JPS62263487A - Apparatus for measuring radiation dose - Google Patents

Apparatus for measuring radiation dose

Info

Publication number
JPS62263487A
JPS62263487A JP10629486A JP10629486A JPS62263487A JP S62263487 A JPS62263487 A JP S62263487A JP 10629486 A JP10629486 A JP 10629486A JP 10629486 A JP10629486 A JP 10629486A JP S62263487 A JPS62263487 A JP S62263487A
Authority
JP
Japan
Prior art keywords
distance
measured
measuring
probe
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10629486A
Other languages
Japanese (ja)
Other versions
JPH0543279B2 (en
Inventor
Hatsuo Chiba
千葉 初雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP10629486A priority Critical patent/JPS62263487A/en
Publication of JPS62263487A publication Critical patent/JPS62263487A/en
Publication of JPH0543279B2 publication Critical patent/JPH0543279B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To eliminate a measuring error, by automatically measuring the distance from a probe to an article to be measured by a transmitting-receiving means and a distance calculation means. CONSTITUTION:An ultrasonic transmitter-receiver 7 is mounted to a probe 1 in a freely rotatable manner and emits a signal wave to an article to be measured and receives the reflected wave thereof. This receiving signal is inputted to a distance measuring circuit 8 and the distance up to the article to be measured is calculated to be informed to a measuring person by a distance display device 14 and an alarm buzzer 16. An mentioned above, a distance can be measured automatically without measuring the distance by a measure and, because the transmitter-receiver 7 can be turned to the same direction and the measuring direction of the probe 1, a measuring error generated by the measuring direction of the probe 1 is eliminated, and the reliability and accuracy to a measuring result are enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被測定物ま費の距離を自動的に測定する機
能を有する放ol線は測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a radiation measuring device having a function of automatically measuring the distance of an object to be measured.

(従来技術) 現在、放射性物質を輸送する場合、輸送物から発生する
放射i*mを測定し、その放射線量が法律で定められた
値内であるか否かをチェックして、安全性を゛確認した
後、輸送を行う。この検査においては、測定距離が1m
と規定され、その距離において放射11ffiを測定し
なければならない。
(Prior art) Currently, when transporting radioactive materials, safety is ensured by measuring the radiation i*m generated by the transported object and checking whether the radiation dose is within the value specified by law.゛After confirmation, transportation will be carried out. In this test, the measurement distance is 1m.
and radiation 11ffi must be measured at that distance.

第3図は従来の放射線量測定装置の外観を示す斜視図で
ある。この図において、1は放射線を検知するGM管ア
ブ0プ(ガイガーミュラー管プ〇−プ)である。2は放
射線量測定器本体であり、放射SaWを表示するメータ
3と、校正用つまみ4と、計数毎に鳴動するヂャビー音
のオン/オフを行うスイッチ5と、メータ3の指示値を
リセットするリセットボタン6等を有している。
FIG. 3 is a perspective view showing the appearance of a conventional radiation dose measuring device. In this figure, numeral 1 indicates a GM tube (Geiger Muller tube) that detects radiation. 2 is the main body of the radiation dose measuring device, which includes a meter 3 that displays the radiation SaW, a calibration knob 4, a switch 5 that turns on/off the jab sound that sounds every time a count is made, and a switch that resets the indicated value of the meter 3. It has a reset button 6 and the like.

そして、放射線量の測定法においては、まず、メジャー
あるいは1mの棒等によって、放射性物質を収納した容
器(被測定物)から1TrLの距離を測定する。次にそ
の位置において、プローブ1の長さ方向が被測定物の測
定面に対し直角方向または平行方向に向けられ、被測定
物から発生する放射Ii9が測定される。
In the radiation dose measurement method, first, a distance of 1 TrL from a container containing a radioactive substance (object to be measured) is measured using a measuring tape or a 1 m rod. Next, at that position, the length direction of the probe 1 is oriented perpendicularly or parallel to the measurement surface of the object to be measured, and the radiation Ii9 generated from the object to be measured is measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述した測定装置にあっては、次のような問
題点がある。
By the way, the above-mentioned measuring device has the following problems.

■放射線量測定前に1TrLの棒またはメジャー等によ
ってプローブ1と被測定物との距離を測定しなければな
らないので手nがかかる。
(2) Before measuring the radiation dose, the distance between the probe 1 and the object to be measured must be measured using a 1TrL rod or a tape measure, which is time-consuming.

