JPS6226429B2 - - Google Patents

Info

Publication number
JPS6226429B2
JPS6226429B2 JP55020572A JP2057280A JPS6226429B2 JP S6226429 B2 JPS6226429 B2 JP S6226429B2 JP 55020572 A JP55020572 A JP 55020572A JP 2057280 A JP2057280 A JP 2057280A JP S6226429 B2 JPS6226429 B2 JP S6226429B2
Authority
JP
Japan
Prior art keywords
outputs
wave receiving
output
phase
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55020572A
Other languages
Japanese (ja)
Other versions
JPS56118683A (en
Inventor
Fukutaro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Denki Co Ltd
Original Assignee
Kaijo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Denki Co Ltd filed Critical Kaijo Denki Co Ltd
Priority to JP2057280A priority Critical patent/JPS56118683A/en
Publication of JPS56118683A publication Critical patent/JPS56118683A/en
Publication of JPS6226429B2 publication Critical patent/JPS6226429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/534Details of non-pulse systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は水中物体探知装置、とくにスキヤンニ
ングソーナーの受信装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an underwater object detection device, and particularly to a scanning sonar receiving device.

スキヤンニングソーナーは周知の通り、自船を
中心として例えば180度範囲の如く、適宜の探査
範囲を設定し、その範囲内の情報を把握するた
め、探査領域に対して同時に音波又は超音波を送
出し、受信に当つては隣接する複数個の受波素子
よりなる狭い指向性の受信ビームを形成し、次い
で受波素子群を逐時1ケずつ受信ビームの旋回方
向に切換えることにより受信ビームを早い速度で
順次に旋回し、探知物体の方向と距離を平面図形
としてブラウン管に表示する。
As is well known, scanning sonar sets an appropriate exploration range, such as a 180 degree range around the own ship, and simultaneously sends out sound waves or ultrasonic waves to the exploration area in order to obtain information within that range. For reception, a reception beam with narrow directivity is formed by a plurality of adjacent reception elements, and then the reception beam is changed by switching the reception elements one by one in the direction of rotation of the reception beam. It rotates sequentially at high speed and displays the direction and distance of the detected object as a planar figure on the cathode ray tube.

しかし一つの受信ビームから次の受信ビームに
移行すると、受信ビームの中心軸相互の間には角
度θの開きを生ずるが、この角度θは受波器を形
成する受波素子の寸法で制限され、またコスト高
になるため、見掛上支障のない程度に反響信号を
受けるような小さな角度に選択的に設定できな
い。
However, when transitioning from one receiving beam to the next, an angle θ is created between the central axes of the receiving beams, but this angle θ is limited by the dimensions of the receiving element forming the receiver. Also, due to the high cost, it is not possible to selectively set the angle to a small enough angle to receive the echo signal without any apparent problem.

したがつて角度θの範囲では、指向性中心軸の
方向と較べると受波感度が低下し、反響信号が弱
く見えることになるので不具合であり、解決策と
して角度θの範囲の指向性を見掛上修正する補間
手段がとられているが、本発明においても同じ問
題の解決策にかかるものであり、現用技術を適用
して簡単な手段で確実に受波感度の修正を行い、
何れの方向においても、充分な強さの反響信号を
受信できるように配慮した。以下図面によつて詳
細に説明する。
Therefore, in the range of angle θ, the receiving sensitivity is lower than in the direction of the central directivity axis, and the echo signal appears weak, which is a problem.As a solution, it is necessary to look at the directivity in the range of angle θ. Although interpolation means for overlapping correction is used, the present invention is also concerned with solving the same problem, and the present invention is applied to reliably correct the receiving sensitivity by a simple means.
Care was taken to ensure that echo signals of sufficient strength could be received in any direction. A detailed explanation will be given below with reference to the drawings.

理解を容易にするため、始めに現用のスキヤン
ニングソーナーで実施している受信系を概観し、
次に本発明の実施例に移る。
To make it easier to understand, we will first give an overview of the reception system used in current scanning sonar.
Next, we will move on to examples of the present invention.

