JPS62262802A - Optical fiber for infrared rays - Google Patents

Optical fiber for infrared rays

Info

Publication number
JPS62262802A
JPS62262802A JP61106232A JP10623286A JPS62262802A JP S62262802 A JPS62262802 A JP S62262802A JP 61106232 A JP61106232 A JP 61106232A JP 10623286 A JP10623286 A JP 10623286A JP S62262802 A JPS62262802 A JP S62262802A
Authority
JP
Japan
Prior art keywords
optical fiber
amorphous carbon
carbon film
film
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61106232A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tagawa
田川 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP61106232A priority Critical patent/JPS62262802A/en
Publication of JPS62262802A publication Critical patent/JPS62262802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical fiber for IR which is protected against the moisture of the external air and has high structural stability by forming an amorphous carbon film on the outer side face of an optical fiber material for IR. CONSTITUTION:The optical fiber 1 for IR is constituted by forming the amorphous carbon film 3 by sputtering on a fiber base body 2 consisting of polycrystalline or single crystalline NaCl having a prescribed shape. Since the amorphous carbon film 3 has the characteristic to allow the transmission of 0.2-25mum wavelength light, the film permits the conduction of intermediate IR light (several mum - several tens Xm). The amorphous carbon film 3 prohibits the intrusion of water to the fiber base body 2 side and prevents the elution of the NaCl. The amorphous carbon film 3 is highly resistant to heat (up to about 300 deg.C), acids and alkalis and therefore, the film has the function as the effective and stable protective film even if the installation conditions and environmental conditions for the optical fiber 1 are taken into consideration.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明け、中間赤外光含導びく赤外用光ファイバ材料
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to improvements in infrared optical fiber materials that guide mid-infrared light.

B6発明の概要 この発明は、赤外用光ファイバ材料の表面な、アモルフ
ァスカーボン被膜で覆い赤外用光ファイバ材料が吸湿、
揮発するのを防止するようf二し友ものである。
B6 Summary of the Invention This invention provides a method for covering the surface of an infrared optical fiber material with an amorphous carbon film so that the infrared optical fiber material absorbs moisture.
It is a good friend to prevent volatilization.

C1従来の技術 現在、実用化されている光ファイバは、石英系5102
がほとんどであって、この伝導損失は、理論限界のQ、
2dB/kmにほぼ達している。
C1 Conventional technology The optical fiber currently in practical use is quartz-based 5102
This conduction loss is mostly due to the theoretical limit of Q,
It has almost reached 2dB/km.

D2発明が解決しようとする問題点 しかしながら、このような石英系の光ファイバの光透過
波長域は、長波長側で約4.5μmfでであって、現在
、医学や加工などの分野で用いられている炭酸ガスレー
ザ(10,2μml’?Mすことが出来ない問題点を有
している。
D2 Problems to be Solved by the Invention However, the light transmission wavelength range of such quartz-based optical fibers is approximately 4.5 μmf on the long wavelength side, and currently used in fields such as medicine and processing. The problem is that it cannot be used with a carbon dioxide laser (10.2 μml'?M).

また、このような赤外領域での光ファイバの必要付け、
これら医学、加工の分野ばかりでなく、伝導損失を10
  dB/km l1近づける低損失ファイバー、さら
には光エネルギーの伝送を考える上でも重要なものとな
る。なお、この赤外領域で使用可能な材料(赤外用光フ
ァイバ材料)としては、KH2−5(TtBr/TtI
)、C,I、KCl、NaCLなどがあり、これらの材
料は多・少なりとも潮解性を有しており、湿気に弱くそ
の構造安定性に問題点を有している。
In addition, the need for optical fiber in the infrared region,
In addition to these medical and processing fields, conduction loss
This is important when considering low-loss fibers that can approach dB/km l1, and furthermore, the transmission of optical energy. In addition, KH2-5 (TtBr/TtI) is a material that can be used in this infrared region (infrared optical fiber material).
), C, I, KCl, NaCL, etc., and these materials have deliquescent properties to some extent, are sensitive to moisture, and have problems in their structural stability.

