JPS62263843A - Binder for shell mold - Google Patents

Binder for shell mold

Info

Publication number
JPS62263843A
JPS62263843A JP10623386A JP10623386A JPS62263843A JP S62263843 A JPS62263843 A JP S62263843A JP 10623386 A JP10623386 A JP 10623386A JP 10623386 A JP10623386 A JP 10623386A JP S62263843 A JPS62263843 A JP S62263843A
Authority
JP
Japan
Prior art keywords
resin
components
phenolic resin
ortho
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10623386A
Other languages
Japanese (ja)
Inventor
Masae Kuroda
黒田 正栄
Takeshi Sumi
武志 澄
Etsuji Kubo
久保 悦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10623386A priority Critical patent/JPS62263843A/en
Publication of JPS62263843A publication Critical patent/JPS62263843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To improve the characteristics of a novolack type phenolic resin formed by controlling the ortho rate of tetranuclide and higher nuclides to a specific % range and limiting the total content of dinuclide and trinuclide components. CONSTITUTION:The novolack type phenolic resin is formed by dehydrating and concentrating a phenol and formaldehyde respectively at prescribed ratios by an acidic catalyst, bivalent metallic salt catalyst, etc., heating and mixing two kinds of the resultant resins and further dehydrating and concentrating the mixed resins. The ortho rate of the tetranuclide and higher nuclide components of the phenolic resin is controlled to >=40% and <50% in this stage; at the same time, the ratio of the ortho rate of the dinuclide and trinuclide components to the tetranuclide and higher nuclide components is controlled to <1.05 and further the total content of the dinuclide and trinuclide components is controlled to >=20% and <45%. The strength and curing speed characteristics of the casting mold are both improved by using such phenolic resin as the essential component for the binder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシェルモールド用樹脂粘結剤に関するもので、
特くホットマーリング法による樹脂被覆砂の硬化速度が
速く鋳型強度に優nたシェルモールド用樹脂粘結剤に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a resin binder for shell molds,
In particular, the present invention relates to a resin binder for shell molds that has a fast curing speed for resin-coated sand by hot marling and has excellent mold strength.

(従来の技術) −ffにシェルモールド法では、フェノールとホルムア
ルデヒドを酸性触媒により反応して得られるノボラック
型フェノール樹脂を粘結剤としてヘキサミンを硬化剤と
して使用している。
(Prior Art) In the -ff shell mold method, a novolac type phenol resin obtained by reacting phenol and formaldehyde with an acidic catalyst is used as a binder, and hexamine is used as a curing agent.

最近業界では、省エネの観点から成形温度の低下や成形
ナイクルの短縮が図れるいわゆる速硬化タイプのシェル
モールド用樹脂粘結剤が賛望されている。
Recently, from the viewpoint of energy saving, so-called fast-curing type resin binders for shell molds have been praised because they can lower molding temperatures and shorten molding cycles.

鋳型の硬化速度を速−くするために、ヘキサミンとの反
応が速いハイオルソ樹脂を用いることは公知である。ハ
イオルソ樹脂は、フェノール類とホルムアルデヒド類を
触媒として酢酸亜鉛や塩化コバルト等の金属塩を用いて
高分子化させて得られる。
It is known to use a high ortho resin that reacts quickly with hexamine in order to speed up the curing speed of the mold. High-ortho resins are obtained by polymerizing phenols and formaldehyde using metal salts such as zinc acetate and cobalt chloride as catalysts.

(発明が解決しようとする問題点ン しかしながら従来の方法でを工、鋳型の硬化速度は改善
されるものの鋳型強度が太き(低下するという問題点が
あった。
(Problems to be Solved by the Invention) However, in the conventional method, although the hardening speed of the mold was improved, there was a problem that the strength of the mold was thickened (decreased).

本発明は、鋳型の硬化速度、鋳型強度共に優れるシェル
モールド用樹脂粘結剤1に提供するものである。
The present invention provides a resin binder 1 for shell molds that is excellent in both mold hardening speed and mold strength.

