JPS62265630A - Electrochromic display element - Google Patents

Electrochromic display element

Info

Publication number
JPS62265630A
JPS62265630A JP61108989A JP10898986A JPS62265630A JP S62265630 A JPS62265630 A JP S62265630A JP 61108989 A JP61108989 A JP 61108989A JP 10898986 A JP10898986 A JP 10898986A JP S62265630 A JPS62265630 A JP S62265630A
Authority
JP
Japan
Prior art keywords
electrode
film
solid electrolyte
diode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61108989A
Other languages
Japanese (ja)
Other versions
JPH0617959B2 (en
Inventor
Kazuhiro Inokuchi
和宏 井ノ口
Nobue Ito
伊藤 信衛
Tamotsu Hattori
服部 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP61108989A priority Critical patent/JPH0617959B2/en
Publication of JPS62265630A publication Critical patent/JPS62265630A/en
Publication of JPH0617959B2 publication Critical patent/JPH0617959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To eliminate the decrease of coloration efficiency by electron conductivity and to obtain good responsiveness by escaping the leak current in a solid electrolyte by using a bypass electrode which does not react with ions. CONSTITUTION:The solid electrolyte film 2 is formed to cover a display film 1 and the electrode 3 consisting of an electrode active material is formed on the film 2 and further, the bypass electrode 5 consisting of an inert material is formed thereon. The electrodes 3, 4 are formed by electron beam vapor deposition. The electrode 3 is connected to the anode of a diode 72 and a power source 8 and the electrode 5 is connected to the cathode of the diode 72 and the cathode of a diode 71. A current conducting electrode 4 is connected to the anode of the diode 71 and the power source 8. The excess electrons tending to flow into the electrolyte film 2 by passing the display film 1 in the coloring stage of the display film 1 are attracted to the bypass electrode 5 and the blocking of the Ag<+> ions by the excess electrons is eliminated, by which the decrease of the coloration efficiency is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエレクトロクロミック表示素子(ECD)K関
し、特に発色源となるイオンを選択的に移送する固体電
解質を使用する表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrochromic display device (ECD) K, and particularly to a display device using a solid electrolyte that selectively transports ions serving as a coloring source.

〔従来の技術〕[Conventional technology]

上記ECDは通電電極間<Won  等の発色用遷移金
属酸化膜とこれにイオンを移送する誘電体や電解質を設
けたものである。電解質を使用するECDには、さらに
電解液を使用するものと固体電解質を使用するものが提
案されている。
The above ECD is provided with a transition metal oxide film for color development between current-carrying electrodes, and a dielectric or electrolyte for transferring ions thereto. ECDs that use electrolytes have been proposed, including those that use electrolytes and those that use solid electrolytes.

上記誘電体を使用するECDは電極間に誘電体を介在せ
しめたことくよ)作動に高電圧を有し、また実質的なイ
オン供給源が誘電体中の吸着水分であることから、高電
圧印加時にH!やOxが発生して素子が破損することが
ある。
ECDs using the above-mentioned dielectric material have a dielectric material interposed between the electrodes) and operate at a high voltage, and since the substantial source of ion supply is moisture adsorbed in the dielectric material, when high voltage is applied, H! or Ox may be generated and the element may be damaged.

電解質型ECDではかかる問題点はないが、電解液を使
用するものでは液漏れに対するシール構造の信頼性が難
点となっている。
Electrolyte-type ECDs do not have this problem, but those that use electrolyte have a problem with the reliability of the seal structure against leakage.

固体電解質を使用するものは、上述の素子破損や液漏れ
の問題がなく、かつ作動電圧も低いことから将来のEC
Dの主流をなすものと考えられておυ、β−Alz O
s 、 RbAga工6、Rb4CutsCgtm工2
、Nas Zrs −8it PO+t(NAS工C0
NILis N、 Li、工 等各種の超イオン導電性
固体電解質が開発されている。
Products that use solid electrolytes do not have the above-mentioned problems of element damage or liquid leakage, and their operating voltage is low, making them ideal for future ECs.
υ, β-Alz O, which is considered to be the mainstream of D
s, RbAga 6, Rb4CutsCgtm 2
, Nas Zrs -8it PO+t (NAS engineering C0
Various superionically conductive solid electrolytes such as NILis N, Li, and NILis have been developed.

