JPS6226391A - Vane and manufacture thereof - Google Patents

Vane and manufacture thereof

Info

Publication number
JPS6226391A
JPS6226391A JP16524385A JP16524385A JPS6226391A JP S6226391 A JPS6226391 A JP S6226391A JP 16524385 A JP16524385 A JP 16524385A JP 16524385 A JP16524385 A JP 16524385A JP S6226391 A JPS6226391 A JP S6226391A
Authority
JP
Japan
Prior art keywords
vane
base
wear
carbon
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16524385A
Other languages
Japanese (ja)
Inventor
Shigeru Okada
茂 岡田
Nobufumi Nakajima
中島 信文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP16524385A priority Critical patent/JPS6226391A/en
Publication of JPS6226391A publication Critical patent/JPS6226391A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To protect a vane from damage by constructing with a tip section formed of high purity abrasion resistant material and base material where the mixing ratio of said abrasive material will decrease continuously toward the base side thereby eliminating the abrupt changing point of hardness and concentration of stress. CONSTITUTION:A vane 11 is constructed with the tip section 12 and base material 13 continuous to the tip section 12 both of which are formed with aluminum. Here, the tip section 12 is mixed with abrasion resistant material or carbon C by about 100% while the base material 13 is mixed with carbon C while reducing the mixing rate gradually toward the base section. Consequently, the tip section 12 is improved of abrasion resistance thus to reduce abrasion even upon sliding against the inner wall face of refrigerant chamber. With such composition, the mixing ratio of carbon C will never vary abruptly thus to never vary the hardness abruptly resulting in elimination of concentrated stress and breakdown of vane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コンプレッサ用ロータに設けられたベーン及
びその製造方法に係り、特に強度を高めたベーン及びそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vane provided on a compressor rotor and a manufacturing method thereof, and particularly to a vane with increased strength and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

第4図及び第5図は従来技術によるベーンを用いたコン
プレッサ用ロータの構成を示す。
4 and 5 show the construction of a compressor rotor using vanes according to the prior art.

図中、1は冷媒室2内に設けられた円柱状のロータで、
該ロータlにはベーン溝3.3.・・・が形成されてい
る。
In the figure, 1 is a cylindrical rotor installed in the refrigerant chamber 2,
The rotor l has vane grooves 3.3. ... is formed.

4は上記ロータ1に設けられたベーンで、該各ベーン4
の基部側は上記各ベーン溝3内に出没自在に挿入され、
先端部は冷媒室2の内壁面2Aに接している。而して、
該ベーン4は、上記ロータ1の回転に伴い、その先端部
が上記冷媒室2内に導入された冷媒を圧縮するようにな
っている。
4 is a vane provided on the rotor 1, and each vane 4
The base side is inserted into each of the vane grooves 3 so as to be freely retractable,
The tip portion is in contact with the inner wall surface 2A of the refrigerant chamber 2. Then,
As the rotor 1 rotates, the tip of the vane 4 compresses the refrigerant introduced into the refrigerant chamber 2.

次に、第5図にもとづき上記ベーン4の形状を説明する
。なお、該ベーン4は図中、矢示S方向へ回転するもの
とする。従って、冷媒室2はA側が高圧側となり、また
、B側が低圧側となる。
Next, the shape of the vane 4 will be explained based on FIG. 5. Note that the vane 4 is assumed to rotate in the direction of arrow S in the figure. Therefore, in the refrigerant chamber 2, the A side becomes the high pressure side, and the B side becomes the low pressure side.

而して、該ベーン4はロータ1の軸線方向へ延設する平
板状をなし、その基部側はベーン溝3内に挿入されて内
圧受圧面4Aとなり、その先端部は冷媒室2の内壁面2
Aに接するとともに、該冷媒室2との接線βを境にして
高圧側受圧面4Bと低圧側受圧面4Cとが形成されてい
る。
The vane 4 has a flat plate shape extending in the axial direction of the rotor 1, and its base side is inserted into the vane groove 3 to become an internal pressure receiving surface 4A, and its tip end is connected to the inner wall surface of the refrigerant chamber 2. 2
A, a high pressure side pressure receiving surface 4B and a low pressure side pressure receiving surface 4C are formed with a tangent line β to the refrigerant chamber 2 as a boundary.