(問題点を解決するための手段) 本発明者らは鋳型の硬化速度が速く、鋳型強度に優nた
シェルモールド用樹脂粘結剤を得るため、鋳型の硬化メ
カニズムについて検討したところ樹脂粘結剤の硬化時の
流動特注が硬化速度や鋳型強度に大きく影響しており、
更に樹脂粘結剤であるノボラック型フェノール樹脂の分
子量やオルソ率とへキサミンとの硬化性及び流動特性に
ついて鋭意検討したところ、フェノール樹脂の2核体や
3核体成分は流動性に優れているが硬化が遅いという欠
点があり、又、フェノ−/L−樹脂の4核体以上の取分
は硬化性に4&nているが流動性が亜いという欠点があ
ることを見出した。そこでフェノール樹脂の2核体と5
核体成分の硬化性を改良するには、こnらの成分のオル
ソ率を大きくすることにより流動性も硬化性も改善され
ることを見出し本発明に至ったO すなわち本発明の要旨はノボラック型フェノール樹脂の
うち4核体以上の成分のオルソ率が40%以上50%未
満で、(2核体+6核体成分ノオルソ率)/(4核体以
上の成分のオルソ率)の比が1.05以上であり、(2
核体+5核体)取分の含有量が20%以上45%未満で
あるシェルモールド用樹脂粘結剤にある。
(Means for Solving the Problems) In order to obtain a resin binder for shell molds that has a fast mold hardening speed and excellent mold strength, the present inventors investigated the mold hardening mechanism and found that the resin caking The custom flow during curing of the agent greatly affects the curing speed and mold strength.
Furthermore, we carefully investigated the molecular weight and ortho ratio of the novolak type phenolic resin, which is a resin binder, and the curing properties and flow characteristics of hexamine, and found that the binuclear and trinuclear components of the phenolic resin have excellent fluidity. It has been found that the phenol/L-resin has the disadvantage of being slow to cure, and that the proportion of phenol/L-resin having four or more nuclear bodies has a disadvantage of having poor fluidity although the curability is 4&n. Therefore, the dinuclear body of phenolic resin and 5
In order to improve the curability of the core components, it was discovered that both fluidity and curability could be improved by increasing the ortho ratio of these components, leading to the present invention. type phenolic resin, the ortho rate of components with four or more nuclei is 40% or more and less than 50%, and the ratio of (ortho rate of dinuclear + hexanuclear components) / (ortho rate of components with four or more nuclei) is 1 .05 or more, and (2
The resin binder for shell molds has a content of 20% or more and less than 45% of nuclear bodies + 5 nuclear bodies).

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明でいうフェノール樹脂のオルソ率は0位/(0位
+P位)を示しており樹脂の赤外線吸収スペクトルを日
立製作所製270−30型を用いKBr法で測足し土中
らの方法に従い(参考文献:ノボラック樹脂の結付様式
と硬化速度の関係:高化13,93(1〕56))次式
により求めた。ただし160 Qcm−1付近に塊われ
るベンゼン核の透過率を40〜50%に調整した。
The ortho rate of the phenolic resin in the present invention is 0th position/(0th position + Pth position), and the infrared absorption spectrum of the resin was measured by the KBr method using Hitachi Model 270-30, and according to the method of Tsuchinaka et al. Reference: Relationship between binding mode and curing speed of novolak resin: Kouka 13, 93 (1] 56)) Calculated using the following formula. However, the transmittance of benzene nuclei clustered around 160 Qcm-1 was adjusted to 40 to 50%.

フェノール仙脂の2核体+3核体成分及び4核体以上の
成分は、日立製作/91製HLC−635型の分取型高
速液体クロマトグラフィー(溶媒: THF、カラム:
TSK−GEL、G2500HG:2本東洋曹達工桑株
式会社商品名)を用い、分取して得た。
The binuclear + trinuclear components and the tetranuclear and higher components of phenol sesame were analyzed using a preparative high-performance liquid chromatography model HLC-635 manufactured by Hitachi/91 (solvent: THF, column:
TSK-GEL, G2500HG: 2 bottles (trade name of Toyo Soda Koso Co., Ltd.) were used for fractionation.

