JPS62263459A - Oxygen concentration sensor - Google Patents

Oxygen concentration sensor

Info

Publication number
JPS62263459A
JPS62263459A JP61108217A JP10821786A JPS62263459A JP S62263459 A JPS62263459 A JP S62263459A JP 61108217 A JP61108217 A JP 61108217A JP 10821786 A JP10821786 A JP 10821786A JP S62263459 A JPS62263459 A JP S62263459A
Authority
JP
Japan
Prior art keywords
sensor
oxygen concentration
electrode
concentration sensor
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108217A
Other languages
Japanese (ja)
Inventor
Tadayoshi Igai
猪飼 忠義
Fumiyoshi Noda
野田 文好
Takashi Kamo
加茂 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61108217A priority Critical patent/JPS62263459A/en
Publication of JPS62263459A publication Critical patent/JPS62263459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To perform feedback control without response delay even in a lean region or a theoretical air/fuel ratio, by forming an inside electrode and/or an outside electrode to the cylindrical part of an element in a state divided into two along the longitudinal direction of the cylindrical part. CONSTITUTION:A solid electrolyte 1, an insulating coating layer 4, a cathode 6 for a lean mixture sensor, a cathode 7 for an O2-sensor, a common anode 8, a gas diffusion layer 9, a protective coating layer 10, a heater 11 for heating an element and a constant voltage power source 12 are provided. Constant voltage is applied between the electrodes 6, 8 from the power source 11 and a flowing current is measured by an ammeter 13. The electromotive force generated between the electrodes 7, 8 is measured by a voltmeter 14. When the feedback control of an air/fuel ratio is performed in a lean region, the output of the ammeter 13 is used and, when the feedback control is applied to a theoretical air/fuel ratio, the output of the voltmeter 14 is used. Therefore, feedback control can be performed without response delay even in the lean region and the theoretical air/fuel ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関例えば自動車用エンジンの空燃比を
広い領域で検出することのできる酸素濃度上/すに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxygen concentration sensor that can detect the air-fuel ratio of an internal combustion engine, such as an automobile engine, over a wide range.

〔従来の技術〕[Conventional technology]

自動車用エンジンの空燃比制御システムて用いられる酸
素濃度センサは、理論空燃比(A/F−14,6)近傍
におけるセンサの発生電圧変化を利用しており、主とし
て三元触媒を用いた排気ガス浄化システムを対象として
実用化されているO 従来よシ実用化されている酸素濃度センサは、いわゆる
濃淡電池型のもので、これは、酸素イオン透過性固体電
解質からなる一端が閉止した筒体の内外表面に電極層を
設け、筒体内部に大気等の標準ガスを有する酸素濃度上
ンサ素子の外表面に排気ガスを接触させ、標準ガスと排
気ガスとの酸素濃度差によシ前記内外電極間に発生する
電位差を起電力として、取出し、この起電力の急激な変
化を測定することによシ理論空燃比を検知するものであ
る。しかしながら、この酸素濃淡電池型酸素濃度上ンサ
は、理論空燃比近傍を精度良く検知することができるが
、それ以外の酸素濃度領域を検知することができなかっ
た。近年、自動車の低燃費化という社会的要請に応じ、
エンジンを改良し特定条件において理論空燃比よシ酸素
過剰側(リーン側)で運転するシステムが検討されてい
るが、上記濃淡電池型酸素濃度センサでは、このシステ
ムに使用することは不適当であった0 一方、排ガスの酸素濃度を低い領域から高い領域にわた
って連続的に検知することのできるいわゆるリーンミク
スチヤセンサが開発されている。このリーンミクスチヤ
センサは、酸素イオン透過性固体電解質からなる基板両
面に電極層をそれぞれ設け、少なくとも一方の電極層を
無機材料で被覆してなるセンサ素子部を排気ガスと接触
するようにして排気管に取付け、前記両極に定電圧を印
加すると、排気ガス中の酸素濃度に応じて両極間に限界
電流が流れるので。
Oxygen concentration sensors used in air-fuel ratio control systems for automobile engines utilize changes in the voltage generated by the sensor near the stoichiometric air-fuel ratio (A/F-14, 6), and mainly detect exhaust gas using a three-way catalyst. Oxygen concentration sensors that have been put to practical use in purification systems are of the so-called concentration battery type, which consists of a cylinder made of an oxygen ion-permeable solid electrolyte and closed at one end. Electrode layers are provided on the inner and outer surfaces, and exhaust gas is brought into contact with the outer surface of the oxygen concentration sensor element having a standard gas such as atmospheric air inside the cylinder, and the inner and outer electrodes The stoichiometric air-fuel ratio is detected by extracting the potential difference generated between the two as an electromotive force and measuring a sudden change in this electromotive force. However, this oxygen concentration battery type oxygen concentration sensor can accurately detect the vicinity of the stoichiometric air-fuel ratio, but cannot detect other oxygen concentration regions. In recent years, in response to social demands for lower fuel consumption in automobiles,
A system is being considered that improves the engine and operates on the oxygen-rich side (lean side) of the stoichiometric air-fuel ratio under specific conditions, but the concentration cell type oxygen concentration sensor mentioned above is not suitable for use in this system. On the other hand, a so-called lean mixture sensor that can continuously detect the oxygen concentration of exhaust gas from a low region to a high region has been developed. This lean mixture sensor has electrode layers on both sides of a substrate made of an oxygen ion-permeable solid electrolyte, and at least one of the electrode layers is covered with an inorganic material.The sensor element is brought into contact with exhaust gas to exhaust air. When attached to a pipe and applying a constant voltage to the two poles, a limiting current will flow between the two poles depending on the oxygen concentration in the exhaust gas.

この限界電流の変化を測定することによシ自動車エンジ
ンの空燃比を検知することができるCしかし、このリー
ンミクスチヤセンサは、理論空燃比以上の、すなわち酸
素過剰側空燃比を検出することができるだけである。
By measuring changes in this limiting current, the air-fuel ratio of an automobile engine can be detected. As much as possible.