第1図は現用の受信系の主要部を示し、Vo
びVo1…Vo4とVo1′…Vo4′はそれぞれ受波器を
形成する受波素子(振動子)であり、これ等の受
波素子は同形同大であり、かつ各受波素子自体の
ビーム幅は、一般のスキヤンニングソーナーの場
合と同様に、後記する移相回路を介して形成され
る探知用の受信ビームのビーム幅に対して、充分
に幅広いものを用い、円筒の周辺に同一間隔に配
列してある。
Figure 1 shows the main parts of a current receiving system . The receiving elements are the same shape and size, and the beam width of each receiving element itself is the same as that of a detection receiving beam formed via a phase shift circuit (described later), as in the case of general scanning sonar. They are sufficiently wide for the beam width of , and are arranged at equal intervals around the periphery of the cylinder.

SWは受波素子を5ケ宛(説明の便宜上5ケと
した)をグループとして切換の都度1ケずつ隣に
図ではφsの方向に逐次に切換えるスイツチで、
実際には電子回路による高速電子スイツチである
が、便宜上機械的スイツチで示してある。
The SW is a switch that sequentially switches the receiving elements in groups of 5 (for convenience of explanation, 5 elements are used) in the direction of φ s in the figure, one by one each time it is switched.
Although it is actually a high-speed electronic switch using an electronic circuit, it is shown as a mechanical switch for convenience.

次にPSは受波素子出力の位相差(後記するφ
とφ)を移相するための移相回路である。
Next, PS is the phase difference of the wave receiving element output (φ
1 and φ 2 ).

第2図は受波素子の位相に就ての説明図で、中
心の受波素子をVoと定め、到来信号の波面が
WFである場合を示してある。
Figure 2 is an explanatory diagram of the phase of the receiving element, where the central receiving element is set as V o and the wavefront of the arriving signal is
The case of WF is shown.

各受波素子は開き角度がφ(第1図参照)で
一定であるから、VoとVo1′(又はVo1)の間隔
をl1(位相差はφ)、VoとVo2′(又はVo2)の
間隔をl2(位相差はφ)、Rを受波面の半径、
λを波長とすれば φ=l12π/λ=2πR/λ(1―cosφ) (1) φ=l22π/λ=2πR/λ(1―cos2φ) (2) となるから、移相回路PSで受波素子Vo1とVo1
の位相をφ、そして受波素子Vo2とVo2′の位
相をφだけ移相してやるとVo2′・Vo1′・Vo
o1・Vo2の合成された出力OPは、波面WFを同
相で受信した出力と等価である。したがつてこれ
ら5つの受波素子によつて狭い指向性R(φo
の受信ビームがつくられる。
Since the opening angle of each receiving element is constant at φ 0 (see Figure 1), the interval between V o and V o1 ' (or V o1 ) is set as l 1 (the phase difference is φ 1 ), and the distance between V o and V o2 ' (or V o2 ) interval is l 2 (phase difference is φ 2 ), R is the radius of the receiving surface,
If λ is the wavelength, φ 1 = l 1 2π/λ=2πR/λ (1−cosφ 0 ) (1) φ 2 = l 2 2π/λ=2πR/λ (1−cos2φ 0 ) (2) From this, the phase shift circuit PS converts the receiving elements V o1 and V o1
By shifting the phase of φ 1 and the phases of the receiving elements V o2 and V o2 ′ by φ 2 , we obtain V o2 ′・V o1 ′・V o
The combined output OP of V o1 and V o2 is equivalent to the output obtained by receiving the wavefront WF in phase. Therefore, these five receiving elements provide a narrow directivity R (φ o ).
A receiving beam is created.

そこで、受波素子を1つずつ順次に移動し、例
えばVo1′・Vo・Vo1・Vo2・Vo3と次々に5つの
グループで指向性を形成してゆけば、探査領域の
全部に亘つて狭い指向性で探査できる。
Therefore, if you move the receiving elements one by one and form directivity in five groups, for example, V o1 ', V o , V o1 , V o2 , and V o3 , you can cover the entire exploration area. It is possible to search with narrow directivity over a wide range of areas.