又、フェノール樹脂の2核体+6核体成分の含有量は、
東洋曹達製高速液体クロマトグラフ4−HLC−802
URfJt用い(浴a: THF、カラム:TSK−G
EL、G2000H8:3本、G3000H8:1本、
東洋曹達工菓株式会社酉品名)て得られたチャートを、
切り取り重量法により求めた。その様子?第1図、第2
図に示す。第1図は本発明にか〜るノボラック型2エノ
ール樹脂の分子量の分布状態の一例を示す分析チャート
であり、第2図は比べl(′lJ1で得られた樹脂の分
析チャートである。
In addition, the content of binuclear + hexanuclear components of phenol resin is:
Toyo Soda High Performance Liquid Chromatograph 4-HLC-802
Using URfJt (bath a: THF, column: TSK-G
EL, G2000H8: 3 pieces, G3000H8: 1 piece,
The chart obtained from Toyo Soda Koka Co., Ltd.
It was determined by the cut weight method. What's that like? Figures 1 and 2
As shown in the figure. FIG. 1 is an analysis chart showing an example of the molecular weight distribution state of the novolak type 2-enol resin according to the present invention, and FIG. 2 is an analysis chart of the resin obtained in Comparison 1('lJ1).

図中の■、■、■および■はそれぞれフェノールモノマ
ー、2核体、5核体及び4核体以上の高分子量成分の領
域を表わす。分析チャート上の各変位点間で垂直線を下
ろして、各垂直層間をその属する各多核体別の領域と見
なした。
■, ■, ■, and ■ in the figure represent regions of high molecular weight components of phenol monomer, dinuclear, pentanuclear, and tetranuclear or more, respectively. A vertical line was drawn between each displacement point on the analysis chart, and each vertical layer was regarded as a region for each polynuclear body to which it belonged.

すなわちフェノールモノマービークの中心点から0点お
よび0点までの距@a、bf測定し、フェノールモノマ
ーからの距離a、  bの所で垂直線を引き各々2核体
、■3核体■及び4核体以上■の高分子量の領域に分割
することにした。
That is, measure the distances @a and bf from the center point of the phenol monomer beak to the 0 point and 0 point, and draw vertical lines at distances a and b from the phenol monomer to identify dinuclear bodies, ■trinuclear bodies■, and 4 nuclear bodies, respectively. We decided to divide it into regions with high molecular weights larger than the nuclear body.

本発明において使用さnるフェノール類としてはフェノ
ール、クレゾール、キシレノール、ビスフェノール等カ
用いられる。ホルムアルデヒドとしては、パラホルム、
ホルマリンなどが用いられる。
The phenols used in the present invention include phenol, cresol, xylenol, and bisphenol. Formaldehyde includes paraform,
Formalin and the like are used.

本発明のノボラック型フェノール樹脂の製造方法につい
ては、特に限定しないが以下の方法が好ましい。
The method for producing the novolac type phenolic resin of the present invention is not particularly limited, but the following method is preferred.

フェノール1モルに対してホルムアルデヒド0.6〜α
9モルと塩酸等の酸性触媒を添加し還流温度で4時間反
応させた後常法により脱水濃縮を行ない、軟化点80℃
で終点とし、オルソ率は42%、2核体及び3核体成分
の含有iは15%である樹脂(4)を得る。
Formaldehyde 0.6 to α per mole of phenol
After adding 9 mol and an acidic catalyst such as hydrochloric acid and reacting at reflux temperature for 4 hours, dehydration and concentration were performed by a conventional method to obtain a softening point of 80°C.
As the end point, a resin (4) is obtained in which the ortho rate is 42% and the content i of dinuclear and trinuclear components is 15%.

別のフラスコでフェノール1モルに対し℃ホルムアルデ
ヒドcL3〜0.6モルと酢酸コバルト等の2価金属塩
触媒を添加し、還流温度て4時間反応させた後常法によ
り脱水濃縮を行ない、オルソ率70%、2核体+5核体
成分の含有量は40%である樹脂tBJを得る。
In another flask, 3 to 0.6 moles of formaldehyde (cL) and a divalent metal salt catalyst such as cobalt acetate were added to 1 mole of phenol, and the mixture was reacted at reflux temperature for 4 hours, followed by dehydration and concentration using a conventional method. Resin tBJ is obtained with a content of 70% and 40% of dinuclear + pentanuclear components.

このようにして得らnた樹脂tA)、 tB)を100
部ずつフラスコに投入し、加熱混合し常法により脱水濃
縮を行ない軟化点80℃になると終点とした。
The resins tA), tB) obtained in this way were added to 100
The mixture was poured in portions into a flask, heated and mixed, and dehydrated and concentrated using a conventional method. When the softening point reached 80° C., the end point was determined.

