JPS62263502A - Process control device - Google Patents

Process control device

Info

Publication number
JPS62263502A
JPS62263502A JP10609386A JP10609386A JPS62263502A JP S62263502 A JPS62263502 A JP S62263502A JP 10609386 A JP10609386 A JP 10609386A JP 10609386 A JP10609386 A JP 10609386A JP S62263502 A JPS62263502 A JP S62263502A
Authority
JP
Japan
Prior art keywords
output
matrix
measurement data
measuring data
reliability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10609386A
Other languages
Japanese (ja)
Inventor
Takashi Morimoto
隆 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP10609386A priority Critical patent/JPS62263502A/en
Publication of JPS62263502A publication Critical patent/JPS62263502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately presume a coifficient included in a process model by outputting the presuming arithmetic value of the new coefficient corresponding to a measuring data column by a presuming arithmetic part only when the determinant of a detecting matrix is larger than the prescribed value. CONSTITUTION:A detecting part 15 inputs measuring data colums [y(t+N)-y (t)-y(t-N)] and [u0(t+N-M)-u0(t)-u0(t-M)] obtained out of the input output of a process from a storage part 11, calculates a square root matrix D by using a data reliability detecting matrix M formed from this and executes the reliability detection of measuring data. When the reliability of the measuring data is judged to be satisfactory, the measuring data column (phic, etc.,) is used and an unknown parameter theta is presumed and calculated in a presuming arithme tic part 112. When the measuring data column is decided to the defective data, another new measuring data are fetched and continuously, testing is executed. during this, the output of the unknown parameter theta of the presuming arithmetic part 12 holds the previous determining value.

Description

【発明の詳細な説明】 3、発明の51j IIIな説明 (産業上の利用分野) 本発明は、プロセスモデルに含まれる係数のIII定機
能を備えたプロセス制御0装置の制御特性の改善に関す
るものである。
Detailed Description of the Invention 3. 51j III Description of the Invention (Industrial Application Field) The present invention relates to improvement of control characteristics of a process control device equipped with a III constant function of coefficients included in a process model. It is.

(従来技術) 以下図面を用いて本発明の実施例を詳qに説明する。ま
ず初めに従来のプロセス制12II装置の駄本原理をM
1明する。プロセスの数学モデルを次式でただしu (
t)は時間tにお(ブる7082人ツノ、y(1)は同
プロセス出力、ai 、 bJは重み系数である。(1
)式でq−1は遅延パラメータで、(1)式を展開して
表すと次式のようになる。
(Prior Art) Examples of the present invention will be described in detail below with reference to the drawings. First of all, we will explain the basic principles of the conventional process system 12II equipment.
1. The mathematical model of the process is expressed by the following equation, where u (
t) is the 7082 person horn at time t, y(1) is the output of the same process, ai and bJ are the weight system.(1
) In the equation, q-1 is a delay parameter, and when the equation (1) is expanded and expressed, the following equation is obtained.

Ylj)=  at y(t−1>  az y(t−
2)−−aNV(t−N)+bou (t)+bIu(
t  1 ) +・−+bMtJ (t  M)  −
(2)すなわち現在のプロセス出力y(t>は過去のプ
ロセス出力列V (t−1) 、 V (t−2) 、
・・・。
Ylj)=at y(t-1> az y(t-
2)--aNV(t-N)+bou(t)+bIu(
t 1 ) +・−+bMtJ (t M) −
(2) That is, the current process output y(t> is the past process output sequence V (t-1), V (t-2),
....

y (t−N)と既知の入力列u(t)、u(t−1)
、・・・、u(t−M)等の重み付線形結合で表される
y (t-N) and known input sequences u(t), u(t-1)
, . . . , u(tM).

上記のような数学モデルで表されるプロセスの出力が希
望出力y”(t)となるようなu <t)は次のように
して決定される。すなわちプロセス出力y(t)の希望
出力y”(t)からの偏差e (t)−y(t)−y”
  (t)   ・・・(3)の2乗 e2(t)=(y(t)−y” (te)2・・・(4
) を最小にするようなu (j)=uo  (t)が最小
2乗法を用いて次式で求められる。
u < t) such that the output of the process expressed by the above mathematical model is the desired output y"(t) is determined as follows. In other words, the desired output y of the process output y(t) "Deviation from (t) e (t) - y (t) - y"
(t)...(3) squared e2(t)=(y(t)-y" (te)2...(4
) is obtained using the least squares method using the following equation.