この場合先に述べた通り、1つの指向性が次に
移ると、その中心線間に角度φの開きがあるた
め、その間の方向の受信感度が低下するから、そ
の感度低下を避けるため実用上指向性を補間する
対策が必要である。
In this case, as mentioned earlier, when one directivity moves to the next, there is an angle φ 0 difference between the center lines, so the reception sensitivity in the direction between them decreases, so it is practical to avoid this decrease in sensitivity. A measure to interpolate the upward directivity is required.

第3図はこの対策として提案する本発明の実施
例の構成を示し、ELはVo・Vo1・Vo2…及びVo
′・Vo2′…の振動子で構成された受波素子群、
SWはS1・S2……S6の6回線からなる受波素子グ
ループの切換スイツチで、T0毎に逐次受波素子
を1つずつ切換えるようにする作動する。
FIG. 3 shows the configuration of an embodiment of the present invention proposed as a countermeasure against this problem, and EL is V o , V o1 , V o2 ... and V o
A wave receiving element group composed of oscillators of 1 ′・V o2 ′...
The SW is a changeover switch for a wave receiving element group consisting of six lines S1 , S2 ... S6 , and is operated to sequentially switch the wave receiving elements one by one every T0 .

GATTは連動可変減衰器(以下減衰器と略
す)で、ATT1A……ATT5Aは出力A用に供
し、100%から0%に減衰するように作動し、一
方、ATT2B……ATT6Bは出力B用のもので
0%から100%に増大するように作動する。すな
わち受波素子を2つずつ組合せて、その一方の出
力を100%から0%に減衰、他方は出力を0%か
ら100%に増大するように作動するものである。
GATT is an interlocking variable attenuator (hereinafter abbreviated as attenuator). ATT1A...ATT5A is used for output A and operates to attenuate from 100% to 0%, while ATT2B...ATT6B is used for output B. It operates to increase from 0% to 100%. That is, two wave receiving elements are combined, and the output of one is attenuated from 100% to 0%, and the output of the other is increased from 0% to 100%.

MIX―1はM1・M2……から構成された混合
器で、減衰器の出力E1A・E2B、E2A・E3B……
6Bをそれぞれ混合する。
MIX-1 is a mixer composed of M1, M2..., and the outputs of the attenuators E1A , E2B , E2A , E3B ...
Mix each of E 6B .

FSは移相回路で、混合器M1……M5の出力
の位相φ・φを移相するものであり、MIX―
2は受波素子グループの出力を混合する混合器で
ある。
FS is a phase shift circuit that shifts the phase φ 1 and φ 2 of the outputs of the mixers M1...M5, and MIX-
2 is a mixer that mixes the outputs of the wave receiving element groups.

次に第4図は第3図の連続可変減衰器GATT
の例、第5図はGATTの合成出力のベクトル説
明図である。
Next, Figure 4 shows the continuously variable attenuator GATT in Figure 3.
For example, FIG. 5 is a vector explanatory diagram of the combined output of GATT.

第4図でR1A1、R1A2とR1A3は減衰器
ATT1Aを構成する抵抗素子、R2B1及びR
2B2とR2B3は減衰器ATT2Bを構成する
抵抗素子で、これらの抵抗素子にはスイツチS1
S2で取り出された受波素子の出力E1SとE2Sが印
加される。
In Figure 4, R1A1, R1A2 and R1A3 are attenuators
Resistance elements forming ATT1A, R2B1 and R
2B2 and R2B3 are resistance elements that constitute the attenuator ATT2B, and these resistance elements are connected to the switch S1 and
The outputs E 1S and E 2S of the wave receiving element taken out at S 2 are applied.

そして、K1A1、K1A2……K2B4は減
衰量切換用の電子スイツチ、また減衰器ATT1
Aから取り出す出力はE1A、減衰器ATT2Bか
ら取り出す出力はE2Bで、これ等の出力は混合器
M1で混合されて出力E1Mとなる。
K1A1, K1A2...K2B4 are electronic switches for switching attenuation amount, and attenuator ATT1
The output taken out from A is E 1A and the output taken out from attenuator ATT2B is E 2B , and these outputs are mixed in mixer M1 to become output E 1M .

