JPS62265630A - Electrochromic display element - Google Patents
Electrochromic display elementInfo
- Publication number
- JPS62265630A JPS62265630A JP61108989A JP10898986A JPS62265630A JP S62265630 A JPS62265630 A JP S62265630A JP 61108989 A JP61108989 A JP 61108989A JP 10898986 A JP10898986 A JP 10898986A JP S62265630 A JPS62265630 A JP S62265630A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- film
- solid electrolyte
- diode
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 22
- 150000002500 ions Chemical class 0.000 claims abstract description 19
- 238000004040 coloring Methods 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000010416 ion conductor Substances 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 5
- 230000004043 responsiveness Effects 0.000 abstract description 4
- 230000000903 blocking effect Effects 0.000 abstract description 3
- 238000007740 vapor deposition Methods 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 2
- 238000010894 electron beam technology Methods 0.000 abstract 1
- 239000012528 membrane Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 206010063836 Atrioventricular septal defect Diseases 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001211 electron capture detection Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- -1 Ag+ ions Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002226 superionic conductor Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はエレクトロクロミック表示素子(ECD)K関
し、特に発色源となるイオンを選択的に移送する固体電
解質を使用する表示素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrochromic display device (ECD) K, and particularly to a display device using a solid electrolyte that selectively transports ions serving as a coloring source.
上記ECDは通電電極間<Won 等の発色用遷移金
属酸化膜とこれにイオンを移送する誘電体や電解質を設
けたものである。電解質を使用するECDには、さらに
電解液を使用するものと固体電解質を使用するものが提
案されている。The above ECD is provided with a transition metal oxide film for color development between current-carrying electrodes, and a dielectric or electrolyte for transferring ions thereto. ECDs that use electrolytes have been proposed, including those that use electrolytes and those that use solid electrolytes.
上記誘電体を使用するECDは電極間に誘電体を介在せ
しめたことくよ)作動に高電圧を有し、また実質的なイ
オン供給源が誘電体中の吸着水分であることから、高電
圧印加時にH!やOxが発生して素子が破損することが
ある。ECDs using the above-mentioned dielectric material have a dielectric material interposed between the electrodes) and operate at a high voltage, and since the substantial source of ion supply is moisture adsorbed in the dielectric material, when high voltage is applied, H! or Ox may be generated and the element may be damaged.
電解質型ECDではかかる問題点はないが、電解液を使
用するものでは液漏れに対するシール構造の信頼性が難
点となっている。Electrolyte-type ECDs do not have this problem, but those that use electrolyte have a problem with the reliability of the seal structure against leakage.
固体電解質を使用するものは、上述の素子破損や液漏れ
の問題がなく、かつ作動電圧も低いことから将来のEC
Dの主流をなすものと考えられておυ、β−Alz O
s 、 RbAga工6、Rb4CutsCgtm工2
、Nas Zrs −8it PO+t(NAS工C0
NILis N、 Li、工 等各種の超イオン導電性
固体電解質が開発されている。Products that use solid electrolytes do not have the above-mentioned problems of element damage or liquid leakage, and their operating voltage is low, making them ideal for future ECs.
υ, β-Alz O, which is considered to be the mainstream of D
s, RbAga 6, Rb4CutsCgtm 2
, Nas Zrs -8it PO+t (NAS engineering C0
Various superionically conductive solid electrolytes such as NILis N, Li, and NILis have been developed.
〔発明が解決しようとする問題点〕
固体電解質を使用したECDは上述の如く優れた特at
有するものであるが、未だ解決すべき問題点を有してい
る。それは上記電解質がイオン導電性とともに、多少と
も電子導電性を有するからであシ、かかる電子導電性く
より発色に寄与すべきイオンが電子と結合して発色効率
の低下を来たすという問題がある。[Problems to be solved by the invention] ECDs using solid electrolytes have excellent characteristics as described above.
However, there are still problems to be solved. This is because the electrolyte has not only ionic conductivity but also electronic conductivity to some extent, and due to such electronic conductivity, ions that should contribute to color development combine with electrons, resulting in a decrease in color development efficiency.