ここで、該高圧側受圧面4B面積は、図示の如く、低圧
側受圧面4Cの面積より狭くなっている。
Here, the area of the high pressure side pressure receiving surface 4B is smaller than the area of the low pressure side pressure receiving surface 4C as shown in the figure.

従って、ベーン4が高圧側受圧面4bにおいて高圧倒A
から受ける矢示方向の力Fl、即ちベーン4をベーン溝
3内へ没しさせる方向の力が、上記内圧受圧面4Aが受
ける内圧F2、即ちベーン4をベーン溝3内から突出さ
せる方向の力に釣り合うことができ、これにより、ベー
ン4と冷媒室2内壁面2Aとの間のカジリを防止してい
る。
Therefore, the vane 4 has a high overwhelm A on the high pressure side pressure receiving surface 4b.
The force Fl in the direction of the arrow, that is, the force that causes the vane 4 to sink into the vane groove 3, is the internal pressure F2 that the internal pressure receiving surface 4A receives, that is, the force that causes the vane 4 to protrude from the vane groove 3. This prevents galling between the vane 4 and the inner wall surface 2A of the refrigerant chamber 2.

〔発明が解決しようとする問題点〕 しかしながら、このように構成された従来技術によるベ
ーン4においては以下の問題点がある。
[Problems to be Solved by the Invention] However, the conventional vane 4 configured as described above has the following problems.

即ち、ベーン4が、冷媒室2の内壁面2Aと経時的に摺
接した結果、当該ベーン4の先端部が第5図中、点線P
で示す如く摩耗し、これにより高圧側受圧面4Bの面積
が拡大したとする。
That is, as a result of the vane 4 coming into sliding contact with the inner wall surface 2A of the refrigerant chamber 2 over time, the tip of the vane 4 is aligned with the dotted line P in FIG.
Assume that the area of the high-pressure side pressure-receiving surface 4B has increased due to wear as shown in FIG.

すると、高圧側受圧面4Bが受ける矢示方向の力F1が
増大し、その結果、内圧受圧面4Aが受ける力F2との
釣り合いがとれなくなり、ベーン4は矢示X−Y方向へ
運動する。当該運動は、ベーン4のチャタリングを誘発
し、ベーン4の作動を好ましくないものとする。
Then, the force F1 in the direction of the arrow that the high pressure side pressure receiving surface 4B receives increases, and as a result, it becomes unbalanced with the force F2 that the internal pressure receiving surface 4A receives, and the vane 4 moves in the direction of the arrow XY. This movement induces chattering of the vane 4, making the operation of the vane 4 undesirable.

一方、ベーンの摩耗を防止するものとして、実開昭55
−180991号公報には、ロータリポンプ用ベーンに
関する考案が開示されている。かかる考案には、ベーン
の先端部に耐摩耗性被膜を設ける旨が開示されている。
On the other hand, as a means to prevent vane wear,
Japanese Patent No. 180991 discloses an idea regarding a vane for a rotary pump. This invention discloses that a wear-resistant coating is provided on the tip of the vane.

しかしながら、このような考案にあっては、耐摩耗性被
膜とベーンとの境界部に応力が集中し、当該応力により
上記耐摩耗性被膜が外れ易いという問題点がある。
However, such a device has a problem in that stress is concentrated at the boundary between the wear-resistant coating and the vane, and the wear-resistant coating is likely to come off due to the stress.

従って、本発明は上記実情に鑑みてなされたちで、その
目的は強度を高めることにより摩耗を防止するベーンを
提供することにある。
Therefore, the present invention was made in view of the above circumstances, and its object is to provide a vane that prevents wear by increasing its strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は高純度の耐摩耗性物質で形成された先端部と、
基部側へ向けて上記耐摩耗性物質の混入割合が連続的に
低減する母材部とから構成したものである。
The present invention includes a tip made of a high-purity wear-resistant material,
and a base material portion in which the proportion of the wear-resistant substance mixed in is continuously reduced toward the base side.

また、他の本発明は、ベーン成形用型の先端側に、熔融
状態にある高純度の摩耗性物質を位置させ、かつ上記型
の基部側に熔融状態にある母材を位置させる工程と、冷
却時間を制御することにより上記耐摩耗性物質が上記母
材内へ拡散する拡散時間を制御する工程とから構成した
ものである。
In addition, another aspect of the present invention includes the steps of: positioning a high-purity abrasive material in a molten state on the tip side of a vane molding die; and positioning a base material in a molten state on the base side of the mold; The step of controlling the diffusion time for the wear-resistant substance to diffuse into the base material by controlling the cooling time.