ここで出力E1AとE2Bを取出すに当つては、受
波ビームを受波素子同志の開き角度φだけ受信
ビーム旋回走査させる時間T0を適当の時間幅例
えば任意の整数をnとしてn区分し、図の例では
n=3としてT/3毎に図では省略したパルス発生 回路により制御電圧ET1、ET2、ET3及びET4
つくり、この制御電圧で電子スイツチK1A1、
K1A2、……を順次に駆動すると、抵抗器R1
A1、R1A2、……による電圧分圧比が変化
し、E1Aは最大値から最小値すなわち100%から
0%に減衰する形となり、E2Bはその逆に最小値
から最大値すなわち0%から100%に増大する形
となる。
In order to extract the outputs E 1A and E 2B , the time T 0 for rotating and scanning the receiving beam by the opening angle φ 0 between the receiving elements is set to an appropriate time width, for example, when n is an arbitrary integer. In the example shown in the figure, with n=3, control voltages E T1 , E T2 , E T3 and E T4 are generated every T 0 /3 by a pulse generation circuit not shown in the figure, and with these control voltages, electronic switches K1A1,
When K1A2,... are driven sequentially, the resistor R1
The voltage division ratio of A1, R1A2, ... changes, and E 1A attenuates from the maximum value to the minimum value, that is, from 100% to 0%, and E 2B , on the other hand, decreases from the minimum value to the maximum value, that is, from 0% to 100. %.

なお、この減衰器の減衰量は次の様に予め設定
してある。即ち、例えば第4及び5図のようにt1
〜t2の時間帯における減衰器ATT1AとATT2
Bのそれぞれの減衰量をαとβとして、減衰
器ATT1AとATT2Bのそれぞれの出力電圧E〓1
A2とE〓2B2が混合器M1で合成された電圧E〓1M2
は、E〓1A2=αE〓1S、E〓2B2=βE〓2Sで、E
1M2
=E〓1A2+E〓2B2=αE〓1S+βE〓2Sであるが

そのE〓1M2の絶対値は|E〓1M2|=|E〓1S|=|E
2
S|であり、かつE〓1M2のE〓1Sに対する位相角が、
|E〓1S|と|E〓2S|間の位相差(φ―φ)の
1/3の1/3(φ―φ)だけ進んだ位相角になる
よう 減衰量αとβが設定されている。
Note that the attenuation amount of this attenuator is preset as follows. That is, for example, as shown in FIGS. 4 and 5, t 1
Attenuators ATT1A and ATT2 in the time period ~t 2
Assuming that the respective attenuation amounts of B are α 2 and β 2 , the respective output voltages of attenuators ATT1A and ATT2B are E〓 1
A2 and E〓 2B2 are combined in mixer M1, resulting in voltage E〓 1M2
is E〓 1A2 = α 2 E〓 1S , E〓 2B2 = β 2 E〓 2S , and E
1M2
=E〓 1A2 +E〓 2B22 E〓 1S2 E〓 2S , but
The absolute value of E〓 1M2 is |E〓 1M2 |=|E〓 1S |=|E
2
S | and the phase angle of E〓 1M2 with respect to E〓 1S is
The attenuation amount α 2 is set so that the phase angle is advanced by 1/3 (φ 2 −φ 1 ) of 1/3 of the phase difference (φ 2 −φ 1 ) between |E〓 1S | and |E〓 2S | β 2 is set.

同様に、時間帯t2〜t3における減衰量αとβ
は、ATT1A及びATT2Bの出力の和のE〓1M3
の絶対値の|E〓1M3|=|E〓1S|=|E〓2S|であ
り、またE〓1M3の位相角は2/3(φ―φ)にな
る 様設定されている。
Similarly, the attenuation amounts α 3 and β in the time period t 2 to t 3
3 is the sum of the outputs of ATT1A and ATT2B E = 1M3
The absolute value of |E〓 1M3 |=|E〓 1S |=|E〓 2S |, and the phase angle of E〓 1M3 is set to be 2/3 (φ 2 −φ 1 ).

