JPS62263485A - Radar apparatus - Google Patents

Radar apparatus

Info

Publication number
JPS62263485A
JPS62263485A JP61107210A JP10721086A JPS62263485A JP S62263485 A JPS62263485 A JP S62263485A JP 61107210 A JP61107210 A JP 61107210A JP 10721086 A JP10721086 A JP 10721086A JP S62263485 A JPS62263485 A JP S62263485A
Authority
JP
Japan
Prior art keywords
range
azimuth compression
azimuth
signal
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107210A
Other languages
Japanese (ja)
Inventor
Takahiko Fujisaka
貴彦 藤坂
Yoshimasa Ohashi
大橋 由昌
Tomomasa Kondo
近藤 倫正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61107210A priority Critical patent/JPS62263485A/en
Publication of JPS62263485A publication Critical patent/JPS62263485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the searching capacity of a ground embedded article, by providing a means for performing gain correction in front of an azimuth compression means. CONSTITUTION:The transmission signal (a) from a transmission antenna 2 is reflected from a target to be converted to a video signal of a base band through a receiving antenna 3 and a receiver 4. Sugsequently, the video signal is separated to a range direction with distance resolving power corresponding to a transmission pulse width by a range gate means 5. Necessary receiving signal data are arranged on a memory means 6 and, in order to enhance the resolving power in an azimuth direction, that is, in the advance direction of a rader apparatus, synthetic aperture processing is performed by an azimuth compression means 23. Because an underground article is an observation object in the apparatus of this kind, signal attenuation or range movement due to range migration are large as compared with the observation of the ground or the sea level. Then, a gain correction means 7 is provided in front of the means 23 to correct the attenuation of a high frequency component due to range migration. By this method, azimuth resolving power is enhanced and the searching capacity of a ground embedded article can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、地中に埋設された電気、ガス、水道1通信
等の管(パイプ)及びケーブルを探知するレーダ装置に
関するもの゛である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radar device for detecting pipes and cables for electricity, gas, water, communication, etc. buried underground.

〔従来の技術〕[Conventional technology]

従来のこの種のレーダ装置については、文献大西、他“
合成開口法をもちいた地中埋設物探知“昭61.信学全
大、2951゜ に、また、合成開口によるアジマス圧縮の原理について
は、文献 F、 T、υ1aby、 R,に、Moore、 A、
に、Fang″MicrowaVe Remote S
ensing(Active and Pa5sive
ど。
Regarding conventional radar devices of this type, see the literature Onishi et al.
Detection of underground objects using the synthetic aperture method, 1981. IEICE University, 2951°, and the principle of azimuth compression using synthetic apertures, see References F, T, υ1aby, R, Moore, A. ,
,Fang″MicrowaVe Remote S
ensing(Active and Pa5sive
degree.

vol、 1. PP 53Q 〜745 Addis
on −Wesley Publeshing Com
pany (1982) 。
vol, 1. PP 53Q ~745 Addis
on -Wesley Publishing Com
pany (1982).

に、地中における電波伝搬等については、文献鈴木、他
“地中探索レーダシステム”。
Regarding radio wave propagation underground, etc., see Suzuki et al.'s "Underground Search Radar System."

信学技報 5ANE 79−40 (1979)に詳細
に述べられている。
It is described in detail in IEICE Technical Report 5ANE 79-40 (1979).

これらの文献より、従来のこの種のレーダ装置の構成を
示すならば、第一14図で示すことができる。図中、1
11は送信機、(2)は送信アンテナ、(3)は受信ア
ンテナ、(41は受信機、(51はレンジゲート手段、
(61は記憶手段1.181はF F T (Fast
 FourierTransform )手段、(91
は記憶手段2、(1(i[レンジマイグレーション補正
手段、αυは記憶手段3、住り、住3は乗算手段、(1
4)ハI P F T (Inverse Fast 
FOurier Tranform )手段、(Isは
記憶手段4、<161は表示手段、u力は位置計測手段
、(181は距離計算手段、(L9は補正量−計算手段
、■はりファレシス信号発生手段、(2BはFFT手段
、■はスペクトルウィシドウ発生手段、のは、+8+ 
: +91 、α1.(1υ、CIL仏謙。
Based on these documents, the configuration of a conventional radar device of this type can be shown in FIG. 114. In the figure, 1
11 is a transmitter, (2) is a transmitting antenna, (3) is a receiving antenna, (41 is a receiver, (51 is a range gate means,
(61 is storage means 1.181 is F F T (Fast
FourierTransform) means, (91
is storage means 2, (1 (i [range migration correction means,
4) Inverse Fast
Fourier Transform) means, (Is is storage means 4, <161 is display means, u force is position measurement means, (181 is distance calculation means, (L9 is correction amount calculation means, ■ beam faresis signal generation means, (2B is FFT means, ■ is spectral wisdom generation means, and is +8+
: +91, α1. (1υ, CIL Buddha Ken.

