JPS62263484A - Precision approach radar - Google Patents

Precision approach radar

Info

Publication number
JPS62263484A
JPS62263484A JP10626286A JP10626286A JPS62263484A JP S62263484 A JPS62263484 A JP S62263484A JP 10626286 A JP10626286 A JP 10626286A JP 10626286 A JP10626286 A JP 10626286A JP S62263484 A JPS62263484 A JP S62263484A
Authority
JP
Japan
Prior art keywords
airplane
signal
angle signal
radar
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10626286A
Other languages
Japanese (ja)
Other versions
JPH0752224B2 (en
Inventor
Koichi Horiguchi
堀口 幸一
Yuji Kami
上 勇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61106262A priority Critical patent/JPH0752224B2/en
Publication of JPS62263484A publication Critical patent/JPS62263484A/en
Publication of JPH0752224B2 publication Critical patent/JPH0752224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the safety of an airplane, by providing a radar signal transmitting part for transmitting radar information to the airplane to precision approach radar. CONSTITUTION:The synchronizer 16 of PAR1 sends trigger (c) to a transmitting part 13, a receiving part 4 and an indication part 15, and an angle signal generating part 7 generates an angle signal (b) showing the azimuths and high and low angles of antennae 11, 12. PAR1 outputs the video signal (a) from the receiving part 14, the angle signal (b) from the generating part 17 and the trigger C from the synchronizer 16 to a rader signal transmitting part 2. A target detection part 3 receives said signals to detect the angle signal of an airplane and, in an operation part 4, the difference between said signal and the angle signal operated from the distance data of a preset grindscope, a course line and a PAR-loading point is calculated and an output signal is emitted to the airplane 58 from antenna to be displayed on a meter in the side of the airplane 58. Therefore, the airplane 58 lands while a pilot monitors the display device on the own airplane and confirms the position of the own airplane without radio wave comunication between a controller and the pilot and, as a result, the position of the airplane can be monitored on both of the ground and the airplane and safety is further enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、航空管制レーダの精測進入レーダに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a precision approach radar for an air traffic control radar.

〔従来の技術〕[Conventional technology]

精測進入レーダ、すなわちP A R(Precisi
on^pproach Radar)は、滑走路に進入
する航空機の三次元情報(方位、高低、距離)を検出し
、航空機を着陸点に安全に誘導するために使用される。
Precision Approach Radar, or PAR (Precisi
on^pproach Radar) is used to detect three-dimensional information (azimuth, altitude, distance) of an aircraft approaching the runway and safely guide the aircraft to the landing point.

第2図にPARの基本系統図を示す、PARは方位及び
高低用の2つの空中線11.12を有し、送信部13で
発生した周波数が9000 MHz帯のパルス変調され
た送信信号を空中線11..12から交互に輻射する。
The basic system diagram of PAR is shown in Fig. 2. PAR has two antennas 11 and 12 for azimuth and altitude, and a pulse modulated transmission signal with a frequency of 9000 MHz band generated by a transmitter 13 is transmitted to the antenna 11. .. .. It radiates alternately from 12.

航空機からの反射信号は空中線11.12から受信部1
4へ送られ、受信部14で増幅検波された後、指示部1
5へ伝送され、スーコープ上に表示される。
The reflected signal from the aircraft is sent from the antenna 11.12 to the receiver 1.
4, and after being amplified and detected by the receiving section 14, the instruction section 1
5 and displayed on the supercope.

第3図(a>および(b)は第2図に示す空中線11.
12等を備えるPAR局舎50の設置場所と覆t!i5
2.53を示した平面図および側面図である。PARl
は、局舎50が滑走路51の横に設置され、第3図(a
>に示すように水平面内で約20°、第3図(b)に示
すように垂直面内で約7°の覆域52.53を有する。
FIGS. 3(a) and 3(b) show the antenna 11 shown in FIG.
Installation location and cover of PAR station building 50 equipped with 12 etc.! i5
FIG. 2.53 is a plan view and a side view. PARl
The station building 50 is installed next to the runway 51, and the station building 50 is installed next to the runway 51, and
> has a coverage area 52.53 of about 20° in the horizontal plane, and about 7° in the vertical plane as shown in FIG. 3(b).

又、探知距離は方位、高低とも約10 N M (na
ut、1pal m1le)である、なお、図において
54は着陸点、56はコースライン、57はグライドス
ロープ、58は航空機を示す。
In addition, the detection distance is approximately 10 N M (na
In the figure, 54 is a landing point, 56 is a course line, 57 is a glideslope, and 58 is an aircraft.