フェノール樹脂のうち、4核体以上の成分のオルソ″4
は40%以上50%未満が好ましいが特にオルソ率45
%〜48%が好ましい。4a%未満では硬化が遅(、又
50%以上では鋳型強度が低くなる。
Among phenolic resins, ortho''4 of components with four or more nuclear bodies
is preferably 40% or more and less than 50%, especially when the ortho rate is 45%.
% to 48% is preferred. If it is less than 4a%, curing will be slow (and if it is more than 50%, the mold strength will be low).

(2核体+3核体成分のオルソ率)/(4核体以上の成
分のオルソ率)の比は1.05以上が好ましい@ 1.05未満では速硬化の効果が少ない。1.08へ1
.20が特に好ましい。
The ratio of (ortho ratio of 2-nuclear + 3-nuclear component)/(ortho ratio of 4-nuclear or higher component) is preferably 1.05 or more. @ If it is less than 1.05, the rapid curing effect will be small. 1.08 to 1
.. 20 is particularly preferred.

2核体+3核停取分の含有量は20%以上45%未満が
好ましい。20%未満では流動性が低下し、鋳型強度が
低下する。又、45%以上になると混練砂のブロッキン
グの言回となるため好ましくない。更に好ましい範囲は
25%〜30%である。
The content of dinuclear bodies + trinuclear fraction is preferably 20% or more and less than 45%. If it is less than 20%, fluidity decreases and mold strength decreases. Moreover, if it exceeds 45%, the mixing sand will become blocked, which is not preferable. A more preferable range is 25% to 30%.

フェノール樹脂に鋳型強度を向上させるためシランカッ
プリング剤を重加するのは好ましい手段である。
A preferred method is to add a silane coupling agent to the phenol resin in order to improve mold strength.

シランカップリング剤とじてを工γ−グリシドキシプロ
ビルトリメトキシシラン、N−β(アミノエチ/L−ン
γ−アミノプルピルトリメトキシシラン、T−アミノグ
ロピルトリメトキシシラン等が用いろnる。シランカッ
プリング剤の脩加量は、フェノール樹脂1001菫邪に
対し℃Q、05〜五〇重量部が好ましい。Q、05以下
では効果が小さく!LO以上ではコストが高(なるため
好ましくない。
γ-Glycidoxypropyltrimethoxysilane, N-β(aminoethyl/L-nγ-aminopropyltrimethoxysilane, T-aminoglopyltrimethoxysilane, etc.) can be used as a silane coupling agent. The amount of the silane coupling agent to be added is preferably 05 to 50 parts by weight of phenolic resin 1001.If it is less than 05, the effect will be small! If it is more than LO, the cost will be high, so it is preferable. do not have.

又フェノール樹脂に、鋳型の硬化速度を更に速くするた
めに芳香族有機r1kを添加することも好ましい。芳香
族有機酸とし℃はナリテル酸や安香香酸等が用いられる
。芳香族有機酸の添加盪は、フェノール樹脂100重量
部に対してαa5へ4.0 ’i量部が好ましい。α0
5以下では効果が小さく、4.0以上では混練砂のブロ
ッキングの原因となるため好ましくない。
It is also preferable to add aromatic organic r1k to the phenolic resin in order to further speed up the curing speed of the mold. As an aromatic organic acid, naliteric acid, benzoic acid, etc. are used. The aromatic organic acid is preferably added in an amount of 4.0 parts by weight to αa5 based on 100 parts by weight of the phenolic resin. α0
If it is less than 5, the effect will be small, and if it is more than 4.0, it will cause blocking of the kneaded sand, which is not preferable.

得られたフェノール樹脂に通常シェルモールド用樹脂粘
結剤に用いろ八℃いる滑剤′t−酢加してもよい。滑剤
としてはエチレンビスステアリン酸アマイド、オキシス
テアリン酸アマイド、ステアリン酸アマイド、メゾα−
ルアマイト、メチレンビスステアリン酸アマイド、ステ
アリン酸カルシウム、ポリエチレンワックス、パラフィ
ンワックス、モンタンワックス、カルナバワックス等が
用いらnる。滑剤の務加童については特に限定しないが
樹脂粘結剤100重量部に対して、α5へ5.0重量部
が好ましい。
The obtained phenolic resin may be added with t-acetic acid, a lubricant usually used as a resin binder for shell molds. As lubricants, ethylene bisstearamide, oxystearamide, stearamide, meso α-
Ruamite, methylene bisstearamide, calcium stearate, polyethylene wax, paraffin wax, montan wax, carnauba wax, etc. are used. The amount of lubricant used is not particularly limited, but it is preferably 5.0 parts by weight for α5 per 100 parts by weight of the resin binder.