(14)1181.(Il、■、Q凱のから構成される
いわゆるアジマス圧縮手段である。
(14)1181. (This is a so-called azimuth compression means consisting of Il, ■, and Qkai.

また、第3図はレーダのジオメトリを表す図で、■はレ
ーダ装置全体を表し、(31)はパイプ又はケーブル等
の目標物、(32)はアンテナ・ビームを表す。
Further, FIG. 3 is a diagram showing the geometry of the radar, where ■ represents the entire radar device, (31) represents a target such as a pipe or cable, and (32) represents an antenna beam.

以下図面に従って、この檀の装置の動作を藺単に説明す
る。送信機il+で発生した送信パルス信号は、送信ア
ンテナ(2)を介して、送信信号ピ)として地中へ放射
される。放射された送信信号(イ)は、目標物(31)
で反射され、受信信号(ロ)として、受信アンテナ(3
■:よって受信される。受信信号は、受信機(4)で増
幅及び検波され、ベースバンドのビデオ信号に変換され
た後、レンジゲート手段(51により送信パルス幅相当
の距離分解能で、レンジ方向について分離され、A/D
(Analog to Digital )変換され、
記憶手段116■:レンジ・ビ〉番号及び送信パルス番
号に応じて、2次元的に並べられ記憶される。このとき
、送信パルス幅をτとすると、レンジ分解能ΔRτは ΔBτ=−(1) −(C:光速)で示される。記憶手段1上C:必要なデ
ータ(受信信号)がそろった時点で、アジマス圧縮手段
のによりアジマス方向すなわちレーダ装置の進行方向の
分解能を向上させるため、合成開口処理が行われる。合
成開口法I:よるアジマス圧縮は、以下の手順で行われ
る。記憶手段1;:記憶された受信信号を各レンジ・ビ
シ毎1:、時系列信号として取出し、FFT手段181
1:、より周波数領域へ変換し、記憶手段2(9Iへ格
納する。第4図1:示すように、目標物からの反射波は
、複数の異なるレンジ・ビンに広がって受信されるため
、同一レンジ・ビンに受信信号のスペクトル成分がそろ
うように、し〉ジマイグレーショシ補正手段αθI:よ
ってデータの並べ換えを行い、補正後の受信信号スペク
トルを記憶手段13+ (1m) l:、格納する。こ
のとき、並べ換えのための補正量は、レーダ装置の位置
を計測する手段性ηの出力にもとづいて、目標までの距
離Rj、tlを距離計算手段(18) cより求め、補
正量計算手段住優により決定される。今、第3図に示す
ように、時刻t=Qのときのレーダ装置(至)と目標物
(31)との相対距離なRO,レーダ装置の移動速度を
Vとすると、任意の時刻tにおける相対距離り内は、 部) =  JRo2+ (%P2)2で与えられ、瞬
時ドツプラー周波数/Flは、地中での波長λを叩いて   v21 f怪)=−ス Ro             131
で与えられるから、Rとfとの間には の関係が成立する。よって、レンジ・ビンの移動となる
。レンジReは、ΔRτで離散化されているから、aし
′亦τはレンジ番号4(ニ一致する。記憶手段2(9I
の各レンジ・ビンにおけるスペクトルの各周波数成分な
mレンジ・ビン移動させることによって、レンジマイグ
レーション補正を行い、補正後のスペクトルを記憶手段
3Iに格納する。
The operation of this device will be briefly explained below with reference to the drawings. The transmission pulse signal generated by the transmitter il+ is radiated underground as a transmission signal P via the transmission antenna (2). The emitted transmission signal (a) is transmitted to the target object (31)
It is reflected by the receiving antenna (3) as a received signal (b).
■: Therefore, it is received. The received signal is amplified and detected by the receiver (4), converted to a baseband video signal, and then separated in the range direction by the range gate means (51) with a distance resolution equivalent to the transmission pulse width.
(Analog to Digital) converted,
Storage means 116■: Two-dimensionally arranged and stored according to the range/b> number and the transmission pulse number. At this time, when the transmission pulse width is τ, the range resolution ΔRτ is expressed as ΔBτ=−(1)−(C: speed of light). Storage means 1, top C: When the necessary data (received signals) are collected, synthetic aperture processing is performed by the azimuth compression means in order to improve the resolution in the azimuth direction, that is, in the traveling direction of the radar device. Synthetic aperture method I: Azimuth compression is performed in the following steps. Storage means 1:: Takes out the stored received signals for each range/visi as a time series signal, and FFT means 181
1: Convert it to the frequency domain and store it in the storage means 2 (9I). As shown in FIG. Therefore, data is rearranged by the migration correction means αθI so that the spectral components of the received signal are aligned in the same range bin, and the corrected received signal spectrum is stored in the storage means 13+(1m)l:. At this time, the correction amount for rearrangement is determined by calculating the distance Rj, tl to the target from the distance calculation means (18) c based on the output of the means η for measuring the position of the radar device, and calculating the correction amount calculation means (18) c. As shown in Fig. 3, let RO be the relative distance between the radar device (to) and the target (31) at time t=Q, and let V be the moving speed of the radar device. , within the relative distance at any time t is given by JRo2+ (%P2)2, and the instantaneous Doppler frequency/Fl is given by the underground wavelength λ:
Since it is given by , the following relationship holds between R and f. Therefore, the range bin will be moved. Since the range Re is discretized by ΔRτ, a′ and τ match range number 4 (2). Storage means 2 (9I
Range migration correction is performed by moving each frequency component of the spectrum in each range bin by m range bins, and the corrected spectrum is stored in the storage means 3I.