■第4図に示すように、もしプローブ1が被測定物Aに
斜めに向いていると、被測定物へから直角に11Lの距
離を測定しても、実際はプ0−プ1の長さ方向において
、1mより良いXmの距離において放射線量を測定して
いることになり、この、結果測定誤差が生じ、測定結果
の信用性、正確性が落ちる。
■As shown in Figure 4, if probe 1 is facing diagonally towards object A, even if it measures a distance of 11L perpendicularly from the object to be measured, it will actually be the length of probe 0 - probe 1. This means that the radiation dose is being measured at a distance of Xm, which is better than 1 m, resulting in measurement errors and reducing the reliability and accuracy of the measurement results.

この発明は上記事情に鑑みてなされたもので、その目的
はブO−ブ1から被測定物までの距離を自動的に測定す
ることができ、さらにブ0−71の測定方向によって生
じる測定誤差のない放射線量測定装置を提供することに
ある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to be able to automatically measure the distance from the bulb 0-71 to the object to be measured, and to further improve the measurement error caused by the measurement direction of the bulb 0-71. The object of the present invention is to provide a radiation dose measuring device that is free from radiation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、プローブに回動自在に取り付けられ、被測
定物へ信号波を放射し、かつ、この信号波の反射波を受
信する送受信手段と、前記送受信手段を駆動し、前記送
受信手段によって検知された反射波に基づいて被測定物
までの距離を算出する距離口出手段と、前記距離算出手
段により算出された距離を測定者に報知する報知手段と
を具備してなる放射I11測定装翁である。
This invention includes a transmitting/receiving means that is rotatably attached to a probe and emits a signal wave to an object to be measured and receives a reflected wave of the signal wave; A radiation I11 measuring device comprising a distance output means for calculating the distance to the object to be measured based on the reflected wave reflected from the object, and a notification means for notifying the measurer of the distance calculated by the distance calculation means. It is.

(作 用) この発明によれば、送受信手段及び距離口出手段により
、プローブから被測定物までの距離が自動的に測定され
、その測定位置が報知手段によって測定者へ報知される
。これによって正しい位置において放tJ4Ilffl
Il定を行うことができる。
(Function) According to the present invention, the distance from the probe to the object to be measured is automatically measured by the transmitting/receiving means and the distance outputting means, and the measuring position is notified to the measuring person by the notifying means. This allows the release of tJ4Iffl in the correct position.
Il determination can be performed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の外観を示す斜視図、第2
図は同実施例の回路構成を示すブロック図である。これ
らの図において、7はプローブ1に回動自在に取り付け
られたffl音波送受波器であり、プローブ1の長さ方
向およびこの方向から矢印Y方向に90度回転させた方
向において各々半固定できるようになっている。8は距
離測定回路である。この距離測定回路8において、9は
超音波送受波器7の送受信を切換える送受切換四路、1
0は超音波送受波器7に送受切換四路9を介して超音波
信号を供給する送信回路である。この送信回路10はC
PU13から送信信号P1が供給された時、超音波信号
を出力する。11は超音波送受波器7から送受信切換回
路8を介して受信波が供給される受信回路であり、受信
波を受けると、CPU13及び距離計数回路12へ受信
信号P2を出力する。距離計数回路12はクロックパル
スを発生するパルス発生器とカウンタとから構成され、
CPU13から出力される送信信号P1を受けると、該
パルス発生器から出力されるクロックパルスのカウント
を開始する。また、受信信号P2を受けるとカウントを
停止し、このカウントデータをCPtJ13へ供給する
。CPU13は回路各部をυltEすると共に、送信信
号P1を1秒周期で出力する。14は距離測定回路8に
おいて測定された距離をデジタル表示する距離表示器、
15は0〜2mの間の距離を設定する距離設定部である
。16は報知プデーであり、CPU13の出力信号P3
を受けると鳴動する。16は電源スィッチである。また
、18は放01am測定回路、1〜6は第3図に示すも
のと同一のものであり、その説明は省略する。
FIG. 1 is a perspective view showing the appearance of one embodiment of the present invention, and FIG.
The figure is a block diagram showing the circuit configuration of the same embodiment. In these figures, 7 is an ffl sound wave transducer rotatably attached to the probe 1, and can be semi-fixed in the length direction of the probe 1 and in a direction rotated 90 degrees from this direction in the direction of arrow Y. It looks like this. 8 is a distance measuring circuit. In this distance measuring circuit 8, reference numeral 9 denotes a four-way transmission/reception switching circuit for switching transmission and reception of the ultrasonic transducer 7;
0 is a transmitting circuit that supplies an ultrasonic signal to the ultrasonic transducer 7 via the transmitting/receiving switching four-way 9. This transmitting circuit 10 is C
When the transmission signal P1 is supplied from the PU 13, an ultrasonic signal is output. A receiving circuit 11 is supplied with received waves from the ultrasonic transducer 7 via the transmission/reception switching circuit 8, and upon receiving the received waves, outputs a received signal P2 to the CPU 13 and the distance counting circuit 12. The distance counting circuit 12 is composed of a pulse generator that generates clock pulses and a counter.
Upon receiving the transmission signal P1 output from the CPU 13, it starts counting clock pulses output from the pulse generator. Furthermore, upon receiving the reception signal P2, it stops counting and supplies this count data to CPtJ13. The CPU 13 performs υltE on each part of the circuit, and outputs the transmission signal P1 at a period of 1 second. 14 is a distance indicator that digitally displays the distance measured by the distance measuring circuit 8;
15 is a distance setting unit for setting a distance between 0 and 2 m. 16 is a notification pad, which is an output signal P3 of the CPU 13.
It rings when received. 16 is a power switch. Further, reference numeral 18 denotes an emission measurement circuit, and 1 to 6 are the same as those shown in FIG. 3, and the explanation thereof will be omitted.