本発明はかかる問題点に鑑み、固体電解質を使用したE
CDにおいて、電子導電性による発色効率低下がなくか
つ応答性にも優れたECDを提供することを目的とする
。In view of these problems, the present invention has developed an E
An object of the present invention is to provide an ECD that does not have a decrease in coloring efficiency due to electronic conductivity and has excellent responsiveness.
本発明の構成を第1図で説明すると、表示膜1とこれに
イオンを選択的に移送して発色せしめる固体電解質2が
設けてあシ、該電解質2にはこれに接して不活性物質よ
りなるバイパス電極5が設けである。バイパス電極5は
上記イオンとは反応せず、かつ該電極5は上記固体電解
質2中の漏れ電流を逃がす働きを有する。To explain the structure of the present invention with reference to FIG. 1, there is provided a display membrane 1 and a solid electrolyte 2 that selectively transfers ions to produce color. A bypass electrode 5 is provided. The bypass electrode 5 does not react with the ions, and has the function of letting leakage current in the solid electrolyte 2 escape.
固体電解質2側を正極にすると、上記電解質2より表示
膜1中へイオンが移動し、表示膜1を発色せしめる。こ
の時、上記固体電解質2が電子導電性を有することによ
り、負極となった表示膜1よりミ解質2中に電子が流れ
込み、上記イオンと結合して発色効率を低下せしめる。When the solid electrolyte 2 side is used as a positive electrode, ions move from the electrolyte 2 into the display film 1, causing the display film 1 to develop color. At this time, since the solid electrolyte 2 has electronic conductivity, electrons flow into the mysolite 2 from the display film 1 serving as a negative electrode, combine with the ions, and reduce coloring efficiency.
ここにおいて、本発明では、上記流れ込んだ電子は上記
バイパス電極5VC誘引慮れ、上記イオンと結合するこ
となくバイパス電極5より取シ出される。かくして、本
発明のKCDは発色効率を高く維持することができる。Here, in the present invention, the electrons flowing into the bypass electrode 5VC are taken out from the bypass electrode 5 without being combined with the ions. Thus, the KCD of the present invention can maintain high coloring efficiency.
第1図には本発明になるECDの一例を示す。 FIG. 1 shows an example of an ECD according to the present invention.
ガラス基板6には全面に工To膜等の導電性透明膜を形
成して一方の通電電極4としである。A conductive transparent film such as a To film is formed on the entire surface of the glass substrate 6 to serve as one current-carrying electrode 4.
該電極4上には電子ビーム蒸着によりW Os 膜を
形成して表示膜1としである。この蒸着は99.99%
のWOs を蒸着材として使用し、基板温度70〜80
℃、蒸着速度2〜3 A / BeQで、ガヌ圧1.0
X10Pa の02 を導入しながら行なった。得ら
れたW Os膜はアモルファス状態であり、膜厚は約3
000!である。A W Os film is formed on the electrode 4 by electron beam evaporation to serve as the display film 1. This vapor deposition is 99.99%
WOs was used as the evaporation material, and the substrate temperature was 70-80℃.
℃, deposition rate 2-3 A/BeQ, Ganu pressure 1.0
The test was carried out while introducing 02 of X10Pa. The obtained W Os film is in an amorphous state, and the film thickness is about 3
000! It is.
上記表示膜1を覆うように固体電解質膜2が形成しであ
る。該電解質膜2としてはRbAg4工易を使用し、こ
れを抵抗加熱法により真空蒸着しである。すなわち、ア
ルミナで被覆したタングステンボートIICRI)Ag
4工番粉末を入れ、上記ボートを抵抗発熱せしめてR1
)A g a工藝を蒸発せしめる。この時の基板温度は
20〜30”C1蒸着速度は4〜5 A / 8eQで
ある。得られた膜厚は6000〜8000Aである。R
bAg4工Sは結に真空封入して160℃で1時間加熱
することにより得られる。A solid electrolyte membrane 2 is formed to cover the display membrane 1. The electrolyte membrane 2 is made of RbAg4, which is vacuum deposited by resistance heating. i.e. alumina coated tungsten boat IICRI)Ag
Step 4 Add powder and heat the boat by resistance to R1.