第4図はPARlによる航空機58の誘導の様子を示す
。管制官は指示部15のスコープを監視しながら対空無
線5つを介してパイロットへ航空機58の位置を通報し
、あらかじめ設定された降下路(グライドスロープ57
及びコースライン56)上を航空[58が通過するよう
に誘導する。
FIG. 4 shows how the aircraft 58 is guided by PARl. The controller reports the position of the aircraft 58 to the pilot via five anti-aircraft radios while monitoring the scope of the instruction unit 15, and follows the preset descent route (glide slope 57).
and the course line 56) so that the aircraft [58] passes over the course line 56).

もし航空a!158が降下路をはずれた場合、管制官は
パイロットにその旨通報し、パイロットは軌道を修正す
る。又、管制官は着陸点54から航空機58までの距離
をパイロットへ通報する。
If aviation a! If the 158 deviates from its descent path, the controller will notify the pilot and the pilot will correct the trajectory. The controller also reports the distance from the landing point 54 to the aircraft 58 to the pilot.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のPARによる着陸誘導管制は、管制官が
対空無線を介してパイロットへ航空機の降下路からのず
れを通報する方式のため、パイロット側は自機の位置を
直接目視により確認することが不可能であった。
In the conventional landing guidance control using PAR described above, the controller notifies the pilot via anti-aircraft radio of the aircraft's deviation from the descent path, so the pilot can directly visually confirm the position of the aircraft. It was impossible.

また、PARは正常に動作していても、無線機が異常な
場合は航空機の誘導ができないという欠点があった。
Another disadvantage is that even if the PAR is operating normally, it cannot guide the aircraft if the radio is malfunctioning.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の精測進入レーダ装置は、レーダ情報を航空機へ
伝送するレーダ信号伝送部を含むことを特徴とする。
The precision approach radar device of the present invention is characterized in that it includes a radar signal transmission section that transmits radar information to an aircraft.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である。図
においてPARIは第2図に示すものと同様なもので、
第2図より詳しくシンクロナイン16、角度信号発生部
17も示しである。シンクロナイザ16は送信部13、
受信部14および指示部15ヘトリガCを送り、角度信
号発生部17は空中線11.12の方位および高低の角
度を示す角度信号すを発生する。PARIからは、本発
明によるレーダ信号伝送部2へ受信部14からのビデオ
信号a、角度発生部17からの角度信号す及びシンクロ
ナイザ16からのトリガCが出力される。ビデオ信号a
としては航空機からの信号を取り出すのに容易なように
グランドクラツタが除去されたMTIビデオ信号を使用
する。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, PARI is similar to that shown in Figure 2,
The synchronized nine 16 and the angle signal generator 17 are also shown in more detail in FIG. The synchronizer 16 includes the transmitter 13,
A trigger C is sent to the receiving section 14 and the instruction section 15, and the angle signal generating section 17 generates an angle signal indicating the direction and height angle of the antenna 11, 12. From PARI, the video signal a from the receiving section 14, the angle signal S from the angle generating section 17, and the trigger C from the synchronizer 16 are outputted to the radar signal transmitting section 2 according to the present invention. video signal a
For this purpose, an MTI video signal from which ground clutter has been removed is used to easily extract the signal from the aircraft.

レーダ信号伝送部2内の目標検出部3ではビデオ信号a
の中から航空機信号すを取り出し、航空機信号が存在す
るタイミングにおける角度信号のみを出力する。又、ト
リガCと航空機信号の時間差から距離を求めコード化し
て出力する。目標検出部3のブロック図を第5図に、タ
イミングチャートを第6図に示す。第5図の目標検出部
3においてビデオ信号a及び角度信号すは方位及び高低
の空中線11.12からの両信号が時分割で入力される
ので同一回路を使用できる。
The target detection section 3 in the radar signal transmission section 2 receives the video signal a.
It extracts the aircraft signal from among the signals and outputs only the angle signal at the timing when the aircraft signal exists. Also, the distance is determined from the time difference between the trigger C and the aircraft signal, encoded, and output. A block diagram of the target detection section 3 is shown in FIG. 5, and a timing chart is shown in FIG. 6. In the target detection section 3 of FIG. 5, the video signal a and the angle signal as well as the azimuth and elevation signals from the antennas 11 and 12 are input in a time-division manner, so that the same circuit can be used.