上記構成において、測定者は、まず距11iQ定部に設
定距離を1mと設定する。次に、例えばプローブ1の長
さ方向を被測定物へ向け、超音波送受波器7をプローブ
1の長さ方向と平行に半固定し、電源スィッチ17をオ
ンとする。W1′I!Aスイッチ17がオンとされると
、CPU13から送信回路10および距離計数回路12
へ送信信号P1が1秒毎に供給される。送信信号P1が
送信回路10に供給されると、送信回路10は送受切換
口ff19を介して超音波送受波器7へ超音波信号を供
給する。
In the above configuration, the measurer first sets the set distance to 1 m in the distance 11iQ constant section. Next, for example, the length direction of the probe 1 is directed toward the object to be measured, the ultrasonic transducer 7 is semi-fixed in parallel to the length direction of the probe 1, and the power switch 17 is turned on. W1′I! When the A switch 17 is turned on, the CPU 13 sends signals to the transmitting circuit 10 and the distance counting circuit 12.
A transmission signal P1 is supplied to the terminal every second. When the transmission signal P1 is supplied to the transmission circuit 10, the transmission circuit 10 supplies the ultrasound signal to the ultrasound transducer 7 via the transmission/reception switching port ff19.

超音波送受波器7はla音波信号を受けると、超音波を
外部へ発射する。この時、距離計数回路12においてカ
ウントが始められる。超音波送受波器7から発射された
超音波は被測定物において反射され、この反射波が再び
超音波送受波器7によって受信される。この反射波を受
信した超音波送受波器7は、送受切換回路9を介して、
受信回路11に受信波を供給する。受信回路11は受信
波を受け、距離計数回路12及びcpul 3へ受信信
号P2を供給する。距離計数回路12は受信信号P2を
受けると、カウントを停止する。この時のカウントデー
タが超音波送受波器7から被測定物までの距離に対応す
るデータであり、このカウントデータがCPU13へ供
給される。そしてCPLJ13は、カウントデータを受
けると、このカウントデータを距離表示器14に表示し
、また予め距離設定部15に設定されている設定距離と
カウントデータを比較し、両データが一致していれば、
報知ブザー16へ信号P3を供給する。これによって報
知ブザー16が鳴動する。両データが−・致していなけ
れば、CPU13は信号P3を出力せず、報知ブザー1
6は鳴動しない。
When the ultrasonic transducer 7 receives the la sound wave signal, it emits ultrasonic waves to the outside. At this time, the distance counting circuit 12 starts counting. The ultrasonic wave emitted from the ultrasonic transducer 7 is reflected by the object to be measured, and this reflected wave is received by the ultrasonic transducer 7 again. The ultrasonic transducer 7 that has received this reflected wave transmits the signal via the transmission/reception switching circuit 9.
A received wave is supplied to the receiving circuit 11. The receiving circuit 11 receives the received wave and supplies a received signal P2 to the distance counting circuit 12 and cpul 3. When the distance counting circuit 12 receives the reception signal P2, it stops counting. The count data at this time is data corresponding to the distance from the ultrasonic transducer 7 to the object to be measured, and this count data is supplied to the CPU 13. When the CPLJ 13 receives the count data, it displays this count data on the distance display 14, and also compares the set distance set in the distance setting section 15 with the count data, and if both data match, ,
A signal P3 is supplied to the notification buzzer 16. This causes the notification buzzer 16 to sound. If both data do not match, the CPU 13 does not output the signal P3 and the notification buzzer 1 is activated.
6 does not ring.