上記欠点を解決するため1本発明者らは濃淡電池型酸素
濃度センサとリーンミクスチヤセンサとを組合わせるこ
とによシ、1本の素子だけでエンジンの理論空燃比近傍
は勿論、リーン側空燃比をも精度良く連続して検出する
ことができる酸素濃度センサを提案した0 この酸素濃度センサは、酸素イオン透過性固体電解質か
らなる一端が閉じた筒状素子本体と、該素子本体内表面
及び外表面に設けられた内側電極及び外側電極と、少な
くとも前記外側電極を被覆する無機材料層とからなる酸
素センサ素子と。
In order to solve the above-mentioned drawbacks, the present inventors combined a concentration cell type oxygen concentration sensor and a lean mixture sensor. We have proposed an oxygen concentration sensor that can continuously detect the fuel ratio with high accuracy. This oxygen concentration sensor consists of a cylindrical element body with one end closed made of an oxygen ion permeable solid electrolyte, an inner surface of the element body, An oxygen sensor element comprising an inner electrode and an outer electrode provided on an outer surface, and an inorganic material layer covering at least the outer electrode.

前記素子外表面に接触する排気ガスが理論空燃比近傍で
排出されるものであるときは、該排気ガスと前記素子内
部に導入された酸素濃度既知の標準ガスとの酸素濃度差
によシ前記内側電極と外側電極間に生ずる起電力の変化
を検知し。
When the exhaust gas that comes into contact with the outer surface of the element is discharged near the stoichiometric air-fuel ratio, the difference in oxygen concentration between the exhaust gas and the standard gas of known oxygen concentration introduced into the element causes the Detects changes in electromotive force generated between the inner and outer electrodes.

前記素子外表面に接触する排気ガスが理論空燃比よシ酸
素過剰領域で排出されるものであるときは、前記内外両
電極に定電圧を印加してこれら内外両電極間に流れる電
流の変化を検知する回路と、からなるものである。
When the exhaust gas that contacts the outer surface of the element is discharged in an oxygen-excess region than the stoichiometric air-fuel ratio, a constant voltage is applied to both the inner and outer electrodes to measure changes in the current flowing between the inner and outer electrodes. It consists of a detection circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記酸素濃度センサは1つのセンサ素子をエンジンの運
転条件に応じて濃淡電池型酸素濃度センサとリーンミク
スチヤセンサとに使い分けるものであるが、濃淡電池型
酸素濃度センサとしての使用からリーンミクスチヤセン
サとしての使用に切替える時又はその逆に切替える時に
出力の応答遅れが生じる◎ 更に、リー/ミクスチャセンサとして使用するには酸素
の拡散を制限するため外側電極を被覆する無機材料層の
厚さを厚くするか、又は空孔率を小さくする必要がある
が、そうすると濃淡電池型酸素濃度センサとしての使用
時に応答性が悪化してしまい、フィードバック制御時に
空燃比が三元触媒の浄化適正範囲からはずれ、排気ガス
中の有害成分の浄化率が大幅に低下するという問題点を
有する0 本発明は上記従来技術における問題点を解決するための
ものであシ、その目的とするところはり一ン領域の空燃
比と理論空燃比とを正確に測定することができ且つ出力
の応答遅れのない酸素濃度センサを提供することにある
0〔問題点を解決するための手段〕 すなわち本発明の酸素濃度センサは、酸素イオン透過性
固体電解質からなる一端を閉鎖した筒状素子の内面に内
側電極を形成し、該素子の外面に絶縁層、外側電極、ガ
ス拡散層を順次積層して酸素濃度センサを形成するにあ
たシ、該素子筒状部に形成する内側電極及び/又は外側
電極を該筒状部の長さ方向に沿って2分割して形成する
か又は長さ方向と直交する方向に沿って2分割して形成
し1分割して形成した一方の内側電極と外側電極とを定
電圧電源に接続してリーンミクスチヤセンサを構成し、
他方の内側電極と外側電極とを電圧検出器に接続して濃
淡電池型酸素濃度センサを構成したことを特徴とする。
In the above oxygen concentration sensor, one sensor element is used as either a concentration battery type oxygen concentration sensor or a lean mixture sensor depending on the engine operating conditions. There is a delay in output response when switching to use as a sensor or vice versa ◎ Furthermore, in order to use it as a leakage/mixture sensor, the thickness of the inorganic material layer covering the outer electrode must be increased to limit oxygen diffusion. Alternatively, it is necessary to reduce the porosity, but if this is done, the response will deteriorate when used as a concentration cell type oxygen concentration sensor, and the air-fuel ratio will deviate from the appropriate purification range of the three-way catalyst during feedback control. The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to reduce the purification rate of harmful components in exhaust gas significantly. The object of the present invention is to provide an oxygen concentration sensor that can accurately measure the fuel ratio and the stoichiometric air-fuel ratio and that has no output response delay. An oxygen concentration sensor is formed by forming an inner electrode on the inner surface of a cylindrical element with one end closed and made of an oxygen ion permeable solid electrolyte, and sequentially laminating an insulating layer, an outer electrode, and a gas diffusion layer on the outer surface of the element. At the same time, the inner electrode and/or the outer electrode formed on the cylindrical part of the element are divided into two parts along the length direction of the cylindrical part, or are formed by dividing them into two parts along the direction perpendicular to the length direction. A lean mixture sensor is configured by connecting one inner electrode and the outer electrode, which are formed by dividing and forming one division, to a constant voltage power source,
The present invention is characterized in that the other inner electrode and outer electrode are connected to a voltage detector to constitute a concentration cell type oxygen concentration sensor.

本発明の酸素濃度センサの内側電極及び/又は外側電極
を2分割する方法は上記範凹内であれば特に限定されな
い。分割比はリーンミクスチヤセンサ及び濃淡電池型酸
素濃度センサの個々の特性及び全体の総合特性を考慮し
て決める。
The method of dividing the inner electrode and/or outer electrode of the oxygen concentration sensor of the present invention into two is not particularly limited as long as it falls within the above range. The division ratio is determined in consideration of the individual characteristics of the lean mixture sensor and the concentration cell type oxygen concentration sensor and the overall characteristics of the whole.

リーンミクスチヤセンサ部と濃淡電池型酸素濃度センサ
部との配置も特に限定されず1例えば筒状素子の筒状部
の長さ方向に沿って2部割して形成する場合にはどちら
を素子閉鎖端側としてもよい。
The arrangement of the lean mixture sensor section and the concentration cell type oxygen concentration sensor section is not particularly limited either; It may also be on the closed end side.

内側電極及び/又は外側電極はマスキング手段を用いて
分割形成してもよいし、又は一体に形成した後一部を削
除することによシ分割してもよい。
The inner electrode and/or the outer electrode may be formed separately using a masking means, or may be formed integrally and then separated by removing a portion.