) A g a technology is evaporated. The substrate temperature at this time is 20~30''C1 vapor deposition rate is 4~5 A/8eQ.The obtained film thickness is 6000~8000 A.
bAg4S is obtained by vacuum-sealing the tube and heating it at 160° C. for 1 hour.
上記電解質膜2上には電極活物質(本実施例ではAg)
よりなる他方の電極3を形成し、・さらに不活性物
質(本実施例でけAu) よりなるバイパス電極5を
形成する。不活性物質とは電解質2内のイオン(本実施
例ではAg)と反応しない物質をいう。これら各電極3
.5は電子ビーム蒸着により形成され、電極3は、これ
に銀ペーストで固着された銅リード線によりダイオード
72のアノードと電源8に接続されている。[極5はリ
ード線により上記ダイオード72のカソードおよびダイ
オードマ1のカソードに接続され、また前出の電FM4
は上記ダイオード71のアノードおよび上記電源8に接
続されている。On the electrolyte membrane 2 is an electrode active material (Ag in this example).
The other electrode 3 is formed of a material such as the above-mentioned material, and the bypass electrode 5 is formed of an inert material (Au in this example). The inert substance refers to a substance that does not react with the ions (Ag in this example) in the electrolyte 2. Each of these electrodes 3
.. 5 is formed by electron beam evaporation, and the electrode 3 is connected to the anode of the diode 72 and the power source 8 by a copper lead wire fixed thereto with silver paste. [Pole 5 is connected to the cathode of the diode 72 and the cathode of the diode master 1 by a lead wire, and is connected to the cathode of the diode 72 and the cathode of the diode 1
is connected to the anode of the diode 71 and the power supply 8.
ダイオード71.72は耐電圧30V”程度、工MFは
300〜500mA程度であり、例えば東芝製工515
88が使用できる。上記構造のECDの結線図を第2図
に示す。The diode 71.72 has a withstand voltage of about 30V, and a mechanical MF of about 300 to 500mA. For example, Toshiba 515
88 can be used. A wiring diagram of the ECD having the above structure is shown in FIG.
表示膜1を発色せしめる場合には電極3を正電位とする
とともに電極4を負電位とする。この時、ダイオード7
1は逆バイアスされて非導通となり、ダイオード72は
順バイアスにより導通ずる。これを第3図に示す。正電
位の電極3ではこれを構成するAgが電子e を放出し
てAg+イオンとなり、これは固体電解質膜2を通って
表示膜1内に移動し、電子e を受けと”) テAgX
WO5するタングステンブロンズを形成し、発色する。When the display film 1 is to be colored, the electrode 3 is set to a positive potential and the electrode 4 is set to a negative potential. At this time, diode 7
1 becomes non-conductive due to reverse bias, and diode 72 becomes conductive due to forward bias. This is shown in FIG. In the positive potential electrode 3, the constituent Ag emits electrons e and becomes Ag+ ions, which move through the solid electrolyte membrane 2 into the display membrane 1 and receive electrons e.
Forms WO5 tungsten bronze and develops color.
この際、上記電解質2が電子導電性を有することにより
、上記表示膜1を通って余剰電子Δe−が流れ込む。こ
の余剰電子Δe−はAg+イオンの流れを妨げ、またA
g”1オンと再結合することKより表示膜1内へのA
g+イオンの移動を阻止し、これにより発色効率が低下
する。At this time, since the electrolyte 2 has electronic conductivity, surplus electrons Δe- flow through the display film 1. This surplus electron Δe- obstructs the flow of Ag+ ions and also
A from K to recombine with g”1 on into the display film 1
It prevents the movement of g+ ions, which reduces the color development efficiency.
ここにおいて、本発明ではバイパス電FM5を設けたこ
とKより、上記余剰電子Δe−は該電極5方向に誘引さ
れ、これより取り出される。Here, in the present invention, since the bypass electrode FM5 is provided, the surplus electrons Δe- are attracted in the direction of the electrode 5 and taken out therefrom.