しかして、上述した動作が1秒毎に繰り返し行なわれる
。すなわち、被測定物とプローブ1との距離が1秒毎に
自動測定され、この測定結果が距離表示器14に表示さ
れる。そして測定者が移動し、その距離が設定距離に達
すると、報知ブザー16が鳴動する。また、放射線i測
定回路18においては、常時、プローブ1によって検出
された放D4線量が測定されている。この結果報知ブザ
ー16が鳴動した被測定物からimの位置において、被
測定物から放射される放onamがメータ3に表示され
る。
Thus, the above-described operation is repeated every second. That is, the distance between the object to be measured and the probe 1 is automatically measured every second, and the measurement result is displayed on the distance display 14. Then, when the measurer moves and the distance reaches the set distance, the notification buzzer 16 sounds. Further, in the radiation i measurement circuit 18, the radiation dose detected by the probe 1 is constantly measured. As a result, the emitted onam from the object to be measured is displayed on the meter 3 at a position im from the object to be measured where the notification buzzer 16 has sounded.

なお、上記実施例においては、プ0−11の長さ方向に
おける被測定物の放射線量を測定しているが、プローブ
1を被測定物に平行に向け、超音波送受波器7を第1図
矢印Y方向に回転させ、プローブ1と直角に半固定して
被測定物との距離を測定し、放射線量を測定してもよい
In the above embodiment, the radiation dose of the object to be measured in the length direction of the probes 0-11 is measured, but the probe 1 is oriented parallel to the object to be measured, and the ultrasonic transducer 7 is The radiation dose may be measured by rotating it in the direction of the arrow Y in the figure and semi-fixing it at right angles to the probe 1 to measure the distance to the object to be measured.

しかして、この実施例によれば距離測定が自動的に行な
われ、同時に、その距離測定を行った方向において、そ
のままの状態で放射I1mを測定することができる。さ
らにこの実施例によれば、測定を行う測定員だけでなく
、立合っている検査員にも報知ブザー16によって1m
の距離を知らせることができ、検査に不正がないことを
明確にすることができる。
According to this embodiment, the distance measurement is automatically performed, and at the same time, the radiation I1m can be measured in the same direction in which the distance measurement was performed. Further, according to this embodiment, not only the measurement staff who performs the measurement but also the inspectors present can be alerted by the alarm buzzer 16 to
It is possible to tell the distance of the test and make it clear that there is no fraud in the test.

なお、上記実施例においては、距離測定に超音波セン号
を用いたが、カメラ等に使用される自動焦点センサ等の
光電式センサを用いてもよい。
In the above embodiment, an ultrasonic sensor is used for distance measurement, but a photoelectric sensor such as an automatic focus sensor used in a camera or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、プロー7に回
動自在に取り付けられ、被測定物へ信号波を放射し、か
つ、この信号波の反射波を受信する送受信手段と、前記
送受信“手段を駆動し、前記送受信手段によって検知さ
れた反射波に基づいて被測定物までの距離を算出する距
離算出手段と、前記距離算出手段により算出された距離
を測定者に報知する報知手段とを具備しているので、メ
ジャーまたは1mの棒等によって距離を測定することな
く自動的に距離測定ができる。また、この発明によれば
、送受信手段をプローグ1の測定方向と同一に向けられ
るので、プ0−71の測定方向によって生じる測定誤差
がなくなり、この結果、放射線量測定結果の信用性およ
び正確性が向上するという効果が得られる。
As explained above, according to the present invention, the transmitting/receiving means is rotatably attached to the plow 7 and emits a signal wave to the object to be measured and receives a reflected wave of the signal wave; a distance calculating means for driving the means and calculating the distance to the object to be measured based on the reflected wave detected by the transmitting/receiving means; and a notifying means for notifying the measurer of the distance calculated by the distance calculating means. Since it is equipped with this, it is possible to automatically measure the distance without measuring the distance with a measuring tape or a 1m stick, etc. Also, according to the present invention, since the transmitting and receiving means can be oriented in the same direction as the measuring direction of the prog 1, Measurement errors caused by the measurement direction of the probe 0-71 are eliminated, and as a result, the reliability and accuracy of radiation dose measurement results are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の外観を示す斜視図、第2
図は同実施例の回路構成を示すブロック図、第3図は従
来の放射線測定装置の構成を示す斜視図、第4図は従来
の同装置における測定例を示す図である。 1・・・・・・プローブ、7・・・・・・超音波送受波
器、8・・・・・・距離測定回路、14・・・・・・距
離表示器、16・・・・・・報知ブザー。 出願人  三菱原子燃料株式会社 第4図
FIG. 1 is a perspective view showing the appearance of one embodiment of the present invention, and FIG.
FIG. 3 is a block diagram showing the circuit configuration of the same embodiment, FIG. 3 is a perspective view showing the configuration of a conventional radiation measuring device, and FIG. 4 is a diagram showing an example of measurement in the conventional radiation measuring device. 1...Probe, 7...Ultrasonic transducer, 8...Distance measurement circuit, 14...Distance indicator, 16...・Notification buzzer. Applicant Mitsubishi Nuclear Fuel Co., Ltd. Figure 4