内側電極及び外側電極は例えば通気性の多孔性白金電極
をメッキ法等を用いて形成する。
The inner electrode and the outer electrode are formed of, for example, air-permeable porous platinum electrodes using a plating method or the like.

上記電極上にはアルミナ、スピネル、ジルコニア等のセ
ラミック材料を例えばプラズマ溶射シテセラミックコー
ティング層を設ける。
A plasma-sprayed ceramic coating layer of a ceramic material such as alumina, spinel, or zirconia is provided on the electrode.

この場合濃淡電池型酸素濃度センサ用のコーティング層
とリーンミクスチヤセンサ用のコーティング層とは厚さ
や空孔率等の性状を変えた方が良い。即ち、リーンミク
スチヤセンサ用のコーティング層はガス拡散層であシ、
酸素の拡散を制限するため層厚を厚くするか又は空孔率
を小さくシ、濃淡電池型酸素濃度センサ用のコーティン
グ層は電極の保護層であり、応答性を上げるため層厚を
薄くするか又は空孔率を犬きくすると良い。
In this case, it is preferable that the coating layer for the concentration cell type oxygen concentration sensor and the coating layer for the lean mixture sensor have different properties such as thickness and porosity. That is, the coating layer for the lean mixture sensor is a gas diffusion layer;
The coating layer for a concentration cell type oxygen concentration sensor is a protective layer for the electrode, and should be made thinner to increase responsiveness. Alternatively, it is better to increase the porosity.

酸素イオン透過性固体電解質としては例えばZrO2,
HfO2、T h O,、CeO,、Bi2O,等にY
zOs。
Examples of the oxygen ion permeable solid electrolyte include ZrO2,
Y in HfO2, T h O,, CeO,, Bi2O, etc.
zOs.

CaO1M g O、Y b203等を固溶させた緻密
な焼結体が挙げられる。
Examples include dense sintered bodies in which CaO1M g O, Y b203, etc. are dissolved.

筒状素子の大きさや形状等の性状は特に限定されないが
、形状としては例えば円筒状、角筒状又はこれらの組合
せを用いることができる〇又、センサ素子を所定温度に
加熱するためのヒータ例えば棒状セラミックヒータ等を
設けると特性が安定して良い。
The size, shape, and other properties of the cylindrical element are not particularly limited, but the shape may be, for example, cylindrical, prismatic, or a combination thereof.Also, a heater for heating the sensor element to a predetermined temperature may be used, for example. If a rod-shaped ceramic heater or the like is provided, the characteristics can be stabilized.

〔実施例〕〔Example〕

以下の実施例において本発明を更に詳細に説明する。な
お、本発明は下記実施例に限定されるものではない。
The invention will be explained in further detail in the following examples. Note that the present invention is not limited to the following examples.

実施例1: 本発明の酸素濃度センサの素子作製方法を図面に基いて
説明する。まず、第2図に示すように試験管状固体電解
質1の外表面の一部(部分、 2と3)を金属薄板等に
よシマスキングし、その上からセラミックの溶射コーテ
ィングを行う0ここで部分2と3はそれぞれリーンミク
スチヤセンサと濃淡電池型酸素濃度センサ(02センサ
)の陰極を形成する部分である。コーテイング後マスキ
ング部分を剥すと、第3図に示すようにマスキング部分
のみ固体電解質が露出し、それ以外は絶縁コーティング
層4で覆われたものができる。この後素子内外両面にメ
ッキ等の手段により白金(pt)等よシなる電極を形成
し、第4図に示すように外側電極の一部を削除して(削
除部分;慟]左右に分割する。そしてその上に。
Example 1: A method for manufacturing an oxygen concentration sensor element of the present invention will be explained based on the drawings. First, as shown in Fig. 2, a part of the outer surface (parts 2 and 3) of the test tube-shaped solid electrolyte 1 is masked with a thin metal plate, etc., and a ceramic spray coating is applied over it. 2 and 3 are parts forming the cathodes of a lean mixture sensor and a concentration cell type oxygen concentration sensor (02 sensor), respectively. When the masking part is peeled off after coating, the solid electrolyte is exposed only in the masking part, and the rest is covered with the insulating coating layer 4, as shown in FIG. After this, electrodes made of platinum (PT) or the like are formed on both the inner and outer surfaces of the element by means such as plating, and as shown in Fig. 4, a part of the outer electrode is removed (the removed part; □) and it is divided into left and right sides. .And on top of that.

第4図の左側の部分には酸素(02)の拡散を制限する
ためのコーティング層を、右側の部分には電極保護のた
めのコーティング層を設け、左側部分をリーンミクスチ
ヤセンサとして、右側部分をO1七/すとして使用する
。なお、コーティング層は無機粉末の溶射例えばプラズ
マ溶射等により設ける0その方法は1例えば第4図の素
子の左側から素子の上下方向に比較的粒径の小さな無機
粉末の溶射を行ない、次に素子を回転させて比較的粒径
の大きな無機粉末の溶射を行なう◇これによシ左側部分
は厚く空孔率の小さなコーティング層が形成され、右側
部分は薄く空孔率の大きいコーティング層が形成される
A coating layer is provided on the left side of Fig. 4 to restrict the diffusion of oxygen (02), a coating layer is provided on the right side to protect the electrode, and the left side is used as a lean mixture sensor, and the right side is is used as O17/. The coating layer is provided by thermal spraying of an inorganic powder, such as plasma spraying.The method is 1.For example, inorganic powder with a relatively small particle size is sprayed from the left side of the element in the vertical direction of the element as shown in Fig. 4, and then the element is coated. ◇By this, a thick coating layer with low porosity is formed on the left side, and a thin coating layer with high porosity is formed on the right side. Ru.