なおt0〜t1ではα=1、β=0、またt3〜t4
ではα=0、β=1である。
Note that from t 0 to t 1 , α 1 = 1, β 1 = 0, and from t 3 to t 4
Then α 4 =0 and β 4 =1.

このようにして、受波素子Vo2′とVo1′からの
出力電圧E1SとE2Sが、減衰器ATT1A及び
ATT2Bを介して減衰を受けたのち混合器M1
で合成された出力電圧E〓1Mは、振幅は常に一定で
あるがその位相は時間がT/3経過する都度φか ら1/3(φ―φ)ずつ進み3/3T0後にはφ
い たる。
In this way, the output voltages E 1S and E 2S from the receiving elements V o2 ' and V o1 ' are applied to the attenuators ATT1A and
Mixer M1 after receiving attenuation via ATT2B
The amplitude of the synthesized output voltage E〓 1M is always constant, but its phase advances by 1/3 (φ 2 - φ 1 ) from φ 2 every time T 0 /3 elapses, and after 3/3T 0 reaches φ1 .

即ち、見掛上E1SからE2Sに3ステツプで位相
がφからφに移つた形の出力となる。
That is, the output appears to have a phase shifted from φ2 to φ1 in three steps from E1S to E2S .

このようにどの受波素子Vo2′・Vo1′…Vo2
出力も3ステツプの切換えのあと、それぞれVo
′・Vo…Vo3の出力に位相が移される。
In this way, the output of each wave receiving element V o2 ', V o1 '...V o2 is changed to V o2 after three steps of switching.
1 '·V o ...The phase is shifted to the output of V o3 .

また3ステツプの切換え中は、各受波素子の出
力は隣れる受波素子の出力にそれぞれの間の位相
角の1/3宛位相されるよう設定されてあるから、
1M・E2M…E5Mは常にφ―φ、φ、0、
φ、φ―φの位相差で取り出される。
Also, during the 3-step switching, the output of each receiving element is set to be phased with the output of the adjacent receiving element by 1/3 of the phase angle between them.
E 1M・E 2M ...E 5M is always φ 2 - φ 1 , φ 1 , 0,
It is extracted with a phase difference of φ 1 and φ 2 −φ 1 .

したがつてE1M…E5Mの位相をそれぞれφ
φ、0、φ、φだけ位相してから合成すれ
ば、各ステツプ毎(すなわちφ/3方向毎)φ毎 の方向と同一の形状・同一の大きさの受信ビーム
が順次に得られる。すなわちφ/3宛ずつ3ステツ プで角度φだけ旋回したことになる。
Therefore, the phases of E 1M ...E 5M are respectively φ 2 and
By phasing φ 1 , 0, φ 1 , and φ 2 and then combining them, a receive beam with the same shape and same size as the direction for each φ 0 will be sequentially generated for each step (that is, every φ 0 /3 directions). can be obtained. In other words, it has turned by an angle φ 0 in three steps of φ 0 /3.

したがつて総合結果は、相隣れる受波素子間の
開き角度φ内に、φ毎の方向と同一の形状・
同一の大きさの受信ビームが挿入されるから、角
度φ内の探査がより一層緻密となり、情報の把
握が正確となり観察の精度が向上する。
Therefore, the overall result is that within the opening angle φ 0 between adjacent wave receiving elements, there is a shape and shape that is the same as the direction for each φ 0 .
Since receiving beams of the same size are inserted, the exploration within the angle φ 0 becomes more precise, information is more accurately grasped, and the accuracy of observation is improved.

なお、混合器M1〜M5の各々に対応して移相
回路を設け、それぞれの移相量をφ・φ
0・φ・φとしたが、別方法として、M1と
M5及びM2とM3を4チヤンネル入力の混合回
路に置換え、またそれぞれの出力を入れる移相器
をφ・φ・0の3ケにしても同一効果が得ら
れる。
Note that a phase shift circuit is provided corresponding to each of the mixers M1 to M5, and the respective phase shift amounts are φ 2 φ 1
0, φ 1 , and φ 2 , but as an alternative method, M1 and M5 and M2 and M3 are replaced with a 4-channel input mixing circuit, and the phase shifters that input the respective outputs are replaced with φ 2 , φ 1 , and 0. The same effect can be obtained even with 3 pieces.