・・・ (5) 係数aI + bJ + bOが既知であれば、(5)
式のuo(j>を用いて所期の目的を達成できるが、実
際には係数aL * bJ * boは未知であること
が多く、これを推定する必要がある。
... (5) If the coefficient aI + bJ + bO is known, (5)
Although the intended purpose can be achieved using uo(j> in the equation, in reality the coefficient aL*bJ*bo is often unknown and needs to be estimated.

−未知の係数ai 、t)j + b6は以下のように
して推定される。(2)式より各時刻1.1−←1゜・
・・、t+Nにおいて次式が成立する。
- the unknown coefficients ai, t)j + b6 are estimated as follows. From equation (2), each time 1.1-←1゜・
..., the following equation holds true at t+N.

V(t)=−at y(t−1)  a2y(t  2
>−−aNy (t−N)+bo u (t)+b+ 
u(t −1> 十b2 u (t−2) 十−+bM
u (t−M)              ・・・(
6o)y(t+1>−al  y(t)    a 2
 y  (t−1)−−ar<V(t−N+1)+bo
 u (t+1)+b、u (t)+b2u (t−1
)+・+bHu(t−M+1)          ・
・・(61)V  (t+N)  −−at   V 
 (t−1+N)  −82V(t   2+N>−a
Ny(t)+bou(t+N)+b、  LJ (t−
1+N)+b2 亀J(t−2+N)   +−−−−
)bM   u   (t−M+N)     ・  
 (6N  >上記(6o)〜(6N)式を行列形式で
表すと、次式のようになる。
V(t)=-at y(t-1) a2y(t 2
>--aNy (t-N)+bou u (t)+b+
u(t -1> 10b2 u (t-2) 10-+bM
u (t-M) ...(
6o) y(t+1>-al y(t) a 2
y (t-1)−-ar<V(t-N+1)+bo
u (t+1)+b, u (t)+b2u (t-1
)+・+bHu(t−M+1)・
...(61)V (t+N) --at V
(t-1+N) -82V(t2+N>-a
Ny(t)+bou(t+N)+b, LJ(t-
1+N)+b2 Turtle J(t-2+N) +------
)bM u (t-M+N) ・
(6N>If the above equations (6o) to (6N) are expressed in matrix form, the following equations are obtained.

Y−Φθ             ・・・(7)ただ
し Φ− ・・・ (9) である。ここで評衛関数 Je = (Y−0合)(Y−0合)・・・・(11)
(ただしATは行列への転置行列を示ず)を最小にする
ようなθの推定植着は、 △ e=  l)”  @)−1(1)T Y      
   −(12)(ただしΔ゛Iは行列Aの逆行列を承
り)で求まる。
Y-Φθ...(7) However, Φ-...(9). Here, the evaluation function Je = (Y-0 go) (Y-0 go)...(11)
(However, AT does not indicate the transposed matrix to the matrix) The estimated implantation of θ that minimizes is △ e= l)” @)−1(1)T Y
−(12) (where Δ゛I accepts the inverse matrix of matrix A).

(5)式において、係数aζ+ bJ + bOを△ 
  ハ  △  ハ (12)式で求まるeの要1a+ + bj+ bOr
置換えれば、最適操作量Oo  (j)は次式で求め1
=0における(」。(0)は適当な初期推定直置i  
(0)、脅J  (0)、合。(0)を用いて決定する
In equation (5), the coefficient aζ + bJ + bO is
C △ C Key point of e found by equation (12) 1a+ + bj+ bOr
If replaced, the optimal operation amount Oo (j) can be found using the following formula: 1
('' at = 0. (0) is an appropriate initial estimate orthogonal i
(0), Intimidation J (0), Go. Determine using (0).

第5図は上記のような制御アルゴリズムを実現する従来
のセルフチューニング・プロセスコントローラを示す構
成ブロック図である。実線はオンラ・イン情報の流れを
示し、一点鎖線はオフライン情報の流れを示している。
FIG. 5 is a block diagram showing a conventional self-tuning process controller that implements the above-mentioned control algorithm. The solid line shows the flow of online information, and the dash-dotted line shows the flow of offline information.