しかして、余剰電子ΔeによるAgイオンのブロッキン
グは解消され、発色効率の低下が防止される。Therefore, blocking of Ag ions due to surplus electrons Δe is eliminated, and a decrease in coloring efficiency is prevented.
第4図には消色時の電子の流れを示す。この場合には上
記ダイオード71(第2図)が導通するとともにダイオ
ード72は非導通と々る。Figure 4 shows the flow of electrons during decolorization. In this case, the diode 71 (FIG. 2) becomes conductive and the diode 72 remains non-conductive.
図において、余剰電子△eばやはりバイパス電極5よυ
取抄出され、電極3へ戻るAgイオンの移動を妨げるこ
とはない。これにより、消色をも効率良く行なうことが
できる。In the figure, if the surplus electrons △e are the bypass electrode 5, υ
The movement of Ag ions that are extracted and returned to the electrode 3 is not hindered. Thereby, decoloring can also be carried out efficiently.
本発明の効果を評価する指標として次式で定義される光
学密度変化ΔODを採用した。An optical density change ΔOD defined by the following formula was employed as an index for evaluating the effects of the present invention.
ΔOD−10gOR−log Ro /Rここで、OR
はコントラスト比、 Ro、 Rはそれぞれ消色時と発
色時の反射光強度である。ΔOD-10gOR-log Ro /R where, OR
is the contrast ratio, and Ro and R are the reflected light intensity when decoloring and when coloring, respectively.
そして、ΔOD は本来は注入電荷量Qに比例する。発
明者らは、タングステンランプにより白色光全照射し、
フォトトランジスタで反射光を受光して上記Ro%Rを
求めた。ΔOD is originally proportional to the amount of injected charge Q. The inventors irradiated the entire area with white light using a tungsten lamp,
The above Ro%R was determined by receiving reflected light with a phototransistor.
第5図には本発明の素子とバイパス電極を設けない従来
の素子について、注入電荷量Qに対する光学密度変化Δ
ODの変化を示す。図中線Xは本発明、線yは従来例で
ある。図よυ知られる如く、従来例では注入電荷量Qが
1 omC・am以上になると密度変化ΔODが飽和状
態となる。これは、余剰電子Δe−が比例的に増加して
Agイオンの移動が妨害されるととくよる。Figure 5 shows the change in optical density Δ with respect to the amount of injected charge Q for the device of the present invention and a conventional device without a bypass electrode.
It shows the change in OD. In the figure, line X represents the present invention, and line y represents the conventional example. As is known from the figure, in the conventional example, when the amount of injected charge Q becomes 1 omC.am or more, the density change ΔOD becomes saturated. This is caused by the fact that the surplus electrons Δe- increase proportionally and the movement of Ag ions is obstructed.
これに対して本発明では、上記余剰電子△eによるAg
イオンのブロッキングが生じないから、上記密度変化Δ
ODは上記電荷量Qの増加につれて飽和することなく大
きくなる。On the other hand, in the present invention, Ag due to the surplus electron Δe is
Since ion blocking does not occur, the above density change Δ
As the charge amount Q increases, the OD increases without being saturated.
かくして、本発明のECDは注入電荷flQ、を大きく
した場合にも発色効率は高く保たれる。Thus, the ECD of the present invention maintains high coloring efficiency even when the injected charge flQ is increased.
また、注入電荷量Qを大きくできるということは、取υ
も直さず酸化還元反応を速めて応答性を向上せしめるこ
とができるということであり、したがって作動電圧を比
較的高くすることKよυ良好な表示応答性を得ることが
できる。Also, the fact that the amount of injected charge Q can be increased means that
This means that the oxidation-reduction reaction can be accelerated and the responsiveness can be improved without any modification, and therefore better display responsiveness can be obtained by making the operating voltage relatively high.
上記実施例において、バイパス電極5にばAu以外にp
t等が使用でき、さらには抵抗の小さい導電性セラミッ
クスでも良い。In the above embodiment, the bypass electrode 5 is made of P in addition to Au.