〔作用〕[Effect]

本発明のベーンにおいては、耐摩耗性が連続的に変化す
るため、耐摩耗性の急変点がなく、従って、応力の集中
点がない。
In the vane of the present invention, since the wear resistance changes continuously, there is no sudden change point in the wear resistance, and therefore there is no stress concentration point.

また、他の本発明においては、冷却時間を制御すること
により耐摩耗性物質の拡散分布の状況を好ましいものと
することができる。
Further, in another aspect of the present invention, the diffusion distribution of the wear-resistant substance can be made favorable by controlling the cooling time.

〔実施例〕〔Example〕

以下に、本発明の実施例を第1図ないし第3図にもとづ
き説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本発明におけるベーン11の断面図を示す。FIG. 1 shows a sectional view of a vane 11 according to the present invention.

而して、本発明におけるベーン11は、先端部12と、
該先端部12に連設された母材部13とから構成され、
これら先端部12.母材部13はアルミニウムにより成
形されている。ここで、上記先端部11には、耐摩耗性
物質としての炭素Cが100%に近い高純度に混入し、
また、上記母材部13には基部側へ向けて上記炭素Cが
徐々に低減するごとく混入している。従って、上記先端
部12は耐摩耗性が向上し、その結果、冷媒室内壁面に
摺接しても摩耗する量が低減する。上記炭素Cの混入の
状況は、第2図に示す。図中、横軸は、ベーン11の基
部からの距離を示し、縦軸は炭素Cの混入割合を示す。
Therefore, the vane 11 in the present invention includes a tip portion 12 and
It is composed of a base material part 13 connected to the tip part 12,
These tips 12. The base material portion 13 is molded from aluminum. Here, carbon C as a wear-resistant substance is mixed in the tip portion 11 at a high purity close to 100%,
Further, the carbon C is mixed into the base material portion 13 so as to gradually decrease toward the base side. Therefore, the abrasion resistance of the tip portion 12 is improved, and as a result, the amount of abrasion caused by sliding contact with the wall surface of the refrigerant chamber is reduced. The state of the mixing of carbon C is shown in FIG. In the figure, the horizontal axis shows the distance from the base of the vane 11, and the vertical axis shows the mixing ratio of carbon C.

このように本発明にあっては、炭素Cの混入割合の急変
点がなく、従って、硬度の急変点がなく、その結果、応
力の集中点がない。このため、該ベーン11が折損、又
は損傷することは可及的に防止される。
As described above, in the present invention, there is no sudden change point in the mixing ratio of carbon C, and therefore, there is no sudden change point in hardness, and as a result, there is no stress concentration point. Therefore, the vane 11 is prevented from breaking or being damaged as much as possible.

次に、第3図にもとづき本発明に係るベーン11の製造
方法について説明する。
Next, a method for manufacturing the vane 11 according to the present invention will be explained based on FIG.

図中、14はベーン11を成形するための型を示す。In the figure, 14 indicates a mold for molding the vane 11.

而して、まず、上記型14の先端側に、固形状のアルミ
ニウム15と炭素Cの粉末とが混在したものを載置し、
かつ該型14の基部側には、母材としての固形状のアル
ミニウム16を載置する(第3図(イ)に示す)。
First, a mixture of solid aluminum 15 and carbon C powder is placed on the tip side of the mold 14,
A solid aluminum 16 as a base material is placed on the base side of the mold 14 (as shown in FIG. 3(a)).

その後、上記型14を高温高圧下に載置する。Thereafter, the mold 14 is placed under high temperature and high pressure.

すると、上記アルミニウム15.16は熔融するととも
に、上記炭素Cは第3図(ロ)に示す如(アルミニウム
16側へ拡散により侵入する。而して、長時間、この状
態が持続すれば、ベーン11の先端部12から基部にか
けて、炭素Cが一様に分布することになる。しかし、上
記型14を高温高圧下に載置しておく時間を°適当に設
定すれ(f、炭素Cの分布状況は第2図に示すものとな
る。
Then, the aluminum 15 and 16 melt, and the carbon C diffuses into the aluminum 16 as shown in FIG. Carbon C is uniformly distributed from the tip 12 to the base of the mold 11. However, by setting the time period for which the mold 14 is placed under high temperature and high pressure (f), the carbon C distribution is uniformly distributed. The situation is shown in Figure 2.