(作用) 本発明に係るフェノール樹脂は樹脂成分として下記に示
すような2核体や6核体からなるオルソ結合を有する成
分を多く含有しており、ヘキサミン等の硬化剤との反応
性が向上するため硬化性の向上がはかられる。またこ九
ら2核体や3核体裁分は分子量が小さいためオルソ率が
大きくても流動性が損なわれないものと考えられる。
(Function) The phenol resin according to the present invention contains many components having ortho bonds consisting of binuclear bodies and hexanuclear bodies as shown below as resin components, and has improved reactivity with curing agents such as hexamine. Therefore, the curability is improved. Moreover, since the molecular weight of these dinuclear and trinuclear fractions is small, it is thought that the fluidity will not be impaired even if the ortho ratio is large.

以下本発明を実施例により更に説明する。The present invention will be further explained below with reference to Examples.

(実施例) 実施例1 攪拌機、還流コンデンサ、温度計を備えた四ツロフラス
コにフェノール1880g、80%パラホルム300g
、37%ホルマリン160gおよび酢酸コバルト4gを
秤量し、攪拌しなから油浴上で加熱し、還流温度で4時
間反応させ、その後減圧匿700關Hgと濃縮を行ない
内温が150℃になったら終点としフェノール樹脂が)
を得た。樹脂(4)はオルソ率が69%であり(2核体
+3核体)成分の含有量は37%であった。
(Example) Example 1 1880 g of phenol and 300 g of 80% paraform were placed in a four-way flask equipped with a stirrer, a reflux condenser, and a thermometer.
, 160 g of 37% formalin and 4 g of cobalt acetate were weighed, heated on an oil bath without stirring, allowed to react at reflux temperature for 4 hours, and then concentrated under reduced pressure of 700 °C until the internal temperature reached 150 °C. phenolic resin as the end point)
I got it. Resin (4) had an ortho rate of 69% and a content of components (binary bodies + trinuclear bodies) of 37%.

次に攪拌機、還流コンデンサ、温度計を備えた四ツロフ
ラスコにフェノール1880g、80%パラホルム45
0g、57%ホルマリン320gおよびIN塩酸4gを
秤量し、攪拌しなから油浴上で加熱し還流温度で4時間
反応させた後、常法により脱水濃縮を行ない軟化点80
°Cで終点とし、樹脂(B)を得た。樹脂の)は、オル
ソ率が41%であり、(2核体+3核体ン成分の含有量
は15%でありた。
Next, in a four-way flask equipped with a stirrer, reflux condenser, and thermometer, 1880 g of phenol and 45 g of 80% paraform were added.
0g, 57% formalin and 4g of IN hydrochloric acid were weighed, heated on an oil bath without stirring and reacted at reflux temperature for 4 hours, and then dehydrated and concentrated using a conventional method until the softening point was 80.
The end point was 0.degree. C. to obtain resin (B). The ortho rate of the resin was 41%, and the content of dinuclear + trinuclear components was 15%.

次に攪拌機、還流コンデンサ、温度計を備えた四ツロフ
ラスコに上記樹脂(AJ500gと上記樹脂(B)40
0gt−秤量し、攪拌しなから油浴上で加熱し内温か1
00°Cになったら減圧III#lを行ない軟化点が8
0℃を終点とした。その後同温140℃でKBM−60
3(N−β(アミノエテル)γ−アミノプロピルトリメ
トキシシラン、信越化学工業株式会社商品名)を9g篩
加し、30分攪拌した波器出しを行ない樹脂(C)を得
た。
Next, the above resin (500 g of AJ and 40 g of the above resin (B)
0gt - Weigh and heat on an oil bath without stirring to bring the internal temperature to 1.
When the temperature reaches 00°C, perform depressurization III #l until the softening point reaches 8.
The end point was 0°C. After that, KBM-60 was heated at the same temperature of 140℃.
9 g of 3 (N-β (amino ether) γ-aminopropyltrimethoxysilane, trade name of Shin-Etsu Chemical Co., Ltd.) was added through a sieve, stirred for 30 minutes, and subjected to corrugation to obtain a resin (C).