1はプロb 2 IQ 卯Ha、2はこのブ1コ亡ス制
御iII装置1により制御されるプロセスである。プロ
セス制御装置1において、11は前記プロセス2の入出
力の測定データを格納する記憶部、12はこの記憶部1
1の測定データ列を入力しこの測定データ列に基づいて
前記プ1」セス2の数学モデルに含まれる係数を、11
を定演口するJft定演算部、13は仕様入力にしたが
って希望出力〈希望プロセス応?5)を決定する基準モ
デル決定部、14はこの基準モデル決定部13の出力。
1 is a process controlled by the process b 2 IQ UHa, and 2 is a process controlled by this computer loss control III device 1. In the process control device 1, 11 is a storage section for storing input/output measurement data of the process 2, and 12 is this storage section 1.
The coefficients included in the mathematical model of process 2 are calculated based on the measured data string of process 1.
13 is a JFT constant operation unit that outputs a constant output, and 13 outputs the desired output according to the specification input (according to the desired process). 5); 14 is the output of this reference model determining unit 13;

前記推定演算部12の係数出力J′3J、び前記プロセ
ス2の入出力の測定データを入力して操作luを演口し
前記プロセスに出ノjする操作量演算部である。
This is a manipulated variable calculation unit which inputs the coefficient output J'3J of the estimation calculation unit 12 and the measurement data of the input and output of the process 2, performs the operation lu, and outputs it to the process.

上記のような構成のプロセス制御8置の各部の動作を以
下に説明する。ブ1コセス2の入出力の測定データuo
+Vは測定データ記憶部11にバッヂデークとして格納
され、この測定データ記憶部11の測定データ列により
推定演算部12で(12)式の演輝を行って、未知の係
数eが推定される。希望出力y” (通常はgQ定値)
は仕様入力にしたがって基準モデル決定部13で決定さ
れ、操作量演算部14において、前記希望出力y8と推
定演算部12の係数出力台とから(13)式を用いて祈
たイr操作Fik LJ oが決定され、プロセス2に
出力される。以下このナイクルが繰返される。ただし推
定演算部12の演暉は運転状態が変化したとぎのみ実行
される。
The operation of each part of the process control 8 having the above configuration will be explained below. Measurement data uo of input and output of block 1 and process 2
+V is stored in the measurement data storage section 11 as a badge data, and the estimation calculation section 12 performs the calculation of equation (12) using the measurement data string in the measurement data storage section 11 to estimate the unknown coefficient e. Desired output y” (usually gQ constant value)
is determined by the reference model determination unit 13 according to the specification input, and the operation amount calculation unit 14 calculates the operation Fik LJ using equation (13) from the desired output y8 and the coefficient output table of the estimation calculation unit 12. o is determined and output to process 2. This cycle is repeated thereafter. However, the calculation by the estimation calculation section 12 is executed only when the operating state changes.

(発明が解決しようとす゛る問題点) しかしながら、上記のようなプロセス制御8i置におい
て、ノイズ等によって測定データ列[y(し −← N
 ) 〜 y(t)  〜 V(t−N>]、   [
u(を−トN−M)〜u (t) 〜u (t−M) 
]の信頼竹が低くなると、未知パラメータθの推定誤差
0−e−θ           ・・・(14)によ
り、次式のようにuo  Ij)は正しいLJ Q”(
1)からΔuO(t)だけずれてしまう。
(Problem to be Solved by the Invention) However, in the process control 8i installation as described above, the measurement data string [y(shi -← N
) ~ y(t) ~ V(t-N>], [
u(wo-tN-M) ~u (t) ~u (t-M)
] becomes lower, the estimation error of unknown parameter θ is 0−e−θ (14), and uo Ij) becomes correct LJ Q”(
1) by ΔuO(t).

uo  (t) このΔUo(j)によって制御性は当然劣化してしまう
。第6図はこのようにプロセス制御装置の制御性が劣化
したときのプロセス応答を示すタイムチャートである。
uo (t) This ΔUo(j) naturally deteriorates controllability. FIG. 6 is a time chart showing the process response when the controllability of the process control device deteriorates in this way.