第1図に本発明の酸素濃度センサの一例のセンサ素子断
面図を示す0図中、1は固体電解質、4け絶縁コーティ
ング層、6はリーンミクスチヤセンサ用陰極、7は02
七ンサ用陰極、8は共通の陽極、9はガス拡散層、10
は保護コーティング層、11は素子加熱用ヒータ、58
はヒ−タホルダである◎電極6,8間には定電圧電源1
2によシ一定電圧を印加し流れる電流を電流計13によ
シ測定する@また、電極7,8間に発生する起電力は電
圧計14で測定する0空燃比をリーン領域でフィードバ
ック制御する場合は電流計13の出力を用い、理論空燃
比にフィードバック制御する場合は電圧計14の出力を
用いる@ 第5図に本実施例の酸素濃度センサの出力特性を示す◎
図中1がリーンミクステヤセンサ部(素子左側〕の出力
、■が02センサ部(素子右側)の出力である。
FIG. 1 shows a cross-sectional view of a sensor element of an example of the oxygen concentration sensor of the present invention. In FIG.
7 is a cathode for sensors, 8 is a common anode, 9 is a gas diffusion layer, 10
is a protective coating layer, 11 is a heater for heating the element, 58
is a heater holder ◎ Constant voltage power supply 1 is connected between electrodes 6 and 8.
A constant voltage is applied to 2, and the flowing current is measured by the ammeter 13 @Also, the electromotive force generated between the electrodes 7 and 8 is measured by the voltmeter 14. The 0 air-fuel ratio is feedback-controlled in the lean region. For feedback control to the stoichiometric air-fuel ratio, the output of the voltmeter 14 is used. Figure 5 shows the output characteristics of the oxygen concentration sensor of this example.
In the figure, 1 is the output of the lean mixte sensor section (on the left side of the element), and ■ is the output of the 02 sensor section (on the right side of the element).

本発明の酸素濃度センサの第2の素子作成方法(外側電
極分割方法)を第6図及び第7図に示す。まず、第2図
のようにコーティング層を形成した後第6図に示すよう
に部分15をマスキングして再度コーティングを行なう
0そしてマスキングを剥し電極を形成する0この時の第
6図におけるA−A線に沿った素子断面の拡大図を第7
図に示す。旋盤等により素子を回転させながら第7図の
点線よシ外側の部分を削除すれば外側電極の左右分割が
容易にできる〇実施例2: 本発明の酸素濃度センサの別の実施例の素子作製方法の
一例を図面に基いて説明する◎まず、従来のO,センサ
やリーンミクスチヤセンサと同様にY2O3安定化Zr
O,等の固体電解質の粉末を試験管状に成形する際、第
8図に示すような溝16を有する芯金17を用いる。芯
金170B−BIIK沿った断面図を第9図に示す・こ
れを用いて粉末をプレス成形し、必要ならば切削加工を
施した後焼成する0これによシ試験管状の固体電解質の
内面KU字状に凸部が形成される0次に第10図に示す
ように試験管状固体電解質18の外表面の一部(部分2
と3)を金属薄板等によシマスキングし、セラミックの
溶射コーティングを行なう0ここで部分2と5はそれぞ
れリーンミクスチヤセンサと偽センサの陰極にあたる部
分である0コ一テイング後マスキング部分を剥すと、第
11図に示すようにマスキング部分のみ固体電解質が露
出し、それ以外はコーティング層4で覆われたものがで
きる0この後素子内外両面にメッキ等の手段によシPt
等よシなる゛電極を形成し素子内面のU字状の凸部の頂
部をドリル等によシ削除する0これによシ内側電極は左
右に2分割される。以下実施例1と同様にしてセンサ素
子を得る〇 第12図に本実施例のセンサ素子の断面図を示す。図中
18は固体電解質、19はリーンミクスチヤセンサ用陽
極、20は02センサ用陽極。
A second element manufacturing method (outer electrode dividing method) of the oxygen concentration sensor of the present invention is shown in FIGS. 6 and 7. First, after forming a coating layer as shown in Fig. 2, mask the portion 15 and re-coat as shown in Fig. 6. Then, remove the masking and form the electrode. An enlarged view of the cross section of the device along line A is shown in Figure 7.
As shown in the figure. By rotating the element using a lathe or the like and removing the part outside the dotted line in Figure 7, the outer electrode can be easily divided into left and right parts.Example 2: Fabrication of an element of another example of the oxygen concentration sensor of the present invention An example of the method will be explained based on drawings.◎First, like conventional O,sensors and lean mixture sensors, Y2O3 stabilized Zr
When molding solid electrolyte powder such as O, etc. into a test tube shape, a core metal 17 having grooves 16 as shown in FIG. 8 is used. A cross-sectional view along the core metal 170B-BIIK is shown in Figure 9. Using this, the powder is press-molded, cutting is performed if necessary, and then fired. This allows the inner surface KU of the test tube-shaped solid electrolyte to be formed. As shown in FIG. 10, a part of the outer surface of the test tube-shaped solid electrolyte 18 (part 2
and 3) are masked with a thin metal plate, etc., and a ceramic spray coating is applied.Here, parts 2 and 5 correspond to the cathodes of the lean mixture sensor and false sensor, respectively.After coating, remove the masking part. Then, as shown in Fig. 11, the solid electrolyte is exposed only in the masked part, and the rest is covered with the coating layer 4. After that, Pt is applied to both the inside and outside of the element by means such as plating.
Equivalent electrodes are formed, and the top of the U-shaped protrusion on the inner surface of the element is removed using a drill or the like.The inner electrode is thereby divided into two parts, left and right. Hereinafter, a sensor element is obtained in the same manner as in Example 1. FIG. 12 shows a sectional view of the sensor element of this example. In the figure, 18 is a solid electrolyte, 19 is an anode for the lean mixture sensor, and 20 is an anode for the 02 sensor.

21は共通の陰極であシ、他の数字は実施例1と同じ意
味を表わす。
21 is a common cathode, and the other numbers have the same meanings as in Example 1.

実施例3〜6: 第13図に本発明の別の実施例の素子のリード取シ出し
部分を示す。試験管状固体電解質22よシなる素子の内
周面に凸部23を設け、陽極19及び20からのリード
取シ出し用のステム24の凸部23に対応する部分に凹
部25を設ける0これにより固体電解質22のそれぞれ
の陽極19及び20からステム24の導体部分26及び
27を通してリード線28によシ確実に個別にリードを
取シ出すことができる。なお、素子内側にヒータを設け
る場合は第14図に示すようにヒータ11のヒータホル
ダ29にステム24と同様凹部25を設ける0なお30
はヒータリード線である@ステム24又はヒータホルダ
29と素子内周面の凹凸部は第15図に示すように試験
管状固体電解質31及びホルダ32に2ケ所以上設けて
も良い0又、凹凸部の幅や深さ等の形状1位置等も強度
などを維持できる 、範囲内で任意で良い0更に、凹凸
部をステム(又はヒータホルダ)と素子内周面とで逆に
して設けても良い〇 第16図及び第17図はリード取シ出し部分の別の実施
例である@・このようにステム33又はヒータホルダ3
4の一方の導体部分とそれに対応する試験管状固体電解
質55の内周面の部分の形状を他方よシも小さくしたり
又は大きくしたりして変えても良い。
Examples 3 to 6: FIG. 13 shows a lead extraction portion of an element according to another example of the present invention. A convex portion 23 is provided on the inner circumferential surface of an element such as the test tube-shaped solid electrolyte 22, and a concave portion 25 is provided in a portion corresponding to the convex portion 23 of a stem 24 for taking out leads from the anodes 19 and 20. Leads can be reliably taken out individually from the respective anodes 19 and 20 of the solid electrolyte 22 through the conductor portions 26 and 27 of the stem 24 by the lead wires 28. Note that when a heater is provided inside the element, a concave portion 25 is provided in the heater holder 29 of the heater 11 in the same way as the stem 24 as shown in FIG. 14.
is a heater lead wire@The unevenness of the stem 24 or the heater holder 29 and the inner peripheral surface of the element may be provided at two or more places on the test tube solid electrolyte 31 and the holder 32 as shown in FIG. Shape 1 position such as width and depth can maintain strength, etc., may be arbitrary within the range 0 Furthermore, the uneven portion may be provided with the stem (or heater holder) and the inner circumferential surface of the element reversed. Figures 16 and 17 show another example of the lead extraction portion.
The shape of one of the conductor portions 4 and the corresponding inner peripheral surface portion of the test tube-shaped solid electrolyte 55 may be changed by making the other conductor portion smaller or larger.