In addition, conductive ceramics with low resistance may also be used.
また、表示膜ユはWOsOs外に、例えばMoos膜が
使用できる。固体電解質には他の超イオン導電体、例え
ばKAg4工1 等が使用できることはもちろんである
。Further, as the display film, for example, a Moos film can be used in addition to WOsOs. Of course, other superionic conductors such as KAg4-1 can be used as the solid electrolyte.
第1図は本発明の素子構造を示す断面図、第2図は素子
の結線図、第3図、第4図は素子の作動説明図、第5図
は素子の光学密度変化特性図である。
1・・・−表示膜
2−一・固体電解室
5.4・・・−通電電極
5−・−バイパス電極
6−−・ガラス基板
71、’F 2−−・ダイオード
8−・・−電源
第1図
第2図
第3図
tJe lJe−
1g5図Fig. 1 is a sectional view showing the element structure of the present invention, Fig. 2 is a wiring diagram of the element, Figs. 3 and 4 are diagrams explaining the operation of the element, and Fig. 5 is a diagram of optical density change characteristics of the element. . 1...-Display film 2--Solid electrolyte chamber 5.4...-Electrifying electrode 5--Bypass electrode 6--Glass substrate 71,'F 2--Diode 8--Power supply Figure 1 Figure 2 Figure 3 tJe lJe- 1g5 Figure
Claims (5)
送する固体電解質とを設けてなるエレクトロクロミック
表示素子において、上記イオンとは反応しない不活性物
質よりなるバイパス電極を上記固体電解質に接して設け
て、該バイパス電極より上記固体電解質中の漏れ電流を
逃がすようになしたことを特徴とするエレクトロクロミ
ック表示素子。(1) In an electrochromic display element comprising a display film and a solid electrolyte that selectively transfers ions that serve as a coloring source to the display film, a bypass electrode made of an inert substance that does not react with the ions is attached to the solid electrolyte. An electrochromic display element, characterized in that the bypass electrode is disposed in contact with the solid electrolyte to allow leakage current in the solid electrolyte to escape from the bypass electrode.
バイパス電極をAu又はPtで構成した特許請求の範囲
第1項記載のエレクトロクロミック表示素子。(2) The electrochromic display element according to claim 1, wherein the solid electrolyte is made of a silver ion conductor, and the bypass electrode is made of Au or Pt.
電極をAgで構成した特許請求の範囲第2項記載のエレ
クトロクロミック表示素子。(3) The electrochromic display element according to claim 2, wherein a current-carrying electrode is provided in contact with the solid electrolyte, and the current-carrying electrode is made of Ag.
して通電電極を設けて、該通電電極を透明導電膜で構成
した特許請求の範囲第1項記載のエレクトロクロミック
表示素子。(4) The electrochromic display element according to claim 1, wherein the display film is formed of a WO_3 film, a current-carrying electrode is provided in contact with the display film, and the current-carrying electrode is formed of a transparent conductive film.