−記憶手段3響二格納された補正後の受信信号は、第3
式6:示すように、その瞬時ドツプラー周波数が時刻χ
とともC:変化するチャープ信号となっている。このと
き、第3式中のλ、RO,,?は既知あるいは位置計測
手段C1?)で測定可能なパラメータであるから目標@
 (31)のドツプラー周波数の時間変化の履歴すなわ
ちドツプラーヒストリーは、距離計算手段(18及びリ
ファレンス信号発生手段■により計算で求めることがで
きる。従って、リフアレシス信号発生手段@で発生させ
たリファレンス信号なFFT手段+211により周波数
領域に変換し、乗算手段(13を用いて、記憶手段3Q
1)に格納された受信信号スペクトルと乗算を行い、さ
らに、サイドローブ抑圧のために、スペクトルウィンド
ウ発生手段ので発生したスペクトルの重み係数を乗算手
段a四を用いて乗算した後、IFFT手段α乃により再
び時間領域1:変換すること1:より、アジマス圧縮を
完了する。IFFT手段α4の出力は、記憶手段4α9
に格納され、その信号強度が輝度として表示手段(16
1上に2次元レーダ映像として表示される。
- The received signal after correction stored in storage means 3
Equation 6: As shown, the instantaneous Doppler frequency is at time χ
Tomo C: A chirp signal that changes. At this time, λ,RO,,? in the third equation? Is it known or is the position measuring means C1? ) because it is a measurable parameter.
The history of the time change of the Doppler frequency in (31), that is, the Doppler history, can be calculated by the distance calculation means (18) and the reference signal generation means (■). Therefore, the reference signal generated by the reflex signal generation means @ It is converted into the frequency domain by the FFT means +211, and then stored in the storage means 3Q using the multiplication means (13).
1) is multiplied with the received signal spectrum stored in 1), and further, for sidelobe suppression, the weighting coefficient of the spectrum generated by the spectrum window generation means is multiplied using the multiplication means a4, and then the IFFT means αno Converting the time domain 1 again by 1: completes the azimuth compression. The output of the IFFT means α4 is stored in the storage means 4α9.
The signal strength is displayed as luminance on the display means (16
1 as a two-dimensional radar image.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のレーダ装置では、以上のよう−6:構成されてお
り、合成開口によるアジマス圧縮に、いわゆる合成開口
レーダ(人工衛星又は航空機等の飛しよう体に搭載され
、地上あるいは海面を観測する)を利用しているため次
のような問題点があった。
Conventional radar equipment is configured as shown above, and a so-called synthetic aperture radar (mounted on a flying body such as an artificial satellite or aircraft to observe the ground or sea surface) is used for azimuth compression by synthetic aperture. I encountered the following problems while using it:

すなわち、この種のレーダ装置では、地中を観測対象と
するため、地上あるいは海面な観測する場合と比較して
信号の減衰が大きく、観測範囲が地中数m程度であり、
パルス幅が数nsと非常1:狭いため、レンジマイグレ
ーショシによるレンジ移動が大きい。レンジマイグレー
ション補正後た後のスペクトル成分の高周波成分が、上
記減衰によって失われるため、アジマス圧縮効果(圧縮
比)が低下するという問題点があった。
In other words, since this type of radar equipment observes underground, the signal attenuation is greater than when observing on the ground or at the sea surface, and the observation range is approximately several meters underground.
1: Very narrow pulse width of several ns, so range movement due to range migration is large. Since the high frequency components of the spectral components after range migration correction are lost due to the above-mentioned attenuation, there is a problem that the azimuth compression effect (compression ratio) is reduced.

この発明は、上記の問題点を解消するためになされたも
ので、上記減衰による損失を補正すること舊:よって、
アジマス圧縮に寄与する周波数帯域を確保し、圧縮比を
改善することを目的とする。
This invention was made in order to solve the above problems, and it is necessary to correct the loss due to the above attenuation.
The purpose is to secure a frequency band that contributes to azimuth compression and improve the compression ratio.

〔問題点を解決するための手段〕[Means for solving problems]

この発明1:係るレーダ装置は、アジマス圧縮に寄与す
る信号帯域を確保するために、レンジマイグレーション
による信号の減衰を補正する手段を付加したもので、特
許請求の範囲第1項のレーダ装置においては、時間領域
において補正を行うため、アジマス圧縮手段の前I:利
得制御手段を付加することにより、上記減衰を補正して
いる。濠だ特許請求の範囲第2項のレーダ装置じおいて
は、減衰の補正を周波数領域で行うため、スペクトルウ
ィンドウ発生手段に代えて、スペクトルウイシドウによ
る血み付けと減衰補正を同時に行うための加重係数計算
手段を付加したものである。
Invention 1: The radar device according to claim 1 is provided with means for correcting signal attenuation due to range migration in order to secure a signal band contributing to azimuth compression. In order to perform correction in the time domain, the above attenuation is corrected by adding gain control means before the azimuth compression means. In the radar device according to claim 2 of the Horada patent, since the attenuation is corrected in the frequency domain, instead of the spectral window generation means, there is provided a system for simultaneously performing blood staining and attenuation correction using the spectral window generation means. A weighting coefficient calculation means is added.

〔作用〕[Effect]

この発明によるレーダ装置では、レンジマイグレーショ
ンによる高周波成分の減衰を補正しているので、アジマ
ス分解能が向上するため、地中埋設物の探知能力が向上
する。
In the radar device according to the present invention, since the attenuation of high frequency components due to range migration is corrected, the azimuth resolution is improved, and the ability to detect underground objects is improved.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図及び第2図1:示し
、その動作を第4図から第14図までの図面を用いて、
詳細に説明する。第′1図の(7)及び第2図のc!滲
は、この発明において新たに付加された利得補正手段及
び加重係数計算手段である。図中のその他の装置又は手
段は従来の装置と同等であるので、新たに付加された手
段(7)及びC24)の動作を中心に、この発Ff4+
:よるアジマス圧縮比の改善効果について述べる。
Hereinafter, one embodiment of the present invention will be shown in FIGS. 1 and 2, and its operation will be explained using the drawings from FIGS. 4 to 14.
Explain in detail. (7) in Figure '1 and c! in Figure 2! A gain correction means and a weighting coefficient calculation means are newly added in this invention. Since the other devices or means in the figure are equivalent to conventional devices, we will focus on the operation of the newly added means (7) and C24) for this Ff4+
: The effect of improving the azimuth compression ratio will be described.