また、KH2−5にあっては、有害物質であるため取扱
いに注意を要する問題点がある。
Additionally, KH2-5 has the problem of requiring care in handling because it is a hazardous substance.

この発明は、これらの問題点に着目して案出されたもの
であって、外気の湿気から惺護された構造安定性の高い
赤外用光ファイバを得んとするものである。
The present invention was devised in view of these problems, and aims to provide an infrared optical fiber that is protected from moisture in the outside air and has high structural stability.

E2問題点を解決するための手段 この発明け、中間赤外光を導びく赤外用光ファイバ材料
の外側面に、スパッタリングにより製膜されるアモルフ
ァスカーボン被膜を形成させたことを、その構成として
いる。
Means for Solving Problem E2 This invention has a structure in which an amorphous carbon film formed by sputtering is formed on the outer surface of an infrared optical fiber material that guides mid-infrared light. .

F1作用 アモルファスカーボン被膜は、赤外用光ファイバ材料に
湿気が浸入するのを阻止すると共に、赤外用光ファイバ
材料の揮発を阻止し、さらに、赤外用光ファイバ材料を
物理的、化学的に安定させる。
The F1 action amorphous carbon film prevents moisture from entering the infrared optical fiber material, prevents the infrared optical fiber material from volatilizing, and further stabilizes the infrared optical fiber material physically and chemically. .

G、実施例 以下、この発明に係る赤外用光ファイバの詳細を図面に
示す一実施例について説明する。
G. Example Hereinafter, an example will be described in which details of the infrared optical fiber according to the present invention are shown in the drawings.

図中、1は赤外用光ファイバであって、所定形状の多結
晶又は単結晶のNILCtでなるファイバ基体2に、ア
モルファスカーボン被膜3をスパッタリングl二より製
膜して構成されている。
In the figure, reference numeral 1 denotes an infrared optical fiber, which is constructed by forming an amorphous carbon coating 3 on a fiber base 2 made of polycrystalline or single-crystalline NILCt in a predetermined shape by sputtering.

前記アモルファスカーボン被膜3け、波長0.2〜25
μmの光を透過せしめる特性を有しているため、中間赤
外光(数μm〜数IOμm)の導光な可能としている。
3 amorphous carbon films, wavelength 0.2-25
Since it has the property of transmitting light of .mu.m, it is possible to guide mid-infrared light (several .mu.m to several IO .mu.m).

また、該アモルファスカーボン1l13ば、ファイバ基
体2側への水の浸入を阻止すると共に、NaCLの溶出
l防止する。さらに、該アモルファスカーボン被膜3 
Vi、1ttffi性(300℃程度まで)、耐酸性、
耐アルカリ性に優れている為、赤外用光ファイバ1の設
置条件、環境条件を考慮しても有効且つ安定な森瑣膜と
しての機能を有している。
Further, the amorphous carbon 1113 prevents water from entering the fiber base 2 side, and also prevents the elution of NaCL. Furthermore, the amorphous carbon coating 3
Vi, 1ttffi property (up to about 300℃), acid resistance,
Since it has excellent alkali resistance, it functions as an effective and stable Moriwa film even considering the installation conditions and environmental conditions of the infrared optical fiber 1.

次に、アモルファスカーボン被膜3の製膜に用いるスパ
ッタ装置を第2図に基づいて蔽明する。
Next, a sputtering apparatus used for forming the amorphous carbon film 3 will be explained based on FIG.