更に150℃に加熱したフラタリー珪砂8−と上記樹脂
(Q140gt−スピードミキナで60秒混練した後、
20%へキナミン水浴液100g伶加し、砂が崩壊する
まで混練し、更に8gのステアリン酸カルシウムを添加
し20秒間混練して排出し、樹脂被覆砂を得た。レジン
特性及び砂型特性を表−IK示す。
Furthermore, after kneading flattary silica sand 8- heated to 150°C and the above resin (Q140gt-speed mixer for 60 seconds,
100 g of quinamine water bath solution was added to the 20% solution and kneaded until the sand disintegrated, and further 8 g of calcium stearate was added, kneaded for 20 seconds and discharged to obtain resin-coated sand. Table IK shows resin properties and sand mold properties.

実施例2 攪拌機、還流コンデンサ、温度計を備えた四ッロフラス
コに樹脂(5)300gと樹脂(B) 600gを秤量
し、攪拌しなから油浴上で加熱し、同温が100℃にな
ると減圧濃縮を行ない軟化点が83℃を終点とした。更
にエチレンビスステアリン酸アマイド10gを添加し1
40℃で60分攪拌したIKBM−403(r−グ17
7)”牟ジプロピルトリメトキシシラン、信越化学工業
株式会社商品名)5gt−m加し、140℃で30分攪
拌した波器出しを行ない樹脂(DJを得た。
Example 2 300 g of resin (5) and 600 g of resin (B) were weighed into a four-ring flask equipped with a stirrer, reflux condenser, and thermometer, heated on an oil bath while stirring, and when the temperature reached 100°C, the pressure was reduced. Concentration was carried out, and the end point was a softening point of 83°C. Furthermore, 10 g of ethylene bisstearamide was added.
IKBM-403 (r-g17) stirred at 40°C for 60 minutes.
7) 5 gt-m of "dipropyltrimethoxysilane (trade name, Shin-Etsu Chemical Co., Ltd.) was added, stirred at 140° C. for 30 minutes, and subjected to corrugation to obtain a resin (DJ).

上記樹脂tD+を用い、5Jj!、71i1例1と同様
に樹脂被覆砂を得た。レジン特性及び砂型特性を表−1
に示す。
Using the above resin tD+, 5Jj! , 71i1 Resin-coated sand was obtained in the same manner as in Example 1. Table 1 shows resin properties and sand mold properties.
Shown below.

実施例3 実施例2で得られた樹脂(D1300gに丈すテル酸2
gを加熱1甘し樹脂IEIを得た。
Example 3 Resin obtained in Example 2 (Tell acid 2 with a D of 1300 g)
Resin IEI was obtained by heating and sweetening 1 g.

上記樹脂tElを用い、実施例1と同様に樹11ti被
覆砂を得た。レジン%注及び砂型特性を表−1に示す。
Tree 11ti coated sand was obtained in the same manner as in Example 1 using the resin tEl. Table 1 shows the resin percentage and sand mold properties.

比較例1 攪拌機、還流コンデンサ、温度計を備えた四ツロフラス
コにフェノール940g、80%パラホルム225g、
37%ホルマリン80gおよびIN塩酸を秤量し攪拌し
なから油浴上″′C加熱し、還流温度で4時間反応させ
γこ漬減圧」縮を行ない軟化点が80℃になう1ころ終
点とした。
Comparative Example 1 940 g of phenol, 225 g of 80% paraform,
80 g of 37% formalin and IN hydrochloric acid were weighed out, stirred, and heated on an oil bath for 4 hours at reflux temperature. did.

更に、エチレンビスステアリン酸アマイド10gを自沈
し140℃で60分攪拌した後、KBM−403を5g
ff5加し30分攪拌した波器出しを行ないt4脂(F
l t−得た。上記樹脂を用い実施例1と同様に樹脂被
覆砂を得た。レジン特注及び砂型特性を表−1に示した
Furthermore, 10 g of ethylene bisstearamide was scuttled and stirred at 140°C for 60 minutes, and then 5 g of KBM-403 was added.
After adding ff5 and stirring for 30 minutes, add t4 fat (F
I got it. Resin-coated sand was obtained in the same manner as in Example 1 using the above resin. Table 1 shows the resin customization and sand mold characteristics.