〔従来の技術〕で述べたように、周波数fと距離Rの間
には第4式6:示す関係が成立し、この関係を図で示す
と、第5図が得られる。地中1:おける電波伝搬を考え
た場合、fi6図に示すように受信信号パワーは、Rρ
  に比例する。このときαは、地中の導電率σ、地中
の誘電率ε及び地中の透磁率声を用いて α=!!J            161g で表現できる。よって、レンジマイグレーション補正後
のパワースペクトルは、第7図に示すよう薯二高周波成
分程パワーが低下する。そこで、利得制御手段(7)に
より、第8図に示すように、利得Gを、 a = R’fR171 とすれば、受信信号パワーは第9図鴫二示すようにRと
は無関係にできるから、レンジマイグレーション補正後
のパワースペクトルは第10図に示すようにパルス繰返
し周波数で決まる帯域内全体で一定値を取り、高周波成
分の減衰が補正されたこと蛎:なる。このとき、帯域幅
をBとすれば、アジマス方向の分解能Δrは Δr= 二             (8)となる。
As described in [Prior Art], the relationship shown in Equation 4 (6) holds between the frequency f and the distance R, and when this relationship is illustrated in a diagram, FIG. 5 is obtained. When considering radio wave propagation underground 1:, the received signal power is Rρ as shown in figure fi6.
is proportional to. At this time, α can be calculated using the underground conductivity σ, the underground permittivity ε, and the underground magnetic permeability. ! It can be expressed as J 161g. Therefore, in the power spectrum after range migration correction, as shown in FIG. 7, the power decreases as the frequency component increases. Therefore, if the gain control means (7) is used to set the gain G to a = R'fR171 as shown in Fig. 8, the received signal power can be made independent of R as shown in Fig. 9. As shown in FIG. 10, the power spectrum after range migration correction takes a constant value throughout the band determined by the pulse repetition frequency, indicating that the attenuation of high frequency components has been corrected. At this time, if the bandwidth is B, the resolution Δr in the azimuth direction is Δr=2 (8).

但し、第10図のスペクトルをIFF’Tにより時間領
域へ変換すると、サイドロープが発生し、儀像の原因と
なるので、通常第11図(二示すようにスペクトルウィ
ンドウと呼ばれる重み付けがなされた後、IFFTを行
い、アジマス圧縮を完了する。
However, when the spectrum in Figure 10 is converted to the time domain using IFF'T, side lobes will occur, causing artifacts. , IFFT is performed and azimuth compression is completed.

以上のgQ明では、レンジマイグレーション1:よる受
信信号の高周波成分の減衰を利得補正手段(7)゛  
 を用いて、時間領域で行う方法について述べたが、同
様の補正を周波数領域で行うこともできる。
In the above gQ method, range migration 1: Attenuates the high frequency components of the received signal by the gain correction means (7).
Although we have described a method performed in the time domain using , similar correction can also be performed in the frequency domain.

利得補正を行わない場合、そのスペクトルは%7図に示
すように高周波成分の損失が大きい。そこで、通常のス
ペクトルウィンドウとは逆に第12図のように為周波成
分を強調するような加重係数を加重係数計算手段(24
により求め、受信信号(二乗算することにより、第13
図に示すよう!=利得補正を行った場合と同等のスペク
トルが得られる。
When gain correction is not performed, the spectrum has a large loss in high frequency components as shown in the %7 diagram. Therefore, contrary to the normal spectral window, a weighting coefficient that emphasizes the frequency component as shown in FIG.
and the received signal (by multiplying by square, the 13th
As shown in the diagram! = A spectrum equivalent to that obtained when gain correction is performed.