応答イは未知パラメータθの推定誤差による操作fJ’
l iQ差△()が辛うじて閉ループ系の安定範囲内に
ある場合、応答口は操作量誤差Δ(」が大きな推定誤差
のために安定範[11]外に出てしまった場合である。
The response A is the operation fJ' due to the estimation error of the unknown parameter θ
When the l iQ difference Δ( ) is barely within the stable range of the closed loop system, the response is when the manipulated variable error Δ( ) is out of the stable range [11] due to a large estimation error.

本発明は上述した問題点を解決するためになされたもの
であって、プロセスモデルに含まれる係数の推定機能を
備えたブ1コ廿ス制御1A貿にJ3いて、ルリ御特性の
改善を図ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and aims to improve the Luri control characteristics by using a bus control 1A trade equipped with a function of estimating coefficients included in a process model. The purpose is to

(問題点を解決するための手IIQ、Bよび作用)本発
明に係るプロセス制御装置はプロセスの入出力測定デー
タを格納する記m部と、この記憶部から前記測定データ
列を入力しこの測定データ列で構成される検定行列Mの
行列式IMIの値を所定の値と比較して前記測定データ
列の信頼性を¥11定する検定部と、前記記憶部から出
力されるnFt記測定データ列/)s rら前記プロセ
スの数学Iデルに含まれる係数を推定する推定濤惇部と
を備え、検定行列Mの行列式IM+が所定の値より大き
い場合にのみ、前記推定演σ部が前記測定データ列に対
応した新たな前記係数の推定演粋値を出力するように構
成したことを演算出力する。
(Measures IIQ, B and Actions for Solving Problems) The process control device according to the present invention includes a storage section for storing process input/output measurement data, and inputs the measurement data string from this storage section and performs the measurement. a verification section that compares the value of the determinant IMI of a verification matrix M composed of a data string with a predetermined value to determine the reliability of the measurement data string; and nFt measurement data output from the storage section. column/) s r et al.; and an estimation calculation part that estimates the coefficients included in the mathematical I del of the process, and only when the determinant IM+ of the test matrix M is larger than a predetermined value, the estimation calculation part It is calculated and outputted that the configuration is configured to output a new estimated distilled value of the coefficient corresponding to the measured data string.

(発明の実施例) 実施例の説明に入る前に、その基本原理についてまず説
明する。従来技術の項で説明したように、未知パラメー
タθの推定は(12)式でおこなわれる。
(Embodiments of the Invention) Before entering into the description of the embodiments, the basic principle thereof will first be explained. As explained in the prior art section, the unknown parameter θ is estimated using equation (12).

合一(Φ7Φ)−薯Φ”Y     ・・・(12)(
12)式は簡単に言えばΦ7ΦでΦTYをυjることを
意味している。したがって、もしΦTΦがハ 小さな1直の行列だとeの推定精度は大きく劣化してし
まう。このことを以下の簡単な事例でシ2明する。今既
知の入力Xにより出力yが次式で与えられるような場合
を考える。
Union (Φ7Φ) - 薯Φ"Y ... (12) (
Equation 12) simply means that ΦTY is υj by Φ7Φ. Therefore, if ΦTΦ is a small linear matrix, the estimation accuracy of e will be greatly degraded. This will be illustrated with the following simple example. Consider a case where the output y is given by the following equation based on the now known input X.

y=ax+b           ・・・(16)た
だしa、bは未知パラメータである。(16)式を(7
)式と同一の形式で表現すると、次式のようになる。
y=ax+b (16) However, a and b are unknown parameters. (16) is converted into (7
) is expressed in the same format as the following equation.

・・・(17) ただしx(1)、x(2)は時刻1.2における入力デ
ータ、V(1)、y(2)は同出力データである。この
とき(Φ7の)−1は次式となる。
(17) However, x(1) and x(2) are input data at time 1.2, and V(1) and y(2) are the same output data. At this time, (Φ7) -1 becomes the following equation.