第5図において、コンパレータ31はビデオ信号aを一
定のスレ・ソシュホールドレベルと比較航空機信号dを
検出し、カウンタ32はトリガCから航空機信号dまで
のクロック発生器33からのクロック信号の数を出力し
、コード発生器34はカウンタ32の出力を距離信号f
にして出力する。ゲート発生器36は航空機信号dを受
けてゲート信号eをゲート36に送り、その時の角度信
号すを通過させて角度信号gとする。
In FIG. 5, a comparator 31 compares the video signal a with a certain threshold level to detect the aircraft signal d, and a counter 32 detects the number of clock signals from the clock generator 33 from the trigger C to the aircraft signal d. The code generator 34 converts the output of the counter 32 into a distance signal f
and output it. The gate generator 36 receives the aircraft signal d, sends the gate signal e to the gate 36, and passes the current angle signal to form the angle signal g.

目標検出部3からの航空機の角度信号gは、演算部4に
送られ、ここで、あらかじめ設定されたグライドスロー
プ57、コースライン56及びPAR−着陸点54の距
離のデータから演算された角度信号との差が求められる
。演算部4のブロック図を第7図に示す、第7図のメモ
リ21はグライドスロープ57等のデータを記憶するた
めのメモリである。角度演算器22はメモリ21からの
データにより各距離毎のブライドスロープ57及びコー
スライン56の角度を演算しメモリ23に出力する。こ
の演算は初期演算のみでグライドスロープ57等の入力
データが変わらないかぎり演算の必要はない。
The angle signal g of the aircraft from the target detection unit 3 is sent to the calculation unit 4, where the angle signal is calculated from data on the glide slope 57, the course line 56, and the distance to the PAR-landing point 54 set in advance. The difference is required. A block diagram of the calculation unit 4 is shown in FIG. 7. A memory 21 in FIG. 7 is a memory for storing data such as the glide slope 57. The angle calculator 22 calculates the angles of the bride slope 57 and the course line 56 for each distance based on the data from the memory 21 and outputs them to the memory 23. This calculation is only an initial calculation and is not necessary as long as the input data such as the glide slope 57 does not change.

メモリ23に記憶された角度データは目標検出部3から
入力される距離信号fにより読み出され、差演算器24
に入力され、ここで航空機の角度信号gとの差が求めら
れる。求められた差信号と距離信号gは合成器25に入
力され合成されて演算部4から出力される。
The angle data stored in the memory 23 is read out by the distance signal f input from the target detection unit 3, and
The difference between the angle signal g and the aircraft angle signal g is determined here. The obtained difference signal and distance signal g are input to the synthesizer 25, combined, and output from the calculation section 4.

この演算部4からの゛信号を送信部5にて航空機へ伝送
するのに適した信号に変換、変調、増幅した後、空中線
6上り航空機58へ輻射する。航空機5811―ではこ
れらの信号を受信し、増幅、復調しメータに表示する。
The signal from the arithmetic unit 4 is converted, modulated, and amplified by the transmitting unit 5 into a signal suitable for transmission to an aircraft, and then radiated to the upstream aircraft 58 from the antenna 6. Aircraft 5811- receives these signals, amplifies and demodulates them, and displays them on the meters.

たとえば、レーダ信号伝送部2では降下路からの偏差、
距離をデジタル化して航空1!158へ伝送する。航空
機58側ではデジタル信号をアナログに変換し、偏差は
I L S (Instrument Landing
 5yste■)のメータに表示する。又、距離はDM
E(口1stance MeasuringEquip
ment)のメータに表示する。
For example, in the radar signal transmission section 2, the deviation from the descent route,
The distance is digitized and transmitted to Aviation 1!158. On the aircraft 58 side, the digital signal is converted to analog, and the deviation is I L S (Instrument Landing
5yste■) is displayed on the meter. Also, DM for distance
E (mouth 1stance MeasuringEquip
ment) will be displayed on the meter.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、PARの三次元情報を航
空機へ直接伝送するためのレーダ信号伝送部とを具備す
ることにより、管制官とパイロットの無線交信によらず
に、パイロットは機上の表示器を監視し自機の位置を確
かめながら着陸することができる。
As explained above, the present invention is equipped with a radar signal transmission section for directly transmitting PAR three-dimensional information to the aircraft, so that the pilot can receive information on the aircraft without relying on radio communication between the controller and the pilot. You can land while checking the position of your aircraft by monitoring the display.