本実施例の酸素濃度センサの出力特性は実施例1の酸素
濃度センサと同じである0 第18図及び第19図に試験管状固体電解質上記のよう
な凹凸部を設けなかったため、ホルダ57やヒータホル
ダ58の正確な位置決めが難かしく、分割した陽極間で
のショートの危険があシ、又2位置決めは目視によシ行
なうため作業性が悪かった◇ 実施例7: 本発明の酸素濃度センサの別の実施例の素子作製方法の
一例を図面に基いて説明する0まず。
The output characteristics of the oxygen concentration sensor of this example are the same as those of the oxygen concentration sensor of Example 1. Since the test tube-shaped solid electrolyte in FIGS. It was difficult to accurately position the 58, there was a risk of short circuit between the divided anodes, and the workability was poor because the 2 positioning was done visually ◇ Example 7: Another example of the oxygen concentration sensor of the present invention First, an example of the device manufacturing method of the embodiment will be explained based on the drawings.

第20図に示すように試験管状固体電解質1の外表面の
部分39と40を金属薄板等によシマスキングし、その
上からセラミックの溶射コーティングを行なう。ここで
部分59と40はそれぞれヘセンサとリーンミクスチヤ
センサの陰極を形成する部分である0コ一テイング後マ
スキング部分をはがすと、第21図に示すようにマスキ
ング部分のみ固体電解質が露出し、それ以外は絶縁コー
ティング層4で覆われたものができる。次に、この素子
の内外両面にメッキ等の手段によシPt等よシなる電極
を形成し、第22図に示すように外側電極の一部を削除
して上下に分割し、上部k 02センサの陰極7、下部
をリーンミクスチャセン丈の陰極6とする。その際上部
のコーティング層上にリーンミクステヤセンサの陰極6
のリード部41を形成する必要がある。そして陰極7上
に電極保護のためのコーティング層を、@極6上には0
2の拡散を制限するためのコーティング層をセラミック
の溶射等によシ設ける◇その方法は実施例1の方法と同
様である。
As shown in FIG. 20, the outer surface portions 39 and 40 of the test tube-shaped solid electrolyte 1 are masked with a thin metal plate or the like, and a ceramic spray coating is applied thereon. Here, portions 59 and 40 form the cathodes of the hesensor and lean mixture sensor, respectively. When the masking portion is removed after zero coating, the solid electrolyte is exposed only in the masking portion, as shown in FIG. The remaining parts are covered with an insulating coating layer 4. Next, electrodes made of Pt or the like are formed on both the inner and outer surfaces of this element by means such as plating, and as shown in FIG. The cathode 7 of the sensor has a lean mixture sensor length cathode 6 at the bottom. At this time, the cathode 6 of the lean mixer sensor is placed on the upper coating layer.
It is necessary to form the lead portion 41. Then, a coating layer is placed on the cathode 7 to protect the electrode, and a coating layer is placed on the cathode 6.
A coating layer for restricting the diffusion of No. 2 is provided by ceramic thermal spraying or the like. The method is the same as that of Example 1.

第23図に本発明の酸素濃度センサのセンサ素子の断面
図を示す。図中の数字は実施例1と同じ意味を表わす。
FIG. 23 shows a cross-sectional view of the sensor element of the oxygen concentration sensor of the present invention. The numbers in the figure represent the same meanings as in the first embodiment.

又、本実施例の酸素濃度センサの出力特性も実施例1の
酸素濃度センサと同じである◇なお、第22図において
、電極の一部削除を容易にするには、第21図のように
コーティングしてから(メッキする前に)後に電極を削
除したい部分のみが露出するようにしてマスキングをし
、もう一度コーティングしてからメッキを行なうと良い
。そうすると、電極を削除する部分が一番盛シ上がって
いるため、旋盤等で容易に削除できる。
In addition, the output characteristics of the oxygen concentration sensor of this example are the same as those of the oxygen concentration sensor of Example 1. ◇In order to facilitate the deletion of part of the electrode in Figure 22, as shown in Figure 21, After coating (before plating), it is best to mask the electrode so that only the part where you want to remove it is exposed, and then coat it again before plating. Then, since the part where the electrode is to be removed is the most raised, it can be easily removed using a lathe or the like.

実施例8: 本発明の酸素濃度センサの別の実施例のセンサ素子の断
面図を第25図に示す。実施例7とは逆に、試験管状固
体電解質1の筒状部の上部をリーンミクスチヤセンサ、
下部を02センサとしたものである。まず第24図の部
分42と43をマスキングしてコーティングを行ないマ
スキングを剥してから素子の内外両面にメッキ等によシ
ミ極を形成する0そして第22図のように外側電極の一
部を削除して上下に分割し、上部(第24図の43の部
分)をリーンミクスチヤセンサの陰極、下部(同420
部分)を02センサの陰極とする。次に第1の実施例と
同様リーンミクスチヤセンサの陰極上に02の拡散を制
限するためのコーティング層を、02センサの陰極上に
電極保護のためのコーティング層を形成するO 第25図中の数字は実施例7と同じ意味を表わす。
Example 8: A cross-sectional view of a sensor element of another example of the oxygen concentration sensor of the present invention is shown in FIG. Contrary to Example 7, the upper part of the cylindrical part of the test tube-shaped solid electrolyte 1 is connected to a lean mixture sensor
The lower part is the 02 sensor. First, mask and coat parts 42 and 43 in Figure 24, remove the masking, and then form stain electrodes on both the inside and outside of the element by plating, etc. 0. Then, remove a part of the outer electrode as shown in Figure 22. The upper part (part 43 in Fig. 24) is used as the cathode of the lean mixture sensor, and the lower part (part 420 in Fig. 24) is divided into upper and lower parts.
part) is the cathode of the 02 sensor. Next, as in the first example, a coating layer is formed on the cathode of the lean mixture sensor to restrict the diffusion of 02, and a coating layer is formed on the cathode of the 02 sensor to protect the electrode. The numerals have the same meanings as in Example 7.