(Φ1Φ)’ = (x (1) −x (2) )−
2−・・・(18) ゆえに(18)(12)式より、パラメータθ−(a、
b)”の推定′FrJ度は分/n(7)(x(1)−×
(2))2が1以下のごく小さな値のとき、13号がノ
イズに埋もれてしまい、SN比が悪くなって劣化するこ
とがわかる。すなわちX(1)−X(2)が大きくなる
ように、入力データx(1〉とx(2)が離れているほ
ど推定精度は向上する。
(Φ1Φ)' = (x (1) −x (2) )−
2-...(18) Therefore, from equations (18) and (12), the parameters θ-(a,
b) Estimation of 'FrJ degree is min/n(7)(x(1)-×
(2)) It can be seen that when 2 is a very small value of 1 or less, No. 13 is buried in noise, resulting in poor S/N ratio and deterioration. That is, the estimation accuracy improves as the input data x(1> and x(2) are farther apart from each other, such that X(1)-X(2) becomes larger).

上記の考えを一般に拡張すると、測定データy(tt>
、 y(ij )、 LJ (if )、 LJ (j
j )等のバラツキが大きいとき、未知パラメータeの
推定精度は向上するということになる。第3図は出力応
答波形から具体的にどの時間領域のデータを用いたらよ
いかを示す説明図である。t1≦t≦tsではV(tt
 >、V(tt )、V(is)のバラツキは非常によ
い。しかしt>t3ではy(1)の1直はほとんど変化
しない。したがって未知パラメータθを精度良く推定す
るには、t1≦t≦15の測定データ列[V、LJ]を
用いる必要がある。
Extending the above idea in general, the measurement data y(tt>
, y(ij), LJ(if), LJ(j
j ) etc. is large, the estimation accuracy of the unknown parameter e improves. FIG. 3 is an explanatory diagram showing specifically which time domain data should be used from the output response waveform. For t1≦t≦ts, V(tt
>, V(tt), and V(is) have very good variations. However, when t>t3, the 1st shift of y(1) hardly changes. Therefore, in order to accurately estimate the unknown parameter θ, it is necessary to use the measurement data sequence [V, LJ] where t1≦t≦15.

以上の概念を定量的に表現するために、次式のよ”うな
検定11列Mを定義する。
In order to express the above concept quantitatively, we define 11 test columns M as shown in the following equation.

M−ΦTΦ           ・・・(1つ)この
実対称行列Mの1直列式があらかじめ仕様で指定された
値9より太き(プれば、Φを構成する測定データ列が良
好と判断する。tなわら IMI≧9           ・・・(20)が判
定条件であり、この条件を満たさない測定データタIJ
は拾でる。
M-ΦTΦ... (one) If the serial expression of this real symmetric matrix M is thicker than the value 9 specified in advance in the specifications, it is determined that the measured data string forming Φ is good.t Nawara IMI≧9...(20) is the judgment condition, and the measured data IJ that does not satisfy this condition
is picked up.

(19)(20>式をそのまま用いて検定を精度良く実
行するには晶n長゛が32ビット程度の計算機を用いる
必要があるが、以下のような変形を行えば16ビツトP
i!度の有限語長のia ri機を用いて同等の検定を
行うことができる。まず実対称行列Mを次のように平方
根行tlJ Dに分解する。
(19) (20> In order to perform the test with high accuracy using the formula as is, it is necessary to use a computer with a crystal n length of about 32 bits, but if the following modification is carried out, it is 16 bits P.
i! An equivalent test can be performed using an ia ri machine with a finite word length. First, a real symmetric matrix M is decomposed into square root rows tlJD as follows.

M−DD”            ・・・(21)こ
こでDは下三角行列、1〕7は上三角行列である。
M-DD” (21) Here, D is a lower triangular matrix, and 1]7 is an upper triangular matrix.