周波数領域で補正を行うことにより、レンジマイグレー
ションによる高周波成分の減衰補正とスペクトルウィン
ドウによる重み付けとを同時(;行うことができる。。
By performing correction in the frequency domain, attenuation correction of high frequency components by range migration and weighting by spectral window can be performed simultaneously.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明1:よれば、レンジマイグレー
ションによる受信信号の高周波成分の減衰を補正するこ
とにより、アジマス圧縮!=寄与する信号帯域を確保し
、アジマス分解能を向上させることができる。
As described above, according to the present invention 1, azimuth compression is achieved by correcting the attenuation of high frequency components of the received signal due to range migration! = It is possible to secure a contributing signal band and improve azimuth resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の一実施例にょるレーダ装
置の構成図、第3図はレーダ装置のジオメトリ、第4図
及び第5図はレンジマイグレーションの説明図、第6図
はレーダ装置から目標物までの相対距離Rと受信信号の
パワーとの関係を示す図、′i47図から第13図まで
はこの発明のレーダ装置によるアジマス圧縮比の改善を
説明するための図、%14図は従来のレーダ装置の構成
図である。 図中、(11は送信機、(2;は送信アンテナ、に31
は受信アンテナ、(4)は受信機、151はレンジゲー
ト手段、(6)は記憶手段1 、171は利得補正手段
、(81はFF’T手段、191は記憶手段2、凹はレ
ンジマイグレーション補正手段、Uυは記憶手段3.(
IL(13は乗算手段、(l滲はIFFT手段、CIS
は記憶手段4、霞は表示手段、(I7)は位置計測手段
、鰻は距離計算手段、(IIは補正量計算手段、■はリ
ファレンス信号発生手段、砺はFFT手段、のはスペク
トルウィンドウ発生手段、(23はアジマス圧縮手段、
@は加重係数計算手段、(イ)は送信信号、(ロ)は受
信信号である。 なお、図中同一符号は同−又は相当部分な示す。
1 and 2 are configuration diagrams of a radar device according to an embodiment of the present invention, FIG. 3 is a geometry of the radar device, FIGS. 4 and 5 are illustrations of range migration, and FIG. 6 is a diagram of the radar device. A diagram showing the relationship between the relative distance R from the device to the target and the power of the received signal, 'i47 to 13 are diagrams for explaining the improvement of the azimuth compression ratio by the radar device of the present invention, %14 The figure is a configuration diagram of a conventional radar device. In the figure, (11 is a transmitter, (2; is a transmitting antenna, and 31
is the receiving antenna, (4) is the receiver, 151 is the range gate means, (6) is the storage means 1, 171 is the gain correction means, (81 is the FF'T means, 191 is the storage means 2, and the concave is the range migration correction means, Uυ is storage means 3.(
IL (13 is a multiplication means, (1 is an IFFT means, CIS
is the storage means 4, Kasumi is the display means, (I7) is the position measurement means, Eel is the distance calculation means, (II is the correction amount calculation means, ■ is the reference signal generation means, Toko is the FFT means, and is the spectrum window generation means) , (23 is azimuth compression means,
@ is a weighting coefficient calculation means, (a) is a transmitted signal, and (b) is a received signal. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)合成開口法を用いて、地中に埋設された電気、ガ
ス、水道、通信等の管及びケーブルを探知するレーダ装
置において、送信機及び送信アンテナと受信機及び受信
アンテナとレンジゲート手段とレンジゲート手段によつ
て送信パルス幅で決まるレンジ分解能で分解された受信
信号を送信パルス番号順に2次元的に記憶する記憶手段
と、合成開口によりアジマス圧縮を行うアジマス圧縮手
段と、記憶手段とアジマス圧縮手段の間にあつてアジマ
ス圧縮比を改善する利得補正手段と、アジマス圧縮後の
レーダ映像を記憶する記憶手段と記憶手段の内容を表示
する表示手段と位置計測手段を具備したことを特徴とす
るレーダ装置。
(1) In a radar device that uses the synthetic aperture method to detect underground electricity, gas, water, communication, etc. pipes and cables, a transmitter, a transmitting antenna, a receiver, a receiving antenna, and a range gate means. storage means for two-dimensionally storing the received signal resolved by the range gate means with a range resolution determined by the transmission pulse width in the order of transmission pulse numbers; azimuth compression means for performing azimuth compression using a synthetic aperture; It is characterized by comprising a gain correction means for improving the azimuth compression ratio between the azimuth compression means, a storage means for storing the radar image after azimuth compression, a display means for displaying the contents of the storage means, and a position measuring means. radar equipment.
(2)1項記載のレーダ装置において、利得補正手段に
代えて、同等の機能をアジマス圧縮手段内の加重係数計
算手段によつて実現することを特徴とするレーダ装置。
(2) A radar apparatus according to item 1, characterized in that, in place of the gain correction means, an equivalent function is realized by weighting coefficient calculation means in the azimuth compression means.
JP61107210A 1986-05-09 1986-05-09 Radar apparatus Pending JPS62263485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107210A JPS62263485A (en) 1986-05-09 1986-05-09 Radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107210A JPS62263485A (en) 1986-05-09 1986-05-09 Radar apparatus