〔発明が解決しようとする問題点〕 固体電解質を使用したECDは上述の如く優れた特at
有するものであるが、未だ解決すべき問題点を有してい
る。それは上記電解質がイオン導電性とともに、多少と
も電子導電性を有するからであシ、かかる電子導電性く
より発色に寄与すべきイオンが電子と結合して発色効率
の低下を来たすという問題がある。
[Problems to be solved by the invention] ECDs using solid electrolytes have excellent characteristics as described above.
However, there are still problems to be solved. This is because the electrolyte has not only ionic conductivity but also electronic conductivity to some extent, and due to such electronic conductivity, ions that should contribute to color development combine with electrons, resulting in a decrease in color development efficiency.

本発明はかかる問題点に鑑み、固体電解質を使用したE
CDにおいて、電子導電性による発色効率低下がなくか
つ応答性にも優れたECDを提供することを目的とする
In view of these problems, the present invention has developed an E
An object of the present invention is to provide an ECD that does not have a decrease in coloring efficiency due to electronic conductivity and has excellent responsiveness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成を第1図で説明すると、表示膜1とこれに
イオンを選択的に移送して発色せしめる固体電解質2が
設けてあシ、該電解質2にはこれに接して不活性物質よ
りなるバイパス電極5が設けである。バイパス電極5は
上記イオンとは反応せず、かつ該電極5は上記固体電解
質2中の漏れ電流を逃がす働きを有する。
To explain the structure of the present invention with reference to FIG. 1, there is provided a display membrane 1 and a solid electrolyte 2 that selectively transfers ions to produce color. A bypass electrode 5 is provided. The bypass electrode 5 does not react with the ions, and has the function of letting leakage current in the solid electrolyte 2 escape.

〔作用、効果〕[action, effect]

固体電解質2側を正極にすると、上記電解質2より表示
膜1中へイオンが移動し、表示膜1を発色せしめる。こ
の時、上記固体電解質2が電子導電性を有することによ
り、負極となった表示膜1よりミ解質2中に電子が流れ
込み、上記イオンと結合して発色効率を低下せしめる。
When the solid electrolyte 2 side is used as a positive electrode, ions move from the electrolyte 2 into the display film 1, causing the display film 1 to develop color. At this time, since the solid electrolyte 2 has electronic conductivity, electrons flow into the mysolite 2 from the display film 1 serving as a negative electrode, combine with the ions, and reduce coloring efficiency.

ここにおいて、本発明では、上記流れ込んだ電子は上記
バイパス電極5VC誘引慮れ、上記イオンと結合するこ
となくバイパス電極5より取シ出される。かくして、本
発明のKCDは発色効率を高く維持することができる。
Here, in the present invention, the electrons flowing into the bypass electrode 5VC are taken out from the bypass electrode 5 without being combined with the ions. Thus, the KCD of the present invention can maintain high coloring efficiency.

〔実施例〕〔Example〕

第1図には本発明になるECDの一例を示す。 FIG. 1 shows an example of an ECD according to the present invention.

ガラス基板6には全面に工To膜等の導電性透明膜を形
成して一方の通電電極4としである。
A conductive transparent film such as a To film is formed on the entire surface of the glass substrate 6 to serve as one current-carrying electrode 4.

該電極4上には電子ビーム蒸着によりW Os  膜を
形成して表示膜1としである。この蒸着は99.99%
のWOs を蒸着材として使用し、基板温度70〜80
℃、蒸着速度2〜3 A / BeQで、ガヌ圧1.0
X10Pa  の02 を導入しながら行なった。得ら
れたW Os膜はアモルファス状態であり、膜厚は約3
000!である。
A W Os film is formed on the electrode 4 by electron beam evaporation to serve as the display film 1. This vapor deposition is 99.99%
WOs was used as the evaporation material, and the substrate temperature was 70-80℃.
℃, deposition rate 2-3 A/BeQ, Ganu pressure 1.0
The test was carried out while introducing 02 of X10Pa. The obtained W Os film is in an amorphous state, and the film thickness is about 3
000! It is.