また移相回路の移相量をφ・φ・0・φ
・φと進相するように説明したが、それの代
りに0・φ―φ・φ・φ―φ・0と移
相を遅らせても良いことは申すまでもない。
Also, the phase shift amount of the phase shift circuit is φ 2・φ 1・0・φ
Although we have explained that the phase advances as 1・φ 2 , it goes without saying that the phase shift may be delayed as 0・φ 21・φ 2・φ 21・0 instead. .

なお可変減衰器回路としては、例えば抵抗と半
導体スイツチ及び抵抗とコンデンサなどの素子に
よつても容易に構成できる。そのため安価な部品
材料を用いて、多数の挿入受信ビームの構成及び
高速旋回走査を容易に実施することができ、実用
上の効果が甚だ大きいものである。
Note that the variable attenuator circuit can be easily constructed by using elements such as a resistor and a semiconductor switch, a resistor and a capacitor, and the like. Therefore, using inexpensive component materials, it is possible to easily configure a large number of inserted receiving beams and perform high-speed rotational scanning, and the practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は現用スキヤンニングソーナーの受信系
の主要部。 Vo・Vo1……振動子、SW……スイツチ。 第2図は受波素子の位相に就ての説明図。第3
図は本発明の実施例 GATT……連動可変減衰器、MIX……混合器、
PS……移相回路。 第4図は連動可変減衰器の例。第5図は合成出
力のベクトル図。
Figure 1 shows the main parts of the reception system of a current scanning sonar. V o・V o1 ... vibrator, SW ... switch. FIG. 2 is an explanatory diagram of the phase of the wave receiving element. Third
The figure shows an example of the present invention GATT: interlocking variable attenuator, MIX: mixer,
PS...Phase shift circuit. Figure 4 is an example of an interlocking variable attenuator. FIG. 5 is a vector diagram of the composite output.

Claims (1)