この平方根行列りを用いて(20)式と同様な判定操作
を次のように行う。すなわち +01≧S           ・・・(22)(た
だしS七FT) のとき測定データは良好、そうでないときは不良データ
として袷てる。上記の平方根行列1〕は次のただし+=
1.2.・・・、N←(M+1)Dl、i) 一〇            ただしj<iフーl D(i、k)) ただしj=i+1.i+2.・・・、N+ (M+1 
>・・・ (24) 第1図は以上の原Bpを実行するための、本発明に係る
プロセス制御装置の一実施例を示丈侶或ブ[’lツク線
図である。第5図装置と同一の部分は同じ配りを何して
説明を省略する。プロセス制御装置10において、15
は記憶部11からの測定データ出力を入力して検定を行
い、その結果に応じて推定演障部12に出力する検定部
である。
Using this square root matrix, a determination operation similar to equation (20) is performed as follows. That is, when +01≧S (22) (however, S7FT), the measured data is good; otherwise, it is considered bad data. The above square root matrix 1] is the following proviso +=
1.2. ..., N←(M+1)Dl, i) 10 However, j<i Full D(i, k)) However, j=i+1. i+2. ..., N+ (M+1
>... (24) Fig. 1 is a diagram illustrating an embodiment of a process control device according to the present invention for executing the above-described process control. The same parts as those in the apparatus shown in FIG. 5 are arranged in the same manner, and a description thereof will be omitted. In the process control device 10, 15
is a test section which inputs the measurement data output from the storage section 11, performs a test, and outputs the result to the estimation performance section 12 according to the result.

上記のような構成のプロセス制御装置の動作を検定部1
5を中心に説明する。その他の部分I」第5図装置の場
合と同様である。第2図は第1図装置の動作を説明する
ためのフローチャートである。
The operation of the process control device configured as described above is verified by the verification unit 1.
The explanation will focus on 5. Other parts I'' are the same as in the case of the apparatus shown in FIG. FIG. 2 is a flowchart for explaining the operation of the apparatus shown in FIG.

検定部15はプロセスの入出力から得られる測定データ
列[y (t+N)〜y(t)〜y(t−N)]、[1
−1o  (t+N−M)〜uo  (j)〜U。
The verification unit 15 generates a measurement data string [y (t+N) ~ y (t) ~ y (t-N)], [1
-1o (t+N-M)~uo (j)~U.

(t−M)]を記憶部11から入力し、これから作られ
る(21)式のデータ信頼性検定行列(単に検定行列と
も呼ぶ)Mを用いて(23>(24)式13日ろ平方1
fi 11列りを演算し、(22)式で測定データの信
頼性検定を行う。(22)式が満足されるときの測定デ
ータを信頼性が良好と判断し、次段の推定演算部12に
おいてこの(11定デ一タ列(ΦC等)を使用し、(1
2)式に基づいて未知パラメータOを推定演算する。(
22)式が)plだされないときはその測定データ列を
不良データと判定して捨て、別の新しい測定データを取
込んで(22)式が満足されるようになるまで引続き検
定を行う。この間推定演算部12の未知バラメーへ りO出力は前回の決定値を保持している。以下第△ 5図装置と同様に未知パラメータθ出力から最適操作5
1 u Oを演算し、仕様入力として与えられる省資源
、省エネルギー等の指標を実現する最適運転をi−?)
(t-M)] from the storage unit 11, and using the data reliability test matrix (also simply called test matrix) M of equation (21) created from this, (23>(24) equation 13 days square 1
fi 11 columns are calculated, and the reliability of the measured data is tested using equation (22). Measured data when formula (22) is satisfied is judged to have good reliability, and the next stage estimation calculation unit 12 uses this (11 constant data sequence (ΦC etc.)
2) Estimating the unknown parameter O based on the formula. (
If the equation (22) is not satisfied, the measured data string is determined to be defective data and is discarded, new measurement data is taken in, and verification is continued until the equation (22) is satisfied. During this time, the unknown parameter output of the estimation calculation unit 12 retains the previously determined value. Below, the optimal operation 5 is performed from the unknown parameter θ output as in the device shown in Figure 5.
1 u O is calculated, and the optimal operation that realizes the index of resource saving, energy saving, etc. given as the specification input is i-? )
.

第4図は上記のプロセス制御装置を用いたときのプロセ
ス応答を示すタイムチャートである。図から明らかなよ
うに、精度良<+n定される未知バ△ ラメータ0から得られた最適操作FJi U oにより
、良好な応答波形ハが1!7られている。
FIG. 4 is a time chart showing the process response when the above process control device is used. As is clear from the figure, the optimal operation FJi U o obtained from the unknown parameter 0, which is determined with good accuracy <+n, results in a good response waveform C of 1!7.