上記表示膜1を覆うように固体電解質膜2が形成しであ
る。該電解質膜2としてはRbAg4工易を使用し、こ
れを抵抗加熱法により真空蒸着しである。すなわち、ア
ルミナで被覆したタングステンボートIICRI)Ag
4工番粉末を入れ、上記ボートを抵抗発熱せしめてR1
)A g a工藝を蒸発せしめる。この時の基板温度は
20〜30”C1蒸着速度は4〜5 A / 8eQで
ある。得られた膜厚は6000〜8000Aである。R
bAg4工Sは結に真空封入して160℃で1時間加熱
することにより得られる。
A solid electrolyte membrane 2 is formed to cover the display membrane 1. The electrolyte membrane 2 is made of RbAg4, which is vacuum deposited by resistance heating. i.e. alumina coated tungsten boat IICRI)Ag
Step 4 Add powder and heat the boat by resistance to R1.
) A g a technology is evaporated. The substrate temperature at this time is 20~30''C1 vapor deposition rate is 4~5 A/8eQ.The obtained film thickness is 6000~8000 A.
bAg4S is obtained by vacuum-sealing the tube and heating it at 160° C. for 1 hour.

上記電解質膜2上には電極活物質(本実施例ではAg)
  よりなる他方の電極3を形成し、・さらに不活性物
質(本実施例でけAu)  よりなるバイパス電極5を
形成する。不活性物質とは電解質2内のイオン(本実施
例ではAg)と反応しない物質をいう。これら各電極3
.5は電子ビーム蒸着により形成され、電極3は、これ
に銀ペーストで固着された銅リード線によりダイオード
72のアノードと電源8に接続されている。[極5はリ
ード線により上記ダイオード72のカソードおよびダイ
オードマ1のカソードに接続され、また前出の電FM4
は上記ダイオード71のアノードおよび上記電源8に接
続されている。
On the electrolyte membrane 2 is an electrode active material (Ag in this example).
The other electrode 3 is formed of a material such as the above-mentioned material, and the bypass electrode 5 is formed of an inert material (Au in this example). The inert substance refers to a substance that does not react with the ions (Ag in this example) in the electrolyte 2. Each of these electrodes 3
.. 5 is formed by electron beam evaporation, and the electrode 3 is connected to the anode of the diode 72 and the power source 8 by a copper lead wire fixed thereto with silver paste. [Pole 5 is connected to the cathode of the diode 72 and the cathode of the diode master 1 by a lead wire, and is connected to the cathode of the diode 72 and the cathode of the diode 1
is connected to the anode of the diode 71 and the power supply 8.

ダイオード71.72は耐電圧30V”程度、工MFは
300〜500mA程度であり、例えば東芝製工515
88が使用できる。上記構造のECDの結線図を第2図
に示す。
The diode 71.72 has a withstand voltage of about 30V, and a mechanical MF of about 300 to 500mA. For example, Toshiba 515
88 can be used. A wiring diagram of the ECD having the above structure is shown in FIG.

表示膜1を発色せしめる場合には電極3を正電位とする
とともに電極4を負電位とする。この時、ダイオード7
1は逆バイアスされて非導通となり、ダイオード72は
順バイアスにより導通ずる。これを第3図に示す。正電
位の電極3ではこれを構成するAgが電子e を放出し
てAg+イオンとなり、これは固体電解質膜2を通って
表示膜1内に移動し、電子e を受けと”) テAgX
WO5するタングステンブロンズを形成し、発色する。
When the display film 1 is to be colored, the electrode 3 is set to a positive potential and the electrode 4 is set to a negative potential. At this time, diode 7
1 becomes non-conductive due to reverse bias, and diode 72 becomes conductive due to forward bias. This is shown in FIG. In the positive potential electrode 3, the constituent Ag emits electrons e and becomes Ag+ ions, which move through the solid electrolyte membrane 2 into the display membrane 1 and receive electrons e.
Forms WO5 tungsten bronze and develops color.

この際、上記電解質2が電子導電性を有することにより
、上記表示膜1を通って余剰電子Δe−が流れ込む。こ
の余剰電子Δe−はAg+イオンの流れを妨げ、またA
 g”1オンと再結合することKより表示膜1内へのA
g+イオンの移動を阻止し、これにより発色効率が低下
する。
At this time, since the electrolyte 2 has electronic conductivity, surplus electrons Δe- flow through the display film 1. This surplus electron Δe- obstructs the flow of Ag+ ions and also
A from K to recombine with g”1 on into the display film 1
It prevents the movement of g+ ions, which reduces the color development efficiency.