なお、上記実施例では、型14の先端側にのみ、炭素C
を載置したが、該炭素Cを型14の内周面全域に載置し
、該炭素Cによりアルミニウム15゜16を覆うように
すれば、ベーン11は全面において耐摩耗性が向上する
。又、上記実施例では、型14内に固形状のアルミニウ
ム15.16を載置したが、かかる工程を省略し、熔融
状態のアルミニウムを直接流し込むようにしてもよい。
In the above embodiment, carbon C is applied only to the tip side of the mold 14.
However, if the carbon C is placed over the entire inner peripheral surface of the mold 14 and the carbon C covers the aluminum 15 and 16, the wear resistance of the vane 11 will be improved over the entire surface. Further, in the above embodiment, solid aluminum 15, 16 was placed in the mold 14, but this step may be omitted and molten aluminum may be poured directly.

この場合、型14内を仕切板により先端側と基部側とに
仕切り、先端側には炭素Cを混入したアルミニウムを流
し込み、基部側にはアルミニウムだけを流しこみ、その
後、上記仕切板を取り外すことにより、上記炭素Cを基
部側へ拡散奄せるようにしてもよい。更に、耐摩耗性物
質として鉄を用いてもJい。
In this case, the inside of the mold 14 is divided into a tip side and a base side by a partition plate, aluminum mixed with carbon C is poured into the tip side, only aluminum is poured into the base side, and then the partition plate is removed. In this way, the carbon C may be diffused toward the base side. Furthermore, it is also possible to use iron as a wear-resistant material.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係るベーンは、高純度の耐
摩耗性物質で形成された先端部と、基部側へ向けて上記
耐摩耗性物質の混入割合が連続的に低減する母材部とか
ら構成したので、耐摩耗性が連続的に変化するため、耐
摩耗性の急変点がなく、従って、応力の集中点がない。
As explained above, the vane according to the present invention has a tip portion formed of a high-purity wear-resistant substance, and a base material portion in which the proportion of the wear-resistant substance mixed in is continuously reduced toward the base side. Since the wear resistance changes continuously, there is no sudden change point in the wear resistance, and therefore there is no stress concentration point.

このため、ベーンは耐摩耗性が向上するだけでなく、損
傷も防止さる。
This not only improves the vane's wear resistance but also prevents it from being damaged.