比較例2 比較例1のIN塩#!2gのかわりに塩化亜鉛2gを用
いた以外は比較例1と同様に樹脂(H)を得た。
Comparative Example 2 IN salt of Comparative Example 1 #! Resin (H) was obtained in the same manner as in Comparative Example 1 except that 2 g of zinc chloride was used instead of 2 g.

上記樹脂を用い実施例1と同様に樹脂被懐砂を得た。レ
ジン特性砂型特注全表−1に示す。
Resin encrusted sand was obtained in the same manner as in Example 1 using the above resin. Resin characteristics Sand mold custom order complete table-1.

比較例3 実施例1の樹脂囚500gと樹脂(BJ400gのかわ
りに樹脂lA)100gと樹脂(Bl 700 gを用
いた以外は実施例1の樹脂tQ同様に合放し樹脂t1)
を得た。上記樹脂を用い実施例1と同様に樹脂被覆砂を 得た。
Comparative Example 3 500 g of resin in Example 1, 100 g of resin (resin 1A instead of 400 g of BJ), and resin t1 in the same manner as resin tQ of Example 1 except that 700 g of Bl was used.
I got it. Resin-coated sand was obtained in the same manner as in Example 1 using the above resin.

比較例4 攪拌機、還流コンデンサ、温度計を備えた四ッロフラス
コにフェノール1880g、80%パラホルム200g
および酢酸コバ、ト4gを秤量し実施例1の樹脂穴と同
様に合成し樹脂(J)を得た。オルソ率は69%であり
、(2核体十3核体)取分の含有量は75%であった。
Comparative Example 4 1880 g of phenol and 200 g of 80% paraform were placed in a four-ring flask equipped with a stirrer, reflux condenser, and thermometer.
and 4 g of acetic acid were weighed and synthesized in the same manner as in Example 1 to obtain a resin (J). The ortho rate was 69%, and the content of fractions (binary and trinuclear) was 75%.

樹脂(J)500gと樹脂IB)400gを用い実施例
1の樹脂(Clと同様に合成し樹脂(IQを得た〇上記
樹脂を用い実施例1と同様に樹脂被棲砂を得た。レジン
特性及び砂型特注を表−1に示す。
Using 500 g of resin (J) and 400 g of resin IB), the resin (IQ) was synthesized in the same manner as the resin (Cl) of Example 1. Using the above resin, resin-coated sand was obtained in the same manner as in Example 1.Resin Table 1 shows the characteristics and custom made sand mold.

以下余白 融着点:JACTシェル作東基準による0強 度: J
ACTシェル作業基準による。
Below margin fusion point: 0 according to JACT Shell Sakuto standards Strength: J
Based on ACT shell work standards.

ペンド:260℃にセットした平面金型70X140m
n+上に[==コ型金型内寸50×120ffi11高
さ5市を置き樹脂被覆砂を光填したものを炉温350℃
内に40秒放置し、その後取り出し10秒後に支点間距
離10Qma+の治具上に置き、500g荷重かけたと
きのたわみ量を測定した。たわみ量の小さい程硬化性が
速いことを示している。
Pend: Flat mold 70x140m set at 260℃
Place a U-shaped mold with inner dimensions 50 x 120 ffi 11 height 5 on top of n+, fill it with resin-coated sand, and heat it to a furnace temperature of 350°C.
It was left for 40 seconds, then taken out and placed on a jig with a distance between fulcrums of 10 Qma+ after 10 seconds, and the amount of deflection was measured when a load of 500 g was applied. It is shown that the smaller the amount of deflection, the faster the curing property.

(発明の効果) 上記説明から明らかなごとく、本発明によnば樹脂柚覆
砂の硬化速度が速く鋳型強度に優nたシェルモールド用
樹脂粘結剤t−提供することが可能になった。
(Effects of the Invention) As is clear from the above description, the present invention makes it possible to provide a resin binder for shell molds that has a fast curing speed for resin-covered sand and excellent mold strength. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るノボラック型フェノール樹脂の分
子量の分布を示す分析チャート、第2図は比較例1で得
たノボラック型フェノール樹脂の分析チャートである。
FIG. 1 is an analysis chart showing the molecular weight distribution of the novolak phenol resin according to the present invention, and FIG. 2 is an analysis chart of the novolak phenol resin obtained in Comparative Example 1.