ここにおいて、本発明ではバイパス電FM5を設けたこ
とKより、上記余剰電子Δe−は該電極5方向に誘引さ
れ、これより取り出される。
Here, in the present invention, since the bypass electrode FM5 is provided, the surplus electrons Δe- are attracted in the direction of the electrode 5 and taken out therefrom.

しかして、余剰電子ΔeによるAgイオンのブロッキン
グは解消され、発色効率の低下が防止される。
Therefore, blocking of Ag ions due to surplus electrons Δe is eliminated, and a decrease in coloring efficiency is prevented.

第4図には消色時の電子の流れを示す。この場合には上
記ダイオード71(第2図)が導通するとともにダイオ
ード72は非導通と々る。
Figure 4 shows the flow of electrons during decolorization. In this case, the diode 71 (FIG. 2) becomes conductive and the diode 72 remains non-conductive.

図において、余剰電子△eばやはりバイパス電極5よυ
取抄出され、電極3へ戻るAgイオンの移動を妨げるこ
とはない。これにより、消色をも効率良く行なうことが
できる。
In the figure, if the surplus electrons △e are the bypass electrode 5, υ
The movement of Ag ions that are extracted and returned to the electrode 3 is not hindered. Thereby, decoloring can also be carried out efficiently.

本発明の効果を評価する指標として次式で定義される光
学密度変化ΔODを採用した。
An optical density change ΔOD defined by the following formula was employed as an index for evaluating the effects of the present invention.

ΔOD−10gOR−log Ro /Rここで、OR
はコントラスト比、 Ro、 Rはそれぞれ消色時と発
色時の反射光強度である。
ΔOD-10gOR-log Ro /R where, OR
is the contrast ratio, and Ro and R are the reflected light intensity when decoloring and when coloring, respectively.

そして、ΔOD は本来は注入電荷量Qに比例する。発
明者らは、タングステンランプにより白色光全照射し、
フォトトランジスタで反射光を受光して上記Ro%Rを
求めた。
ΔOD is originally proportional to the amount of injected charge Q. The inventors irradiated the entire area with white light using a tungsten lamp,
The above Ro%R was determined by receiving reflected light with a phototransistor.

第5図には本発明の素子とバイパス電極を設けない従来
の素子について、注入電荷量Qに対する光学密度変化Δ
ODの変化を示す。図中線Xは本発明、線yは従来例で
ある。図よυ知られる如く、従来例では注入電荷量Qが
1 omC・am以上になると密度変化ΔODが飽和状
態となる。これは、余剰電子Δe−が比例的に増加して
Agイオンの移動が妨害されるととくよる。
Figure 5 shows the change in optical density Δ with respect to the amount of injected charge Q for the device of the present invention and a conventional device without a bypass electrode.
It shows the change in OD. In the figure, line X represents the present invention, and line y represents the conventional example. As is known from the figure, in the conventional example, when the amount of injected charge Q becomes 1 omC.am or more, the density change ΔOD becomes saturated. This is caused by the fact that the surplus electrons Δe- increase proportionally and the movement of Ag ions is obstructed.

これに対して本発明では、上記余剰電子△eによるAg
イオンのブロッキングが生じないから、上記密度変化Δ
ODは上記電荷量Qの増加につれて飽和することなく大
きくなる。
On the other hand, in the present invention, Ag due to the surplus electron Δe is
Since ion blocking does not occur, the above density change Δ
As the charge amount Q increases, the OD increases without being saturated.

かくして、本発明のECDは注入電荷flQ、を大きく
した場合にも発色効率は高く保たれる。
Thus, the ECD of the present invention maintains high coloring efficiency even when the injected charge flQ is increased.

また、注入電荷量Qを大きくできるということは、取υ
も直さず酸化還元反応を速めて応答性を向上せしめるこ
とができるということであり、したがって作動電圧を比
較的高くすることKよυ良好な表示応答性を得ることが
できる。
Also, the fact that the amount of injected charge Q can be increased means that
This means that the oxidation-reduction reaction can be accelerated and the responsiveness can be improved without any modification, and therefore better display responsiveness can be obtained by making the operating voltage relatively high.