実施例9: 本発明の酸素濃度センサの別の実施例の素子作成方法の
一例を図面に基いて説明する0まず。
Embodiment 9: First, an example of a method for manufacturing an element of another embodiment of the oxygen concentration sensor of the present invention will be explained based on the drawings.

従来の6センサやリーンミクスチヤセンサと同様にY、
03安定化ZrO2等の固体電解質の粉末を試験管状に
成形する際、第26図に示すような2本の溝16を有す
る芯金44を用いる。芯金44のC−C断面図を第27
図に、D−D断面図を第28図に示す。第28図の凸条
45の部分は第26図では2本の溝16の間の部分にあ
たる。
Like the conventional 6-sensor and lean mixture sensor, Y,
When molding solid electrolyte powder such as ZrO2 stabilized ZrO2 into a test tube shape, a core bar 44 having two grooves 16 as shown in FIG. 26 is used. The 27th C-C sectional view of the core bar 44
In the figure, a DD sectional view is shown in FIG. The portion of the protrusion 45 in FIG. 28 corresponds to the portion between the two grooves 16 in FIG. 26.

芯金44を用いて粉末をプレス成形し、必要ならば切削
加工を施した後焼成して試験管状固体電解質46を得る
。次に第29図に示すように試験管状固体電解質46の
外表面の一部(部分42と43)を金属薄板等によりマ
スキングし。
The powder is press-molded using a core bar 44, cut if necessary, and then fired to obtain a test tube-shaped solid electrolyte 46. Next, as shown in FIG. 29, a part of the outer surface (portions 42 and 43) of the test tube-shaped solid electrolyte 46 is masked with a thin metal plate or the like.

セラミックの溶射コーティングを行なう0ここで部分4
2と43はそれぞれリーンミクスチヤセンサと02セン
サの陰極にあたる部分である。
Ceramic spray coating 0 where part 4
2 and 43 are parts corresponding to the cathodes of the lean mixture sensor and 02 sensor, respectively.

コーテイング後マスキング部分をはがすと、第30図に
示すようにマスキング部分のみ固体電解質46が露出し
、それ以外は絶縁コーティング層4で覆われたものがで
きる0この後素子内外両面にメッキ等の手段によ、9P
t等よシなる電極を形成する0そして素子内面の凸条部
(芯金44の溝16に対応する部分]の頂部と芯金44
のD−D断面の凸条45の部分以外の円周部にあたる部
分の電極をドリル等により削除する0これによシ内側電
極(陽極)は上下に2分割され、同時に下側の電極のリ
ード部(芯金44の2本の溝16の間の部分にあたる。
When the masking part is peeled off after coating, the solid electrolyte 46 is exposed only in the masking part, and the rest is covered with the insulating coating layer 4, as shown in FIG. Yo, 9P
The top of the convex strip on the inner surface of the element (the part corresponding to the groove 16 of the core metal 44) and the core metal 44 form a similar electrode such as t.
The part of the electrode on the circumference other than the part of the protruding strip 45 in the D-D cross section is removed using a drill or the like.This divides the inner electrode (anode) into two parts, upper and lower, and at the same time removes the lead of the lower electrode. (corresponds to the part between the two grooves 16 of the core metal 44).

]が形成される。一方外側電極(陰極ン上には、上部(
第29図43の部分)には0鵞の拡散を制限するための
コーティング層を、下部第29図42の部分)には電極
保護のためのコーティング層をセラミックの溶射等によ
シ設け、上部をリーンミクスチヤセンサとして、下部t
 02センサとして使用する。コーティングは1例えば
まず下部をマスキングして比較的粒径の小さなセラミッ
ク粉末の溶射を行ない、次にマスキングをはがして比較
的粒径の大きなセラミック粉末の溶射を行なうことによ
シ上部(リーンミクスチヤセンサ部分)は厚く°空孔率
の小さなコーティング層が形成され、下部(02センサ
部分)は薄く空孔率の大きなコーティング層が形成され
る。
] is formed. On the other hand, the outer electrode (cathode) is placed on the upper part (
A coating layer is provided on the part (part 43 in Fig. 29) to restrict the diffusion of zero particles, and a coating layer is provided on the lower part (part 42 in Fig. 29) to protect the electrode by thermal spraying of ceramic. as a lean mixture sensor, lower t
Used as 02 sensor. For example, the coating is done by first masking the lower part and spraying ceramic powder with a relatively small particle size, then removing the masking and spraying ceramic powder with a relatively large particle size, then coating the upper part (lean mixture). A thick coating layer with a small porosity is formed on the sensor part), and a thin coating layer with a large porosity is formed on the lower part (02 sensor part).

