加することにより、屈折率導波を達成
することができる。
FIG. 2 shows a second embodiment. Are the parts made of the same material as the first embodiment shown in Fig. 1 the same? ] Number is attached. No hole for light extraction is made in the substrate 1, and the n-side electrode 8 is formed on the entire lower surface of the substrate 1. Further, the n-side electrode 7 is formed in a ring shape. Under the n-type cladding 2, n-type A4 Ga As (C layer) and n! ! α 1-α A layer 2 Ga As (D layer) as active layer 3 emission wave β
λ/(4n c ) and λ/(4nD
) (where n and nD are the refractive indices of the C layer and D layer, respectively).
is provided. In this implementation 1j, the current injected from the ring-shaped electrode 7 toward the electrode 8 causes recombination light emission in the active layer 3, and this light resonates between the upper surface and the reflective film 10, and the Laser light is emitted from the central opening of the ring-shaped electrode 7. Electrodes 6 and 8 as in the first embodiment
Refractive index guiding can be achieved by applying a voltage between.

以上のようにして、この発明によると低閾値電流で発振
する屈折率等波型面発光レーザが1回の結晶成長で作成
できる。また屈折4−導波構造をとったことにより中央
部で発光強度の強いli−スポット・レーザ光が得られ
る。
As described above, according to the present invention, a constant refractive index surface emitting laser that oscillates with a low threshold current can be created by one crystal growth. Moreover, by employing a refractive 4-waveguide structure, an li-spot laser beam with a strong emission intensity can be obtained at the center.

上記の実施例においてはA A G a A s / 
G aAs系レーザについて述べられているが、InP
基数を用いたGa1nAsP/InP系のみならず、す
べての■−■族半導体についてこの発明は適用できる。
In the above example, A A G a A s /
Although GaAs-based lasers are mentioned, InP
The present invention is applicable not only to the Ga1nAsP/InP system using the radix, but also to all ■-■ group semiconductors.

また導電形n、pをすべて反転してもよい。Furthermore, the conductivity types n and p may all be reversed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を示す中央断面斜視図
、第2図はこの発明の第2の実施例を示す中央断面斜視
図である。 第3図は従来例を示す中央断面斜視図である。 1−−− n −G a A s基板。 2− n −A J G a A sクラ11層。 3・・・多重量子井戸活性層。 4−−− p −A J G a A sクラ11層。 5・・・絶縁膜、    6・・・電圧印加用電極。 7.8・・・電極、   9・・・出射側反射膜。 10・・・多層反射膜。 以  上
FIG. 1 is a center sectional perspective view showing a first embodiment of the invention, and FIG. 2 is a center sectional perspective view showing a second embodiment of the invention. FIG. 3 is a central sectional perspective view showing a conventional example. 1--- n-GaAs substrate. 2- n -A J G a A s 11 layers. 3...Multiple quantum well active layer. 4--- p -A J G a A s 11th layer. 5... Insulating film, 6... Voltage application electrode. 7.8... Electrode, 9... Output side reflective film. 10...Multilayer reflective film. that's all

Claims (1)

【特許請求の範囲】[Claims] III−V族面発光型半導体レーザにおいて、活性層を多
重量子井戸構造とし、成長表面側の電極を電流注入用電
極と、その周囲の絶縁膜を介した電圧印加用の電極とに
分割し、この電圧印加用電極によって活性層の発光部周
囲に電圧を印加してその屈折率を低下させ屈折率差によ
る光導波構造としうる半導体レーザ。
In a III-V group surface emitting semiconductor laser, the active layer has a multi-quantum well structure, and the electrode on the growth surface side is divided into an electrode for current injection and an electrode for voltage application via an insulating film around it, A semiconductor laser in which a voltage is applied around the light emitting part of the active layer using the voltage applying electrode to lower the refractive index, thereby creating an optical waveguide structure based on the difference in refractive index.
JP10865186A 1986-05-14 1986-05-14 Semiconductor laser Expired - Lifetime JPH0732291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10865186A JPH0732291B2 (en) 1986-05-14 1986-05-14 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10865186A JPH0732291B2 (en) 1986-05-14 1986-05-14 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62265786A true JPS62265786A (en) 1987-11-18
JPH0732291B2 JPH0732291B2 (en) 1995-04-10

Family

ID=14490213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10865186A Expired - Lifetime JPH0732291B2 (en) 1986-05-14 1986-05-14 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0732291B2 (en)

Also Published As

Publication number Publication date
JPH0732291B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JPH0555703A (en) Plane emission laser device
JPH10303500A (en) High-output semiconductor laser diode
JPH10190050A (en) Luminous diode
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JPH0194689A (en) Optoelectronic semiconductor element
JPH04144183A (en) Surface light emitting type semiconductor laser
JPS63188983A (en) Semiconductor light emitting device
JPH05167197A (en) Optical semiconductor device
JP2889626B2 (en) Semiconductor laser
JP2846668B2 (en) Broad area laser
JPS62265786A (en) Semiconductor laser
JPH1084130A (en) Light emitting element
JPH0426558B2 (en)
JPS61289689A (en) Semiconductor light emission device
JPS63150981A (en) Semiconductor laser
JP2606838B2 (en) Distributed feedback semiconductor laser
JPS62137893A (en) Semiconductor laser
JPS6342867B2 (en)
JPH0824207B2 (en) Semiconductor laser device
JPH0521899Y2 (en)
KR100265809B1 (en) Semiconductor laser diode
JP2747324B2 (en) Semiconductor optical switch
JPH01128479A (en) Semiconductor luminous element
JPS60249380A (en) Semiconductor laser device
JPS62282479A (en) Semiconductor laser device