上記のような構成のプロセス制御装置によれば、未知パ
ラメータを精度良く推定できるので、正確に最適操作量
を決定でき、省資源、省エネルギー運転等を容易に実現
できる。
According to the process control device configured as described above, unknown parameters can be estimated with high accuracy, so the optimum operation amount can be determined accurately, and resource saving, energy saving operation, etc. can be easily realized.

またデータ検定により、常に信頼性の高いプロセス運転
を実現できる。
Data verification also ensures highly reliable process operation at all times.

なお上記の実施例において、データ検定に用いる測定デ
ータ列[y(t+N)〜y(t)〜y(t−N>]とし
て、低域フィルタ等を使用して高周波ノイズを除いた、
フィルタ処理後の[y(を−トN)〜y(t)〜y (
t−N)]を用いてもよい。
In the above example, the measurement data sequence [y(t+N) ~ y(t) ~ y(t-N>] used for data verification is obtained by removing high-frequency noise using a low-pass filter or the like.
After filter processing [y(a-tN) ~ y(t) ~ y (
tN)] may also be used.

また上記の実施例ではオフライン的4rバツヂデータ処
理によりデータ検定、パラメータHfI定を行っている
が、オンライン的に入出力データ9+1を用いてデータ
検定、パラメータm定を行うこともでさる。
Further, in the above embodiment, data verification and parameter HfI determination are performed by off-line 4r batch data processing, but data verification and parameter m determination may also be performed online using input/output data 9+1.

また上記の実施例では測定データの検定を未知パラメー
タ)lt定のNi信頼性高めるために11っているが、
これに限らず、例えばプラントの異常診断−などに応用
することもできる。
In addition, in the above embodiment, the measurement data was verified using unknown parameters) in order to increase the reliability of the Ni constant.
The present invention is not limited to this, and can also be applied to, for example, plant abnormality diagnosis.

(発明の効果) 双上述べたように本発明によれば、プロセスモデルに含
まれる係数の推定を精度良く行え、制御特性の改善を図
ったプロセス制txt+装置を実現することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to estimate the coefficients included in the process model with high accuracy, and to realize a process-controlled txt+ device with improved control characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るプロセス制御装置の一尖hC例を
示すブロック構成図、第2図は第1図スjαの動作を説
明するためのフロ−チャート、fXS3図は第1図装置
の動作を説明するための説明図、第4図は第1図装置の
一応答例を示ずタイムチセード、第5図は従来のプロセ
ス制御MWを示す構成ブロック図、第6図は第5図装置
の一応答例を示すタイムチセードである。 2・・・プロセス、10・・・プロセス1制御装置、1
1・・・記憶部、12・・・推定演算部、15・・・検
定部、O・・・推定演算値。
FIG. 1 is a block configuration diagram showing an example of a one-cusp hC of the process control device according to the present invention, FIG. 2 is a flowchart for explaining the operation of Sjα in FIG. An explanatory diagram for explaining the operation, FIG. 4 is a time tsade without showing an example of the response of the device in FIG. 1, FIG. 5 is a configuration block diagram showing a conventional process control MW, and FIG. This is a timeline showing an example of a response. 2... Process, 10... Process 1 control device, 1
DESCRIPTION OF SYMBOLS 1... Storage part, 12... Estimation calculation part, 15... Verification part, O... Estimation calculation value.

Claims (3)