【特許請求の範囲】 1 相隣れる受波素子群を複数(m=3以上の整
数)個選択し、これらの素子群の組合せを受信ビ
ームの旋回走査方向に一定の時間毎に逐時切り換
えて移行するとともに、各受波素子の受信出力の
位相をそれぞれ移相して同一位相にそろえた後、
相加えることにより受信ビームを形成し、かつ旋
回走査させるスキヤンニングソーナーにおいて、 複数個(m個)の受波素子が接続される時間帯
T0において、それぞれ隣接する2個ずつの受波
素子から取出されたm―1対の出力を、nを適宜
設定する2以上の整数として、時間T/n毎に、隣 接する2個の受波素子のうち旋回走査方向の側の
受波素子の出力を0%から100%に逐時増大さ
せ、旋回走査と逆の受波素子の出力を100%から
0%に逐時減衰させるとともに、それぞれ増大な
らび減少する2つの出力の合成値の絶対値が1つ
の受波素子の出力の絶対値に等しく、かつ合成値
の位相が2つの受波素子の出力間の位相差の1/
nずつ可変減衰器の歩進に合せて時間T/n毎に旋 回方向に移相されるよう、減衰量がそれぞれ設定
された可変減衰器のm―1対をそれぞれ介して、
m―1対の出力を取出し、次いで各可変減衰器よ
り取出したm―1対のそれぞれの2個の出力をそ
れぞれ合成してm―1個の合成出力を出力する手
段と、上記のm―1個の合成出力を、時間帯T0
の切換時刻にm―1個の各受波素子の幾何学的配
置により定まる各受波素子の出力間の位相差をそ
れぞれ補償する移相回路を介して取出したのち合
成して受信信号とする手段とよりなることを特徴
とするスキヤンニグソーナーの受信装置。
[Claims] 1. Selecting a plurality of adjacent wave receiving element groups (m = an integer of 3 or more), and sequentially switching the combination of these element groups in the rotating scanning direction of the receiving beam at regular intervals. At the same time, the phases of the reception outputs of each receiving element are shifted so that they are in the same phase.
In a scanning sonar that forms a receiving beam by adding signals to each other and performs rotational scanning, the time period when multiple (m) receiving elements are connected.
At T 0 , m-1 pairs of outputs taken out from two adjacent wave receiving elements, respectively, are set as an integer of 2 or more where n is set appropriately, and at every time T 0 /n, m-1 pairs of outputs are extracted from two adjacent wave receiving elements. Among the wave receiving elements, the output of the wave receiving element on the side in the rotating scanning direction is gradually increased from 0% to 100%, and the output of the wave receiving element on the side opposite to the rotating scanning direction is gradually attenuated from 100% to 0%. , the absolute value of the composite value of two outputs that increase and decrease, respectively, is equal to the absolute value of the output of one wave receiving element, and the phase of the composite value is 1/ of the phase difference between the outputs of the two wave receiving elements.
Through m-1 pairs of variable attenuators each having an attenuation amount set such that the phase is shifted in the turning direction every time T 0 /n in accordance with the step of the variable attenuator by n,
means for taking out the m-1 pairs of outputs, and then synthesizing the two outputs of each of the m-1 pairs taken out from each variable attenuator to output m-1 combined outputs; One composite output, time period T 0
At the switching time, the signals are extracted through a phase shift circuit that compensates for the phase difference between the outputs of each of the m-1 wave receiving elements determined by the geometrical arrangement of each of the wave receiving elements, and then combined to form a received signal. A scanning sonar receiving device comprising:
JP2057280A 1980-02-22 1980-02-22 Receiving system of scanning sonar Granted JPS56118683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2057280A JPS56118683A (en) 1980-02-22 1980-02-22 Receiving system of scanning sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057280A JPS56118683A (en) 1980-02-22 1980-02-22 Receiving system of scanning sonar

Publications (2)

Publication Number Publication Date
JPS56118683A JPS56118683A (en) 1981-09-17
JPS6226429B2 true JPS6226429B2 (en) 1987-06-09

Family

ID=12030902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057280A Granted JPS56118683A (en) 1980-02-22 1980-02-22 Receiving system of scanning sonar

Country Status (1)

Country Link
JP (1) JPS56118683A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553475B2 (en) * 1988-12-27 1996-11-13 株式会社カイジョー Directional beam combining circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53701A (en) * 1976-06-22 1978-01-06 Crosfield Electronics Ltd Image reproducing method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53701A (en) * 1976-06-22 1978-01-06 Crosfield Electronics Ltd Image reproducing method and apparatus

Also Published As

Publication number Publication date
JPS56118683A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
US4550607A (en) Phased array acoustic imaging system
US4103304A (en) Direction locating system
US3144649A (en) Direction finder or omnirange beacon with wide-aperture antenna system
NO155861B (en) DETECTION SYSTEM.
RU2596018C1 (en) Method for amplitude direction finding of radio signal sources
JPS6226429B2 (en)
JP4733446B2 (en) Ultrasonic diagnostic equipment
JP3640854B2 (en) Ultrasonic phased array transducer
US4117487A (en) Electronically scanned echo pulse receiver
JPS6226430B2 (en)
JP4968847B2 (en) Ultrasonic phased array transducer
JP3748358B2 (en) Ultrasonic phased array transducer
Davies et al. Cylindrical arrays with electronic beam scanning
SU1439486A1 (en) Acoustic image system
JPH01195374A (en) Antenna measuring system
JPS6327665B2 (en)
US5327396A (en) Underwater detection system
Hughes et al. Tilted directional response patterns formed by amplitude weighting and a single 90° phase shift
JP2577333B2 (en) Scanning sonar receiver
GB2073956A (en) Electronically controlled directional aerial array
KR930002449B1 (en) Scanning sonar receiver system
JPH0450684A (en) Underwater detection apparatus
US4143351A (en) Sonic direction finder
JPS623738Y2 (en)
JP2759710B2 (en) Underwater detector