また、他の本発明によれば、ベーン成形用型の先端側に
、熔融状態にある高純度の耐摩耗性物質を位置させ、か
つ上記型の基部側に熔融状態にある母材を位置させる工
程と、冷却時間を制御することにより上記耐摩耗性物質
が上記母材内へ拡散する拡散分布状況を制御する工程と
から構成したので、上記冷却時間を制御することにより
上記耐摩耗性物質の拡散分布状況が好ましいベーンを得
ることができる。
According to another aspect of the present invention, a high-purity wear-resistant substance in a molten state is placed on the tip side of the vane mold, and a base material in a molten state is placed on the base side of the mold. and a step of controlling the diffusion distribution of the wear-resistant substance into the base material by controlling the cooling time. A vane with a favorable diffusion distribution can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すベーンの断面図、第2図
は耐摩耗性物質の拡散状況を示す図表、第3図はベーン
の成形方法を示す工程図、第4図は従来技術によるコン
プレッサ用ロータを示す構成図、第5図は第4図におけ
るベーンの外形を示す側面図である。 1・・・ロー1.3・・・ベーンi、11・・・ベーン
、C・・・炭素(耐摩耗性物質ン。 代理人 弁理士  宮  園  純  −第4図 第5図
Fig. 1 is a cross-sectional view of a vane showing an embodiment of the present invention, Fig. 2 is a chart showing the diffusion status of wear-resistant substances, Fig. 3 is a process diagram showing a vane molding method, and Fig. 4 is a conventional technique. FIG. 5 is a side view showing the outer shape of the vane in FIG. 4. FIG. 1...Ro 1.3...Vane i, 11...Vane, C...Carbon (wear-resistant material) Agent Patent attorney Jun Miyazono - Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)ロータに設けられたベーン溝に基部側が出没自在
に挿入され、かつ先端部が冷媒室内壁面に摺接するベー
ンであって、高純度の耐摩耗性物質で形成された先端部
と、基部側へ向けて上記耐摩耗性物質の混入割合が連続
的に低減する母材部とから構成したことを特徴とするベ
ーン。
(1) A vane whose base side is inserted into a vane groove provided in the rotor so as to be freely protrusive and retractable, and whose tip portion slides against the wall surface of the refrigerant chamber, and has a tip portion made of a high-purity wear-resistant material, and a base portion. 1. A vane comprising a base material portion in which the proportion of the wear-resistant substance mixed in is continuously reduced toward the side.
(2)ベーン成形用型の先端側に、熔融状態にある高純
度の耐摩耗性物質を位置させ、かつ上記型の基部側に熔
融状態にある母材を位置させる工程と、冷却時間を制御
することにより上記耐摩耗性物質が上記母材内へ拡散す
る拡散分布状況を制御する工程とから構成してなるベー
ン製造方法。
(2) The process of positioning a molten high-purity wear-resistant material on the tip side of the vane mold, and positioning the molten base material on the base side of the mold, and controlling the cooling time. A vane manufacturing method comprising the step of controlling a diffusion distribution situation in which the wear-resistant substance diffuses into the base material.
JP16524385A 1985-07-26 1985-07-26 Vane and manufacture thereof Pending JPS6226391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16524385A JPS6226391A (en) 1985-07-26 1985-07-26 Vane and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16524385A JPS6226391A (en) 1985-07-26 1985-07-26 Vane and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6226391A true JPS6226391A (en) 1987-02-04

Family

ID=15808591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16524385A Pending JPS6226391A (en) 1985-07-26 1985-07-26 Vane and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6226391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032720A (en) * 1997-01-14 2000-03-07 Tecumseh Products Company Process for making a vane for a rotary compressor
US6079962A (en) * 1997-03-25 2000-06-27 Copeland Corporation Composite aluminum alloy scroll machine components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032720A (en) * 1997-01-14 2000-03-07 Tecumseh Products Company Process for making a vane for a rotary compressor
US6053716A (en) * 1997-01-14 2000-04-25 Tecumseh Products Company Vane for a rotary compressor
US6079962A (en) * 1997-03-25 2000-06-27 Copeland Corporation Composite aluminum alloy scroll machine components
US6401796B1 (en) 1997-03-25 2002-06-11 Copeland Corporation Composite aluminum alloy scroll machine components

Similar Documents

Publication Publication Date Title
US6222298B1 (en) Carbon commutator and method for producing the same
CN100591442C (en) Iron species preform
KR930005719A (en) OLDHAM RING OF SCROLL TYPE COMPRESSOR AND MANUFACTURING METHOD THEREOF
US7165955B2 (en) Trochoid type oil pump
JPH07189803A (en) Composite metallic piston and constituting method of composite inserting body and piston
JPS6226391A (en) Vane and manufacture thereof
JP2000170768A (en) Sliding member
EP1837525A2 (en) Scroll fluid machine
US4932570A (en) Rotary and/or slide valve for a metallurgical vessel
US4834640A (en) Extrusion-forming jig
JPH0124215B2 (en)
US6126710A (en) Method of producing a sintered slide bearing and slide bearing
JPH08296572A (en) Scroll compressor and manufacture of tip seal therefor
JPH06117432A (en) Two-way dynamic pressure fluid bearing
JPH0392590A (en) Scroll type compressor
JPH02199291A (en) Vane type rotary compressor
US4715799A (en) Composite construction of casing for rotary piston engine
US4718580A (en) Structure for forming a refractory joint of predetermined thickness between a refractory nozzle and a refractory plate
SU1266652A1 (en) Pressing piston for injection moulding machine
SU1664460A1 (en) Plate for non-stopper metal casting
RU2118929C1 (en) Screw press head
JPS61187586A (en) Rotary compressor
RU1332866C (en) Sputterer for ion-plasma sputtering of materials in vacuum
JPH0125913B2 (en)
RU2137537C1 (en) Device for building up high pressure and creating high temperature