第31図に本発明の酸素濃度センサのセンサ素子の断面
図を示す0図中の数字は実施例2のセンサ素子と同じ意
味を懺わす◎本実節例の酸素濃度センサの出力特性は実
施例1の酸素濃度センサと同じである〇 実施例10: 本発明の酸素濃度センサの別の実施例のセンサ素子を第
52図及び第33図に示す0実施例9とは逆に試験管型
固体電解質46の上部を02センサ、下部をリーンミク
スチヤセンサとしたものである。まず第32図の部分3
9と40をマスキングしてコーティングを行ない、マス
キングを剥してから素子の内外両面にメッキ等によシミ
極を形成する。そして実施例9と同様に内側電極の一部
を削除して上下に2分割し、上部を02センサの陽極、
下部をリーンミクスチヤセンサの陽極とする。次に、実
施例9と同様外側電極(陰極)上に02センサ部には電
極保護のためのコーティング層を、リーンミクスチヤセ
ンサ部には02の拡散を制限するためのコーティング層
を形成する〇 第33図に本実施例のセンサ素子の断面図を示す0図中
の数字は実施例9と同じ意味を表わすO 〔発明の効果〕 上述のように本発明の酸素濃度センサは酸素イオン透過
性固体電解質からなる一端を閉鎖した竿状素子の内面に
内側電極を形成し、該素子の外面に絶縁層、外側電極、
ガス拡散層を順次積層して酸素濃度センサを形成するに
あたシ、該素子筒状部に形成する内側電極及び/又は外
側電極を核部状部の長さ方向に沿って2分割して形成す
るか又は長さ方向と直交する方向に沿って2分割して形
成し、内側電極と外側電極とを各々接続して一つの素子
上にリーンミクスチヤセンサ及び濃淡電池型酸素濃度セ
ンサを形成したものであるため、リーン領域でも理論空
燃比でも応答遅れがなくフィードバック制御が可能とな
り、車輌の省燃費と高出力を両立させながら排気ガス中
の有害成分の排出量を低く抑えることができる。又、本
発明の酸素濃度センサは種々の変形が可能であシ、車種
や要求特性に応じて最適な性状のものを容易に得ること
ができる。
Figure 31 shows a cross-sectional view of the sensor element of the oxygen concentration sensor of the present invention. The numbers in Figure have the same meanings as those of the sensor element of Example 2. The output characteristics of the oxygen concentration sensor of this practical example are The sensor element is the same as the oxygen concentration sensor of Example 1. Example 10: The sensor element of another example of the oxygen concentration sensor of the present invention is of a test tube type as shown in FIGS. 52 and 33. The upper part of the solid electrolyte 46 is used as an 02 sensor, and the lower part is used as a lean mixture sensor. First, part 3 of Figure 32
Coating is performed by masking 9 and 40, and after removing the masking, stain electrodes are formed by plating or the like on both the inner and outer surfaces of the element. Then, as in Example 9, a part of the inner electrode is removed and divided into upper and lower parts, and the upper part is used as the anode of the 02 sensor.
The lower part is used as the anode of the lean mixture sensor. Next, as in Example 9, a coating layer is formed on the outer electrode (cathode) to protect the electrode on the 02 sensor part, and a coating layer is formed on the lean mixture sensor part to limit the diffusion of 02. FIG. 33 shows a cross-sectional view of the sensor element of this example. The numbers in the figure have the same meanings as in Example 9. [Effects of the Invention] As described above, the oxygen concentration sensor of the present invention has oxygen ion permeability. An inner electrode is formed on the inner surface of a rod-shaped element made of a solid electrolyte with one end closed, and an insulating layer, an outer electrode, and an insulating layer are formed on the outer surface of the element.
When forming an oxygen concentration sensor by sequentially stacking gas diffusion layers, the inner electrode and/or outer electrode formed on the cylindrical part of the element is divided into two along the length direction of the core part. A lean mixture sensor and a concentration cell-type oxygen concentration sensor are formed on one element by forming the sensor into two parts along the direction perpendicular to the length direction, and connecting the inner electrode and the outer electrode to each other. As a result, feedback control is possible with no response delay in the lean range or at stoichiometric air-fuel ratios, making it possible to achieve both fuel efficiency and high output while keeping emissions of harmful components in exhaust gas low. Further, the oxygen concentration sensor of the present invention can be modified in various ways, and a sensor with optimal properties can be easily obtained depending on the type of vehicle and required characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸素濃度センサの一実施例のセンサ素
子の断面図。 第2図ないし第4図は第1図のセンサ素子の作製工程を
示す説明図、 第5図は本発明の酸素濃度センサの出力特性を示すグラ
フ。 第6図は第1図のセンサ素子の別の作製方法を示す説明
図、 第7図は第6図のA−A線に沿った拡大断面図、 第8図は本発明の酸素濃度センサの別の実施例のセンサ
素子を作製するために使用する芯金の正面図、 第9図は第8図の芯金のB−B線に沿った断面図。 第10図及び第11図は本発明の酸素濃度センサの別の
実施例のセンサ素子の作製工程を示す説明図、 第12図は本発明の酸素濃度センサの別の実施例のセン
サ素子の断面図。 第13図ないし第17図は本発明の酸素濃度センサの別
の実施例のセンサ素子のリード取り出し部分の斜視図。 第18図及び第19図は従来の酸素濃度センサのセンサ
素子のリード取り出し部分の斜視図。 第20図ないし第22図は本発明の酸素濃度センサの別
の実施例のセンサ素子の作製工程を示す説明図、 第23図は本発明の酸素濃度センサの別の実施例のセン
サ素子の断面図。 第24図は本発明の酸素濃度センサの別の実施例のセン
サ素子の作製工程を示す説明図、第25図は本発明の酸
素濃度センサの別の実施例のセンサ素子の断面図。 第26図は本発明の酸素濃度センサの別の実施例のセン
サ素子を作製するために使用する芯金の正面図、 第27図は第26図の芯金のC−C線に沿った断面図。 第28図は第26図の芯金のD−D線に沿った断面図。 第29図及び第30図は本発明の酸素濃度センサの別の
実施例のセンサ素子の作製工程を示す説明図。 第31図は本発明の酸素濃度センサの別の実施例のセン
サ素子の断面図、 第32図は本発明の酸素濃度センサの別の実施例のセン
サ素子の作製工程を示す説明図。 第53図は本発明の酸素濃度センサの別の実施例のセン
サ素子の断面図である0 図中。 1.18,22,31,35,36.46・・・固体電
解質4・・・絶縁コーティング層 6.7.21・・・陰極  8,19.20・・・陽極
9・・・ガス拡散層  10・・・保護コーティング層
11 ・・・ヒータ   12・・・定電圧電源13・
・・電流計   14・・・電圧計17.44・・・芯
金  29.38・・・ヒータホルダ52.57・・・
ホルダ 特許出願人   トヨタ自動車株式会社第13図   
第148    第15図第16 メ   貢17  
= ω      区 Cり 昧 第25区 第26図  第27図 第31図 第33図
FIG. 1 is a sectional view of a sensor element of an embodiment of the oxygen concentration sensor of the present invention. 2 to 4 are explanatory diagrams showing the manufacturing process of the sensor element shown in FIG. 1, and FIG. 5 is a graph showing the output characteristics of the oxygen concentration sensor of the present invention. FIG. 6 is an explanatory diagram showing another method for manufacturing the sensor element shown in FIG. 1, FIG. 7 is an enlarged sectional view taken along line A-A in FIG. 6, and FIG. 8 is an illustration of an oxygen concentration sensor of the present invention. FIG. 9 is a front view of a metal core used to fabricate a sensor element of another example; FIG. 9 is a sectional view taken along line BB of the metal core in FIG. 8; 10 and 11 are explanatory diagrams showing the manufacturing process of a sensor element of another embodiment of the oxygen concentration sensor of the present invention, and FIG. 12 is a cross section of a sensor element of another embodiment of the oxygen concentration sensor of the present invention. figure. 13 to 17 are perspective views of lead extraction portions of sensor elements of other embodiments of the oxygen concentration sensor of the present invention. FIGS. 18 and 19 are perspective views of a lead extraction portion of a sensor element of a conventional oxygen concentration sensor. 20 to 22 are explanatory diagrams showing the manufacturing process of a sensor element of another embodiment of the oxygen concentration sensor of the present invention, and FIG. 23 is a cross section of a sensor element of another embodiment of the oxygen concentration sensor of the present invention. figure. FIG. 24 is an explanatory view showing the manufacturing process of a sensor element of another embodiment of the oxygen concentration sensor of the present invention, and FIG. 25 is a sectional view of the sensor element of another embodiment of the oxygen concentration sensor of the present invention. FIG. 26 is a front view of a core metal used to fabricate a sensor element of another embodiment of the oxygen concentration sensor of the present invention, and FIG. 27 is a cross section of the core metal in FIG. 26 taken along line C-C. figure. FIG. 28 is a cross-sectional view of the metal core shown in FIG. 26 taken along line D-D. FIGS. 29 and 30 are explanatory diagrams showing the manufacturing process of a sensor element of another embodiment of the oxygen concentration sensor of the present invention. FIG. 31 is a sectional view of a sensor element of another embodiment of the oxygen concentration sensor of the present invention, and FIG. 32 is an explanatory diagram showing the manufacturing process of a sensor element of another embodiment of the oxygen concentration sensor of the present invention. FIG. 53 is a sectional view of a sensor element of another embodiment of the oxygen concentration sensor of the present invention. 1.18, 22, 31, 35, 36.46...Solid electrolyte 4...Insulating coating layer 6.7.21...Cathode 8,19.20...Anode 9...Gas diffusion layer 10... Protective coating layer 11... Heater 12... Constant voltage power supply 13.
... Ammeter 14 ... Voltmeter 17.44 ... Core metal 29.38 ... Heater holder 52.57 ...
Holder Patent Applicant: Toyota Motor Corporation Figure 13
148 Fig. 15 Fig. 16 Megumi 17
= ω Section C Section 25 Section 26 Fig. 27 Fig. 31 Fig. 33