【特許請求の範囲】[Claims] (1)プロセスの入出力測定データを格納する記憶部と
、 この記憶部から前記測定データ列を入力しこの測定デー
タ列で構成される検定行列Mの行列式|M|の値を所定
の値と比較して前記測定データ列の信頼性を判定する検
定部と、 前記記憶部から出力される前記測定データ列から前記プ
ロセスの数学モデルに含まれる係数を推定する推定演算
部とを備え、 検定行列Mの行列式|M|が所定の値より大きい場合に
のみ、前記推定演算部が前記測定データ列に対応した新
たな前記係数の推定演算値を出力するように構成したこ
とを特徴とするプロセス制御装置。
(1) A storage unit that stores input/output measurement data of the process, and inputs the measurement data string from this storage unit and sets the value of the determinant |M| of the verification matrix M composed of the measurement data string to a predetermined value. a testing unit that determines the reliability of the measured data string by comparing it with the measured data string; and an estimation calculation unit that estimates coefficients included in the mathematical model of the process from the measured data string output from the storage unit, The method is characterized in that the estimation calculation section outputs a new estimated calculation value of the coefficient corresponding to the measurement data sequence only when the determinant |M| of the matrix M is larger than a predetermined value. Process control equipment.
(2)検定部が検定行列Mの平方根行列Dの行列式|D
|を所定の値と比較することにより測定データの信頼性
を判定する特許請求の範囲第1項記載のプロセス制御装
置。
(2) The test section is the determinant of the square root matrix D of the test matrix M |D
2. The process control device according to claim 1, wherein the reliability of the measurement data is determined by comparing | with a predetermined value.
(3)推定演算部から出力される係数出力、プロセス入
出力測定データおよび設定データに基づいて操作量を演
算出力する特許請求の範囲第1項記載のプロセス制御装
置。
(3) The process control device according to claim 1, which calculates and outputs the manipulated variable based on the coefficient output, process input/output measurement data, and setting data output from the estimation calculation section.
JP10609386A 1986-05-09 1986-05-09 Process control device Pending JPS62263502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10609386A JPS62263502A (en) 1986-05-09 1986-05-09 Process control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10609386A JPS62263502A (en) 1986-05-09 1986-05-09 Process control device

Publications (1)

Publication Number Publication Date
JPS62263502A true JPS62263502A (en) 1987-11-16

Family

ID=14424927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10609386A Pending JPS62263502A (en) 1986-05-09 1986-05-09 Process control device

Country Status (1)

Country Link
JP (1) JPS62263502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498151B1 (en) * 1996-10-08 2005-09-08 지멘스 악티엔게젤샤프트 Method and device for precalculating previously unknown parameters of an industrial process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034692A (en) * 1973-07-11 1975-04-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034692A (en) * 1973-07-11 1975-04-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498151B1 (en) * 1996-10-08 2005-09-08 지멘스 악티엔게젤샤프트 Method and device for precalculating previously unknown parameters of an industrial process

Similar Documents

Publication Publication Date Title
Corigliano et al. Parameter identification in explicit structural dynamics: performance of the extended Kalman filter
US10025296B2 (en) Servo control apparatus having function of obtaining frequency characteristics of machine on line
JPH02188801A (en) Parameter evaluation technique for closed loop apparatus
JP2008203051A (en) Parameter estimation apparatus of engine bench system
CN116659803A (en) Method for acquiring aerodynamic load of continuous wind tunnel based on balance zero point on-line monitoring
JP2009134751A (en) Method and apparatus for generating input signals in physical system
US7346402B1 (en) Technique for an integrated and automated model generation and controller tuning process
US8903879B2 (en) Processing Kalman filter
US20220286070A1 (en) Motor inductance measurement device, motor drive system, and motor inductance measurement method
Kshatriya et al. Improving the accuracy of normal form analysis
CN110702344B (en) Closed-loop bridge structure damage diagnosis method based on distributed strain measurement technology
JPS62263502A (en) Process control device
CN114877926B (en) Sensor fault detection and diagnosis method, medium, electronic equipment and system
CN107561934B (en) Output-only structure modal parameter identification method based on multi-reference time domain transfer rate
CN113884914B (en) Method for estimating charge state of evanescent parallel Kalman filtering power battery
CN115455349A (en) Time-varying cross modal identification method based on nonlinear frequency modulation modal decomposition
Thakar et al. Fractional-order PI controller for permanent magnet synchronous motor: A design-based comparative study
CN111551785B (en) Frequency and harmonic detection method based on unscented Kalman filter
JPS60249069A (en) Step response measuring device
JPH07334070A (en) Process simulator
US20150006133A1 (en) State Space System Simulator Utilizing Bi-quadratic Blocks to Simulate Lightly Damped Resonances
CN111510041A (en) Running state evaluation method and system of permanent magnet synchronous motor
US8027816B2 (en) Frequency response optimisation of a movement simulator by adaptive sinusoidal reference tracking
EP4339621A1 (en) Mems accelerometer systems
JP7107496B2 (en) Control system design method and test system control parameter determination method