Claims (1)

【特許請求の範囲】 放射線を検出するプローブを有する放射線量測定装置に
おいて、 前記プローブに回動自在に取り付けられ、被測定物へ信
号波を放射し、かつ、この信号波の反射波を受信する送
受信手段と、前記送受信手段を駆動し、前記送受信手段
によって検知された反射波に基づいて被測定物までの距
離を算出する距離算出手段と、前記距離算出手段により
算出された距離を測定者に報知する報知手段と、を具備
してなる放射線量測定装置。
[Scope of Claims] A radiation dose measuring device having a probe for detecting radiation, which is rotatably attached to the probe, emits a signal wave to an object to be measured, and receives a reflected wave of the signal wave. a transmitting/receiving means; a distance calculating means for driving the transmitting/receiving means and calculating a distance to a measured object based on a reflected wave detected by the transmitting/receiving means; A radiation dose measuring device comprising: a notification means for notifying.
JP10629486A 1986-05-09 1986-05-09 Apparatus for measuring radiation dose Granted JPS62263487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10629486A JPS62263487A (en) 1986-05-09 1986-05-09 Apparatus for measuring radiation dose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10629486A JPS62263487A (en) 1986-05-09 1986-05-09 Apparatus for measuring radiation dose

Publications (2)

Publication Number Publication Date
JPS62263487A true JPS62263487A (en) 1987-11-16
JPH0543279B2 JPH0543279B2 (en) 1993-07-01

Family

ID=14430024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10629486A Granted JPS62263487A (en) 1986-05-09 1986-05-09 Apparatus for measuring radiation dose

Country Status (1)

Country Link
JP (1) JPS62263487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026185A (en) * 2006-07-21 2008-02-07 Tepco Systems Corp Radiation visualization system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788370A (en) * 1980-11-21 1982-06-02 Toshiba Corp Measuring device for radiant ray
JPS6161078A (en) * 1984-08-31 1986-03-28 Chiyoda Hoan Yohin Kk Measuring device for radiation dosage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788370A (en) * 1980-11-21 1982-06-02 Toshiba Corp Measuring device for radiant ray
JPS6161078A (en) * 1984-08-31 1986-03-28 Chiyoda Hoan Yohin Kk Measuring device for radiation dosage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026185A (en) * 2006-07-21 2008-02-07 Tepco Systems Corp Radiation visualization system

Also Published As

Publication number Publication date
JPH0543279B2 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
US4056970A (en) Ultrasonic velocity and thickness gage
EP0054062B1 (en) Automatic backfat meter
JPS5987311A (en) Double element ultrasonic probe and pulse echo ultrasonic measuring meter
NO764362L (en)
CN207499824U (en) A kind of slurry tank liquid level detection device
US4145925A (en) Digital liquid velocity measuring system
JPS5819060B2 (en) 100% off, 10% off
JPS62263487A (en) Apparatus for measuring radiation dose
EP0256080A1 (en) Ultrasonic thickness meter
US4147059A (en) Digital liquid velocity measuring system
GB1578093A (en) Ultrasonic diagnostic apparatus for inspection of a living body
CN211583229U (en) Ultrasonic height measuring device
JP3117372B2 (en) Ultrasonic distance measuring device
JPH01267454A (en) Air bubble detector
JPS60115810A (en) Ultrasonic flowmeter
JP3273850B2 (en) Portable radioactive surface contamination detector
JP2651269B2 (en) Ultrasonic thickness gauge
JPS58106454A (en) Ultrasonic test equipment
JPH0438415A (en) Apparatus for measuring pipe length
CN110313926B (en) Handheld radiographic image detection system and method of operating the same
JPH0812254B2 (en) Underground object detection method and device
JPS61228307A (en) Apparatus for ultrasonic thickness measurement of material to be inspected with coating
JPS6222843Y2 (en)
JPS62284208A (en) In-tube scale thickness gage
Gas et al. No disturbances in gas flow measurement