上記実施例において、バイパス電極5にばAu以外にp
t等が使用でき、さらには抵抗の小さい導電性セラミッ
クスでも良い。
In the above embodiment, the bypass electrode 5 is made of P in addition to Au.
In addition, conductive ceramics with low resistance may also be used.

また、表示膜ユはWOsOs外に、例えばMoos膜が
使用できる。固体電解質には他の超イオン導電体、例え
ばKAg4工1 等が使用できることはもちろんである
Further, as the display film, for example, a Moos film can be used in addition to WOsOs. Of course, other superionic conductors such as KAg4-1 can be used as the solid electrolyte.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の素子構造を示す断面図、第2図は素子
の結線図、第3図、第4図は素子の作動説明図、第5図
は素子の光学密度変化特性図である。 1・・・−表示膜 2−一・固体電解室 5.4・・・−通電電極 5−・−バイパス電極 6−−・ガラス基板 71、’F 2−−・ダイオード 8−・・−電源 第1図 第2図 第3図 tJe       lJe− 1g5図
Fig. 1 is a sectional view showing the element structure of the present invention, Fig. 2 is a wiring diagram of the element, Figs. 3 and 4 are diagrams explaining the operation of the element, and Fig. 5 is a diagram of optical density change characteristics of the element. . 1...-Display film 2--Solid electrolyte chamber 5.4...-Electrifying electrode 5--Bypass electrode 6--Glass substrate 71,'F 2--Diode 8--Power supply Figure 1 Figure 2 Figure 3 tJe lJe- 1g5 Figure

Claims (5)

【特許請求の範囲】[Claims] (1)表示膜とこれに発色源となるイオンを選択的に移
送する固体電解質とを設けてなるエレクトロクロミック
表示素子において、上記イオンとは反応しない不活性物
質よりなるバイパス電極を上記固体電解質に接して設け
て、該バイパス電極より上記固体電解質中の漏れ電流を
逃がすようになしたことを特徴とするエレクトロクロミ
ック表示素子。
(1) In an electrochromic display element comprising a display film and a solid electrolyte that selectively transfers ions that serve as a coloring source to the display film, a bypass electrode made of an inert substance that does not react with the ions is attached to the solid electrolyte. An electrochromic display element, characterized in that the bypass electrode is disposed in contact with the solid electrolyte to allow leakage current in the solid electrolyte to escape from the bypass electrode.
(2)上記固体電解質を銀イオン導電体で構成し、上記
バイパス電極をAu又はPtで構成した特許請求の範囲
第1項記載のエレクトロクロミック表示素子。
(2) The electrochromic display element according to claim 1, wherein the solid electrolyte is made of a silver ion conductor, and the bypass electrode is made of Au or Pt.
(3)上記固体電解質に接して通電電極を設け、該通電
電極をAgで構成した特許請求の範囲第2項記載のエレ
クトロクロミック表示素子。
(3) The electrochromic display element according to claim 2, wherein a current-carrying electrode is provided in contact with the solid electrolyte, and the current-carrying electrode is made of Ag.
(4)上記表示膜をWO_3膜で構成し、該表示膜に接
して通電電極を設けて、該通電電極を透明導電膜で構成
した特許請求の範囲第1項記載のエレクトロクロミック
表示素子。
(4) The electrochromic display element according to claim 1, wherein the display film is formed of a WO_3 film, a current-carrying electrode is provided in contact with the display film, and the current-carrying electrode is formed of a transparent conductive film.
(5)上記表示膜と固体電解質とを通電電極間に設け、
上記バイパス電極を、該電極と上記各通電電極の間にそ
れぞれ設けてバイパス電極側にカソードを向けたダイオ
ードを介して上記各通電電極に接続した特許請求の範囲
第1項記載のエレクトロクロミック表示素子。
(5) providing the display film and the solid electrolyte between the current-carrying electrodes;
The electrochromic display element according to claim 1, wherein the bypass electrode is provided between the electrode and each of the current-carrying electrodes and connected to each of the current-carrying electrodes via a diode with a cathode facing the bypass electrode. .
JP61108989A 1986-05-13 1986-05-13 Electrochromic display element Expired - Lifetime JPH0617959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108989A JPH0617959B2 (en) 1986-05-13 1986-05-13 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108989A JPH0617959B2 (en) 1986-05-13 1986-05-13 Electrochromic display element