図中、4は真空室であり、この真空室4 +:は、雰囲
気ガス導入管5及び排気管6が連通していて、該排気管
6には、図示しない真空ポンプが直結されている。71
d接地電位の電子引抜き対向電極、8け炭素質ターゲッ
ト電極であり、マツチングボックス9を介して高周波R
F電源10に接続されている。8は、真空室4内で且つ
プラズマI:よる励起ソースのトランスポートする領域
より外側に配置した堆積基板であって、トランスポート
されたS子がソフトにデボジツションするようにしてい
る。尚、雰囲気ガス導入管5からは、水素ガスが送られ
るものとする。
In the figure, 4 is a vacuum chamber, and this vacuum chamber 4+: is connected with an atmospheric gas introduction pipe 5 and an exhaust pipe 6, and a vacuum pump (not shown) is directly connected to the exhaust pipe 6. 71
d A counter electrode for drawing electrons at ground potential, an 8-layer carbonaceous target electrode, and a high-frequency R
It is connected to the F power supply 10. Reference numeral 8 denotes a deposition substrate placed within the vacuum chamber 4 and outside the region to which the excitation source of plasma I is transported, so that the transported S particles are deposited softly. It is assumed that hydrogen gas is sent from the atmospheric gas introduction pipe 5.

ここで、この実施例で行なわれたスパッタリングの方法
を説明する。
Here, the sputtering method performed in this example will be explained.

まず、ファイバ基体2としてのNaC4基板(1011
11X10+++mX1m )を、前記し之スパッタ装
置の堆積基板11にセツティングすると共に、ターゲッ
トとしては、直径75咽、厚さ5mlのグラファイト(
wt。
First, a NaC4 substrate (1011
11 x 10 + + + m
wt.

99.999 % )をセツティングする。99.999%).

次に、真空室4内を1 、33X10−4 P” 以下
C二なるまで減圧し、H2ガスを該真空室4に導入し、
圧力を66.7Paにする。
Next, the pressure inside the vacuum chamber 4 is reduced to 1.33X10-4 P" or less, and H2 gas is introduced into the vacuum chamber 4,
The pressure is set to 66.7 Pa.

基板温度は、冷却装置f二より50℃以下に保った。The substrate temperature was maintained at 50° C. or lower using a cooling device f2.

スパッタ条件としては、RF (13,56MHz )
の高周波電力300Wを投入し、5時間のスパッタな行
なった。この時のアモルファスカーボンの膜厚ば、0.
7μmであった。
The sputtering conditions are RF (13,56MHz)
A high frequency power of 300 W was applied, and sputtering was performed for 5 hours. The film thickness of the amorphous carbon at this time is 0.
It was 7 μm.

なお、N、C1基板の未成膜部け、上記のスパッタリン
グを繰返しアモルファスカーボンのコーティングな行な
った。
Incidentally, the above sputtering was repeated to coat the unformed portions of the N and C1 substrates with amorphous carbon.

上記の方法により作成された赤外用光ファイバ1の耐水
性を確認する次め、以下のような条件で耐水試験を行な
った。
After confirming the water resistance of the infrared optical fiber 1 produced by the above method, a water resistance test was conducted under the following conditions.

耐水条件:30℃純水に1週間漬けた。Water resistance conditions: Soaked in pure water at 30°C for one week.

結  果:(1)目視検査により変化は認められなかっ
た(にごり等なし)。
Results: (1) No change was observed by visual inspection (no cloudiness, etc.).

(2重事変化もなかった。(There were no significant changes.

次に、透過率の測定を行なった結果、赤外用光ファイバ
の耐水試験前後における赤外吸収スペクトル(0,2〜
24声m)には変化汀なかった。また、アモルファスカ
ーボンを被接する前後においても、その時性に変化は鼠
られなかった。
Next, as a result of transmittance measurements, the infrared absorption spectra (0,2~
24 voices m) remained unchanged. Moreover, there was no change in the timing before and after applying amorphous carbon.

さらに、耐水試験後テープ剥離試験を行なったが問題な
く、アモルファスカーボン被膜3けファイバ基体に対し
良い密着性を示した。
Furthermore, a tape peeling test was conducted after the water resistance test, but no problems were found, and good adhesion to the amorphous carbon coated three-layer fiber substrate was demonstrated.