Claims (1)

【特許請求の範囲】 1、(a)フェノールの4核体以上の成分のオルソ率が
40%以上50%未満で、 (b)(2核体+3核体成分のオルソ率)/(4核体以
上の成分のオルソ率)の比が 1.05以上であり、 (c)かつ(2核体+3核体成分)の含有量が20重量
%以上45重量%未満である ノボラック型フェノール樹脂を生成分としてなるシェル
モールド用粘結剤。 2、ノボラック型フェノール樹脂がシランカプリング剤
および/または芳香族有機酸を含有するものである特許
請求の範囲第1項記載のシェルモールド用粘結剤。
[Scope of Claims] 1. (a) The ortho rate of the tetranuclear or higher component of phenol is 40% or more and less than 50%, and (b) (ortho rate of the dinuclear + trinuclear component)/(tetranuclear (c) The novolac type phenolic resin has a ratio of 1.05 or more (ortho ratio of components larger than 3-nuclear body), and the content of (2-nuclear body + 3-nuclear body component) is 20% by weight or more and less than 45% by weight. A binder for shell molds that is produced as a component. 2. The binder for shell molds according to claim 1, wherein the novolac type phenolic resin contains a silane coupling agent and/or an aromatic organic acid.
JP10623386A 1986-05-09 1986-05-09 Binder for shell mold Pending JPS62263843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10623386A JPS62263843A (en) 1986-05-09 1986-05-09 Binder for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10623386A JPS62263843A (en) 1986-05-09 1986-05-09 Binder for shell mold

Publications (1)

Publication Number Publication Date
JPS62263843A true JPS62263843A (en) 1987-11-16

Family

ID=14428402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10623386A Pending JPS62263843A (en) 1986-05-09 1986-05-09 Binder for shell mold

Country Status (1)

Country Link
JP (1) JPS62263843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785709A (en) * 2015-04-30 2015-07-22 成都桐林铸造实业有限公司 Precoated sand for casting and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785709A (en) * 2015-04-30 2015-07-22 成都桐林铸造实业有限公司 Precoated sand for casting and preparation method thereof

Similar Documents

Publication Publication Date Title
CN106046283B (en) High ortho position benzylic ether phenolic resin, preparation method and applications are in the method for cold-box binder
CA2012052C (en) Phenolic resin compositions
JP6685685B2 (en) Phenolic resin composition for shell mold, resin coated sand for shell mold, and mold for shell mold
US4028271A (en) Binding resin for foundry sand and catalyst therefor
US3755229A (en) Foundry core compositions
AU619390B2 (en) Alkaline benzylic ether phenolic resin binders
JPS62263843A (en) Binder for shell mold
CA1050831A (en) Shell sand coated with novolak resin and epoxy and/or phenoxy resin
CN104619437A (en) Method for obtaining a foundry body from a granular mixture including a modified polycondensed resin and a formaldehyde sensor
JPS62127140A (en) Resin coated sand for shell mold
JPS60133017A (en) Phenolic resin for shell molding and its production
JPS6368241A (en) Production of resin-coated sand for shell mold
JPS63101038A (en) Production of resin coated sand grain for shell mold
JP7499815B2 (en) Organic binder for molds, molding sand composition obtained using the same, and mold
US3637577A (en) Curing of foundry molds and cores by induction heating
US20120014833A1 (en) Free radical initiator compositions containing t-butyl hydroperoxide and their use
JPS62230815A (en) Quick-curing novolak type phenolic resin and production thereof
JPS60184446A (en) Resin coated sand composition for shell mold
JPH0270352A (en) Phenol resin for mold
JPS6023410A (en) Preparation of novolak
JP4221632B2 (en) Binder for shell mold
JPS58189217A (en) Novolak phenolic resin for use in resin-coated sand
JPH04175322A (en) Phenolic resin composition containing self-curing phenolic resin as curing agent
JPS59178150A (en) Coated sand for shell mold
JPS6330922B2 (en)