本発明により機上及び地上の両方で航空機の位置を監視
できるので安全性をさらに向上することが可能となる。
The present invention makes it possible to monitor the position of an aircraft both on-board and on the ground, thereby further improving safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は従来
のPARの基本的なブロック図、第3図(a>及び(b
)はそれぞれPARの設置場所及び覆域を示す平面図お
よび側面図、第4図はPARによる従来の管制の様子を
示す説明図、第5図および第6図はそれぞれ第1図に示
す目標検出部3のブロック図およびタイミングチャート
、第7図は第1図に示す演算部4のブロック図である。 1・・・PAR12・・・レーダ信号伝送部、3・・・
1漂検出部、4・・・演算部、5・・・送信部、6・・
・空中線、11・・・方位空中線、12・・・高低空中
線、13・・・送信部、14・・・受信部、15・・・
措示部、16・・・シンクロナイザ、17・・・角度信
号発生部。 ゛148..類、2′ 、−一′ 第27 (り 訃3剖 茅!; 肥 ffi
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a basic block diagram of a conventional PAR, and Fig. 3 (a> and (b)
) are a plan view and a side view showing the installation location and coverage area of PAR, respectively, Figure 4 is an explanatory diagram showing the conventional control by PAR, and Figures 5 and 6 are the target detection shown in Figure 1, respectively. Block Diagram and Timing Chart of Unit 3, FIG. 7 is a block diagram of the arithmetic unit 4 shown in FIG. 1. 1...PAR12...Radar signal transmission section, 3...
1 Drift detection section, 4... Calculation section, 5... Transmission section, 6...
- Antenna, 11... Azimuth antenna, 12... Altitude antenna, 13... Transmitting section, 14... Receiving section, 15...
Measurement section, 16... synchronizer, 17... angle signal generation section.゛148. .. Class, 2', -1' 27th (Ri訃3 dissection!; ferti

Claims (1)

【特許請求の範囲】[Claims] レーダ情報を航空機へ伝送するレーダ信号伝送部を含む
ことを特徴とする精測進入レーダ装置。
A precision approach radar device comprising a radar signal transmission unit that transmits radar information to an aircraft.
JP61106262A 1986-05-09 1986-05-09 Precise approach radar device Expired - Lifetime JPH0752224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106262A JPH0752224B2 (en) 1986-05-09 1986-05-09 Precise approach radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106262A JPH0752224B2 (en) 1986-05-09 1986-05-09 Precise approach radar device

Publications (2)

Publication Number Publication Date
JPS62263484A true JPS62263484A (en) 1987-11-16
JPH0752224B2 JPH0752224B2 (en) 1995-06-05

Family

ID=14429181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106262A Expired - Lifetime JPH0752224B2 (en) 1986-05-09 1986-05-09 Precise approach radar device

Country Status (1)

Country Link
JP (1) JPH0752224B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304534A (en) * 1995-05-12 1996-11-22 Nec Corp Precision approach radar system
US7136012B2 (en) 2003-04-01 2006-11-14 Lockheed Martin Corporation Approach radar with array antenna having rows and columns skewed relative to the horizontal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIKKEI ELECTRONICS=1978 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304534A (en) * 1995-05-12 1996-11-22 Nec Corp Precision approach radar system
US7136012B2 (en) 2003-04-01 2006-11-14 Lockheed Martin Corporation Approach radar with array antenna having rows and columns skewed relative to the horizontal

Also Published As

Publication number Publication date
JPH0752224B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US4293857A (en) Collision avoidance warning system
EP0200787B1 (en) System for displaying warning zone or menacing aircraft in an apparatus for preventing collision on aircraft
US5218360A (en) Millimeter-wave aircraft landing and taxing system
US3623090A (en) Air traffic control system
US5475393A (en) Precision landing system
US20040046687A1 (en) Surveillance system and method for aircraft approach and landing
RU2303796C1 (en) Method for independent forming of landing information for flight vehicle and on-board radar for its realization (modifications)
US4380050A (en) Aircraft location and collision avoidance system
GB2032724A (en) Airport surface navigation and control system
JP2007501945A (en) System and method for target location
US4333081A (en) Monitoring system for scanning-beam microwave landing apparatus
AU1593188A (en) Multi-mode microwave landing system
US3167772A (en) Collision avoidance system
US5801659A (en) Apparatus and method for coupling satellite navigation signals to a VOR system
US3870993A (en) Distance measuring equipment for aircraft employing precision distance measuring means
US5239310A (en) Passive self-determined position fixing system
CN87104303A (en) Advanced instrument landing system (ILS)
JPS62263484A (en) Precision approach radar
US3159832A (en) Anti-collision device for aircraft
US20130306800A1 (en) Flight guidance system
KR102209074B1 (en) A landing guidance method for a fixed-wing aircraft using signal travel time and system using it
US2654084A (en) Blind landing and appoach system
JP2647054B2 (en) Precise measurement approach radar system
JPS60222782A (en) Passive type ssr apparatus
Petrova et al. MOBILE MULTI-POSITION AIR-NAVIGATION-LANDING SYSTEM AND ITS PARAMETERS IN LANDING MODE.