以上、実施例について説明したが、この他にファイバ基
体2の材質は、各種変更が可能であり、例えば上記実施
例にあっては、N、Ctをファイバ基体2J−シている
が、KCl、KH2−5(Tlr/T4I)、などのア
ルカリハライドや、A!12S3゜GeSなどのカルコ
ゲナイドガラスや、G e 02 系+T・02系など
の酸化物系ガラスを選択l、でもよく、同様の耐水特性
や、透過率の変化を生じ斤い結果が得られている。
The embodiments have been described above, but the material of the fiber base 2 can be changed in various ways. For example, in the above embodiments, N and Ct are used as the fiber base 2J, but KCl, Alkali halides such as KH2-5 (Tlr/T4I), A! Chalcogenide glasses such as 12S3゜GeS or oxide glasses such as Ge02+T・02 may also be selected, and similar results have been obtained with similar water resistance properties and changes in transmittance. .

また、アモルファスカーボンの製嘆け、80℃以下で1
liK[可能であるため、スパッタリングにおいて、基
板の冷却は必要に応じて行なえばよい。
In addition, the production of amorphous carbon is limited to 1 at temperatures below 80℃.
Since liK is possible, cooling of the substrate may be performed as necessary during sputtering.

H0発明の効果 以上の貯量で明らかなよう(=、この発明C1係る赤外
用光ファイバにあっては、潮解物質からなるファイバ基
体であっても、水分浸入を阻止するため、ファイバ基体
を有効に保護する効果がある。
As is clear from the storage capacity exceeding the effect of the invention H0 (=, in the infrared optical fiber according to this invention C1, even if the fiber base is made of a deliquescent substance, the fiber base is effective in preventing water intrusion. has a protective effect.

また、アモルファスカーボンは、スパッタリングによる
製膜に際し、80℃以下で成膜可能なため、有毒ガスの
発生、その他挿散を防止する効果がある。
Further, since amorphous carbon can be formed into a film at a temperature of 80° C. or lower when it is formed by sputtering, it has the effect of preventing the generation of toxic gases and other dispersion.

さらに、アモルファスカーボン被膜が耐腐食性が高いた
め、赤外用光ファイバはあらゆる環境条件にも適用可能
となる効果がある。
Furthermore, since the amorphous carbon coating has high corrosion resistance, the infrared optical fiber has the effect of being applicable to all environmental conditions.

さらにまた、アモルファスカーボン被膜は、可視から遠
赤外に亘り透明なため、光ファイバの被捗材として適切
なものであり、また、製膜条件によっては、可撓性な有
する膜とすることも可能なため、ファイバ基体の大きな
曲がりに対しても、対応できる効果がある。
Furthermore, since the amorphous carbon film is transparent from the visible to the far infrared, it is suitable as a covering material for optical fibers, and depending on the film forming conditions, it can also be made into a flexible film. Therefore, it is possible to cope with large bends in the fiber substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る赤外用光ファイバの断面図、第
2図は、本発明の実施に用いられたスバツ装置の説明図
である。 1・・・赤外用光ファイバ、2・・・ファイバ基体、3
・・・アモルファスカーボン被膜。 第1図 第2図
FIG. 1 is a cross-sectional view of an infrared optical fiber according to the present invention, and FIG. 2 is an explanatory diagram of a subassembly apparatus used in implementing the present invention. 1... Infrared optical fiber, 2... Fiber base, 3
...Amorphous carbon film. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 中間赤外光を導びく赤外用光ファイバ材料の外側面に、
スパッタリングにより製膜されるアモルファスカーボン
被膜を形成させたことを特徴とする赤外用光ファイバ。
On the outer surface of the infrared optical fiber material that guides mid-infrared light,
An infrared optical fiber characterized by having an amorphous carbon film formed by sputtering.
JP61106232A 1986-05-09 1986-05-09 Optical fiber for infrared rays Pending JPS62262802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106232A JPS62262802A (en) 1986-05-09 1986-05-09 Optical fiber for infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106232A JPS62262802A (en) 1986-05-09 1986-05-09 Optical fiber for infrared rays