上記バイパス電極を、該電極と上記各通電電極の間にそ
れぞれ設けてバイパス電極側にカソードを向けたダイオ
ードを介して上記各通電電極に接続した特許請求の範囲
第1項記載のエレクトロクロミック表示素子。(5) providing the display film and the solid electrolyte between the current-carrying electrodes;
The electrochromic display element according to claim 1, wherein the bypass electrode is provided between the electrode and each of the current-carrying electrodes and connected to each of the current-carrying electrodes via a diode with a cathode facing the bypass electrode. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61108989A JPH0617959B2 (en) | 1986-05-13 | 1986-05-13 | Electrochromic display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61108989A JPH0617959B2 (en) | 1986-05-13 | 1986-05-13 | Electrochromic display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62265630A true JPS62265630A (en) | 1987-11-18 |
JPH0617959B2 JPH0617959B2 (en) | 1994-03-09 |
Family
ID=14498766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61108989A Expired - Lifetime JPH0617959B2 (en) | 1986-05-13 | 1986-05-13 | Electrochromic display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0617959B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1756658A2 (en) * | 2004-03-01 | 2007-02-28 | University of Washington | Switchable window based on electrochromic polymers |
JP2007101947A (en) * | 2005-10-05 | 2007-04-19 | Murakami Corp | Electrochromic element and its driving method |
US7675667B2 (en) | 2001-06-25 | 2010-03-09 | University Of Washington | Electropolymerization of enhanced electrochromic (EC) polymer film |
US7808691B2 (en) | 2002-06-25 | 2010-10-05 | University Of Washington | Green electrochromic materials |
US7826124B2 (en) | 2001-06-25 | 2010-11-02 | University Of Washington Through Its Center For Commercialization | Flexible panel based on electrochromic polymers |
US7874666B2 (en) | 2007-03-26 | 2011-01-25 | University Of Washington Through Its Center For Commercialization | Smart sunglasses, helmet faceshields and goggles based on electrochromic polymers |
-
1986
- 1986-05-13 JP JP61108989A patent/JPH0617959B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7675667B2 (en) | 2001-06-25 | 2010-03-09 | University Of Washington | Electropolymerization of enhanced electrochromic (EC) polymer film |
US7826124B2 (en) | 2001-06-25 | 2010-11-02 | University Of Washington Through Its Center For Commercialization | Flexible panel based on electrochromic polymers |
US7808691B2 (en) | 2002-06-25 | 2010-10-05 | University Of Washington | Green electrochromic materials |
US8154787B2 (en) | 2002-06-25 | 2012-04-10 | University Of Washington | Electrochromic materials |
EP1756658A2 (en) * | 2004-03-01 | 2007-02-28 | University of Washington | Switchable window based on electrochromic polymers |
JP2007526525A (en) * | 2004-03-01 | 2007-09-13 | ユニヴァーシティ オブ ワシントン | Switchable window based on electrochromic polymer |
EP1756658A4 (en) * | 2004-03-01 | 2009-11-04 | Univ Washington | Switchable window based on electrochromic polymers |
JP2007101947A (en) * | 2005-10-05 | 2007-04-19 | Murakami Corp | Electrochromic element and its driving method |
US7874666B2 (en) | 2007-03-26 | 2011-01-25 | University Of Washington Through Its Center For Commercialization | Smart sunglasses, helmet faceshields and goggles based on electrochromic polymers |
Also Published As
Publication number | Publication date |
---|---|
JPH0617959B2 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4013343A (en) | Electro-optical display arrangement with storage effect using a solid electrolyte | |
GB1502340A (en) | Controllable electrochromic display cell | |
US4172925A (en) | Photoelectrochemical cell | |
US4325611A (en) | Electrochromic material and electro-optical display using same | |
US2631180A (en) | Electric battery | |
US4294520A (en) | Electrochromic display device | |
US4478920A (en) | Lithium cell having a solid electrolyte constituted by a conductive vitreous compound | |
FR2466873A1 (en) | ELECTRIC GENERATOR WITH HIGH ENERGY DENSITY | |
US4253742A (en) | Electrochromic display cell | |
JPS62265630A (en) | Electrochromic display element | |
US2786880A (en) | Signal translating device | |
US4233339A (en) | Method for making electrochromic films having improved etch resistance | |
US1914883A (en) | Method and apparatus for producing ions | |
US4294898A (en) | Solid state battery | |
US3975086A (en) | Electrochromic display element and process | |
JPS6223293B2 (en) | ||
FR2518291A1 (en) | ELECTROCHROMIC VISUALIZATION DEVICE WITH THERMO-ELECTRIC CONTROL | |
GB2168823A (en) | Low voltage solid-state lateral coloration electrochromic device | |
GB2035593A (en) | Electrode barrier layer for hydrogencoloured electrochromic display devices | |
US4012831A (en) | Electrochromic display element and process | |
US2881340A (en) | Photoconductive television pickup tube | |
US4266338A (en) | Method of manufacturing photoelectrochemical cell | |
GB2190760A (en) | Electrochromic element | |
US6087651A (en) | Highly sensitive light reception element | |
Kaneko et al. | Effects of transparent electrode resistance on the performance characteristics of electrochemichromic cells |