Publications (1)

Publication Number Publication Date
JPS62263485A true JPS62263485A (en) 1987-11-16

Family

ID=14453273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107210A Pending JPS62263485A (en) 1986-05-09 1986-05-09 Radar apparatus

Country Status (1)

Country Link
JP (1) JPS62263485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113685A (en) * 1987-10-28 1989-05-02 Nippon Telegr & Teleph Corp <Ntt> Object detecting method and apparatus
JP2011169869A (en) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp Apparatus for processing radar signal
WO2023089713A1 (en) * 2021-11-18 2023-05-25 三菱電機株式会社 Radar signal processing device, radar signal processing method, and target observation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113685A (en) * 1987-10-28 1989-05-02 Nippon Telegr & Teleph Corp <Ntt> Object detecting method and apparatus
JP2011169869A (en) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp Apparatus for processing radar signal
WO2023089713A1 (en) * 2021-11-18 2023-05-25 三菱電機株式会社 Radar signal processing device, radar signal processing method, and target observation system

Similar Documents

Publication Publication Date Title
CN107121670B (en) Anti-unmanned aerial vehicle defense method based on synthetic aperture radar
US8060339B2 (en) Multistatic concealed object detection
US20190049575A1 (en) Passive non-linear synthetic aperture radar and method thereof
US11131741B2 (en) Method and apparatus for providing a passive transmitter based synthetic aperture radar
EP3418769B1 (en) System for determining the direction of a target and method therefor
CN113075660B (en) Method and device for inverting sea surface wind wave parameters based on SAR (synthetic aperture radar)
GB2247373A (en) Method for resolving ambiguity in the determination of antenna angle of view and Doppler frequency in synthetic aperture radar
Kumawat et al. Approaching/receding target detection using cw radar
CN114609623B (en) Target detection method and device of monopulse radar and computer equipment
Li et al. Radar and inverse scattering
Casademont et al. I-channel FMCW doppler radar for long-range and high-velocity targets
Compaleo et al. Refractivity-from-clutter capable, software-defined, coherent-on-receive marine radar
CN109143235A (en) A kind of biradical forward sight synthetic aperture radar Ground moving target detection method
KR100661748B1 (en) Apparatus for removing leakage signal of fmcw radar
JP5035782B2 (en) Split beam synthetic aperture radar
JPS62263485A (en) Radar apparatus
Farquharson et al. An update on the capella space radar constellation
CN113030943B (en) Multi-target tracking algorithm based on monopulse radar signal acquisition azimuth range profile
Turk et al. High resolution signal processing techniques for millimeter wave short range surveillance radar
Hellsten et al. The CARABAS II VHF synthetic aperture radar
Saeedi A new hybrid method for synthetic aperture radar deceptive jamming
CN110940958B (en) Radar resolution measuring method
Eshbaugh et al. Measurement of sea surface displacement with interferometric radar
Ji et al. A small array HFSWR system for ship surveillance
Li et al. SAR Cross-Spectral Analysis of Radial Intermediate Waves: Directional Properties