Publications (1)

Publication Number Publication Date
JPS62262802A true JPS62262802A (en) 1987-11-14

Family

ID=14428376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106232A Pending JPS62262802A (en) 1986-05-09 1986-05-09 Optical fiber for infrared rays

Country Status (1)

Country Link
JP (1) JPS62262802A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309307A (en) * 1989-05-24 1990-12-25 Mitsubishi Cable Ind Ltd Optical fiber
JPH0339708A (en) * 1989-07-06 1991-02-20 Nippon Telegr & Teleph Corp <Ntt> Carbon coated optical fiber
JPH03107907A (en) * 1989-09-22 1991-05-08 Hitachi Cable Ltd Optical fiber
JPH03110508A (en) * 1989-09-25 1991-05-10 Hitachi Cable Ltd Optical fiber
US7504154B2 (en) * 2005-03-23 2009-03-17 Lockheed Martin Corporation Moisture barrier coatings for infrared salt optics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309307A (en) * 1989-05-24 1990-12-25 Mitsubishi Cable Ind Ltd Optical fiber
JPH0339708A (en) * 1989-07-06 1991-02-20 Nippon Telegr & Teleph Corp <Ntt> Carbon coated optical fiber
JPH03107907A (en) * 1989-09-22 1991-05-08 Hitachi Cable Ltd Optical fiber
JPH03110508A (en) * 1989-09-25 1991-05-10 Hitachi Cable Ltd Optical fiber
US7504154B2 (en) * 2005-03-23 2009-03-17 Lockheed Martin Corporation Moisture barrier coatings for infrared salt optics

Similar Documents

Publication Publication Date Title
Atanassov et al. Optical properties of TiO2, Y2O3 and CeO2 thin films deposited by electron beam evaporation
JP2716230B2 (en) Infrared transparent material
Franks Preparation and properties of diamondlike carbon films
CN111308599B (en) Ultra-narrow band filter with high optical stability and preparation method thereof
JPS62262802A (en) Optical fiber for infrared rays
Hsu et al. Single-and dual-ion-beam sputter deposition of titanium oxide films
US4663234A (en) Coating capables of resisting to high thermal stress and particularly to coatings for satellites and spatial vessels and to methods for producing those coatings
CN104834025B (en) A kind of day based on nanolithographic blind ultraviolet anti-reflection film
JP5027980B2 (en) Method for depositing fluorinated silica thin film
Limam et al. Local degradation mechanisms by tarnishing of protected silver mirror layers studied by combined surface analysis
CN113412047B (en) Copper-based graphene coating structure and preparation method thereof
JPH07331412A (en) Optical parts for infrared ray and their production
Schultz et al. Hermetic coatings for bulk fluoride glasses and fibers
JP3361621B2 (en) Anti-reflection coating for infrared region
CN210775900U (en) Light-reducing optical filter for observing strong light source
JPH02240605A (en) Fluoride optical fiber subjected to coating on end face and production thereof
JPS6187104A (en) Reflection preventive film
JP3168302B2 (en) Manufacturing method of black glass
CN1006825B (en) Process and uses of plating hardfilm for optical plastic lens
JPH05232301A (en) Barium fluoride-base composite optical member
Stamate et al. IR absorption of TiO2 thin films
Varnier et al. Influence of ion-assisted deposition on structure and surface roughness of aluminum oxide
Wolf et al. Application of coherent-mode representation to inverse propagation problems
RU1809846C (en) Solution for preparing of semiconducting films on tin dioxide-base
Williams et al. Ion-assisted optical coatings deposited at low temperature