Claims (1)

【特許請求の範囲】[Claims] 酸素イオン透過性固体電解質からなる一端を閉鎖した筒
状素子の内面に内側電極を形成し、該素子の外面に絶縁
層、外側電極、ガス拡散層を順次積層して酸素濃度セン
サを形成するにあたり、該素子筒状部に形成する内側電
極及び/又は外側電極を該筒状部の長さ方向に沿って2
分割して形成するか又は長さ方向と直交する方向に沿っ
て2分割して形成し、分割して形成した一方の内側電極
と外側電極とを定電圧電源に接続してリーンミクスチヤ
センサを構成し、他方の内側電極と外側電極とを電圧検
出器に接続して濃淡電池型酸素濃度センサを構成したこ
とを特徴とする酸素濃度センサ。
In forming an oxygen concentration sensor, an inner electrode is formed on the inner surface of a cylindrical element with one end closed made of an oxygen ion-permeable solid electrolyte, and an insulating layer, an outer electrode, and a gas diffusion layer are sequentially laminated on the outer surface of the element. , the inner electrode and/or the outer electrode formed on the cylindrical part of the element are arranged in two directions along the length of the cylindrical part.
A lean mixture sensor is formed by dividing it into two parts or by dividing it into two parts along a direction perpendicular to the length direction, and connecting one of the divided inner electrodes and outer electrodes to a constant voltage power source. 1. An oxygen concentration sensor characterized in that the other inner electrode and the outer electrode are connected to a voltage detector to constitute a concentration cell type oxygen concentration sensor.
JP61108217A 1986-05-12 1986-05-12 Oxygen concentration sensor Pending JPS62263459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108217A JPS62263459A (en) 1986-05-12 1986-05-12 Oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108217A JPS62263459A (en) 1986-05-12 1986-05-12 Oxygen concentration sensor

Publications (1)

Publication Number Publication Date
JPS62263459A true JPS62263459A (en) 1987-11-16

Family

ID=14478999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108217A Pending JPS62263459A (en) 1986-05-12 1986-05-12 Oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JPS62263459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225854A (en) * 2011-04-22 2012-11-15 Denso Corp Gas sensor element and gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225854A (en) * 2011-04-22 2012-11-15 Denso Corp Gas sensor element and gas sensor

Similar Documents

Publication Publication Date Title
KR0148687B1 (en) Planar polarographic probe for determining the ñù(rambda)value of gaseous mixtures
KR0148683B1 (en) Element for limit current sensors for determining the ñù(rambda)value of a gas mixture
US4264425A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
US4487680A (en) Planar ZrO2 oxygen pumping sensor
KR970003278B1 (en) Sensor element for limiting current sensors for determining the value of gas mixture
US5393397A (en) Oxygen sensor
US6514397B2 (en) Gas sensor
EP1215492A2 (en) Gas sensor and method of producing the same
JPH10267893A (en) Gas sensor
JPS6252450A (en) Electrochemical element and its manufacture
US4650697A (en) Process of manufacturing oxygen sensor
JP2003294695A (en) Air fuel ratio detecting apparatus
US7083710B2 (en) Gas sensor, in particular a lambda sensor
US20100122916A1 (en) Sensor with electrodes of a same material
JPS62100657A (en) Electrochemical apparatus
JPH07508353A (en) Sensor element for gas component concentration measurement
US6379514B1 (en) Composition structure for NOx sensors
JPS62222159A (en) Oxygen sensor
US20020100697A1 (en) Gas sensor with uniform heating and method of making same
JPH0516543B2 (en)
JP2851632B2 (en) Electrochemical element
JPS62263459A (en) Oxygen concentration sensor
KR20040099332A (en) Insulation material and gas sensor
JPH09264872A (en) Gas sensor
JP2000097905A (en) APPARATUS AND METHOD FOR MEASURING NOx GAS CONCENTRATION