Publications (2)

Publication Number Publication Date
JPS62265630A true JPS62265630A (en) 1987-11-18
JPH0617959B2 JPH0617959B2 (en) 1994-03-09

Family

ID=14498766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108989A Expired - Lifetime JPH0617959B2 (en) 1986-05-13 1986-05-13 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPH0617959B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1756658A2 (en) * 2004-03-01 2007-02-28 University of Washington Switchable window based on electrochromic polymers
JP2007101947A (en) * 2005-10-05 2007-04-19 Murakami Corp Electrochromic element and its driving method
US7675667B2 (en) 2001-06-25 2010-03-09 University Of Washington Electropolymerization of enhanced electrochromic (EC) polymer film
US7808691B2 (en) 2002-06-25 2010-10-05 University Of Washington Green electrochromic materials
US7826124B2 (en) 2001-06-25 2010-11-02 University Of Washington Through Its Center For Commercialization Flexible panel based on electrochromic polymers
US7874666B2 (en) 2007-03-26 2011-01-25 University Of Washington Through Its Center For Commercialization Smart sunglasses, helmet faceshields and goggles based on electrochromic polymers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7675667B2 (en) 2001-06-25 2010-03-09 University Of Washington Electropolymerization of enhanced electrochromic (EC) polymer film
US7826124B2 (en) 2001-06-25 2010-11-02 University Of Washington Through Its Center For Commercialization Flexible panel based on electrochromic polymers
US7808691B2 (en) 2002-06-25 2010-10-05 University Of Washington Green electrochromic materials
US8154787B2 (en) 2002-06-25 2012-04-10 University Of Washington Electrochromic materials
EP1756658A2 (en) * 2004-03-01 2007-02-28 University of Washington Switchable window based on electrochromic polymers
JP2007526525A (en) * 2004-03-01 2007-09-13 ユニヴァーシティ オブ ワシントン Switchable window based on electrochromic polymer
EP1756658A4 (en) * 2004-03-01 2009-11-04 Univ Washington Switchable window based on electrochromic polymers
JP2007101947A (en) * 2005-10-05 2007-04-19 Murakami Corp Electrochromic element and its driving method
US7874666B2 (en) 2007-03-26 2011-01-25 University Of Washington Through Its Center For Commercialization Smart sunglasses, helmet faceshields and goggles based on electrochromic polymers

Also Published As

Publication number Publication date
JPH0617959B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4013343A (en) Electro-optical display arrangement with storage effect using a solid electrolyte
GB1502340A (en) Controllable electrochromic display cell
US4172925A (en) Photoelectrochemical cell
US4325611A (en) Electrochromic material and electro-optical display using same
US2631180A (en) Electric battery
US4294520A (en) Electrochromic display device
US4478920A (en) Lithium cell having a solid electrolyte constituted by a conductive vitreous compound
FR2466873A1 (en) ELECTRIC GENERATOR WITH HIGH ENERGY DENSITY
US4253742A (en) Electrochromic display cell
JPS62265630A (en) Electrochromic display element
US2786880A (en) Signal translating device
US4233339A (en) Method for making electrochromic films having improved etch resistance
US1914883A (en) Method and apparatus for producing ions
US4294898A (en) Solid state battery
US3975086A (en) Electrochromic display element and process
JPS6223293B2 (en)
FR2518291A1 (en) ELECTROCHROMIC VISUALIZATION DEVICE WITH THERMO-ELECTRIC CONTROL
GB2168823A (en) Low voltage solid-state lateral coloration electrochromic device
GB2035593A (en) Electrode barrier layer for hydrogencoloured electrochromic display devices
US4012831A (en) Electrochromic display element and process
US2881340A (en) Photoconductive television pickup tube
US4266338A (en) Method of manufacturing photoelectrochemical cell
GB2190760A (en) Electrochromic element
US6087651A (en) Highly sensitive light reception element
Kaneko et al. Effects of transparent electrode resistance on the performance characteristics of electrochemichromic cells