JPS62262618A - Method of controlling system interlinkage inverter - Google Patents

Method of controlling system interlinkage inverter

Info

Publication number
JPS62262618A
JPS62262618A JP61103803A JP10380386A JPS62262618A JP S62262618 A JPS62262618 A JP S62262618A JP 61103803 A JP61103803 A JP 61103803A JP 10380386 A JP10380386 A JP 10380386A JP S62262618 A JPS62262618 A JP S62262618A
Authority
JP
Japan
Prior art keywords
inverter
reactive
active
power
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61103803A
Other languages
Japanese (ja)
Inventor
直也 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61103803A priority Critical patent/JPS62262618A/en
Publication of JPS62262618A publication Critical patent/JPS62262618A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電力系統と連系運転される電圧形肖昂イン
lく−々め六かt4洋詠臂す臼I泡官才fげ1子る。か
\るシステムにおいては、有効電力と無効電力の設定変
化や系統のじよう乱、直流N源の変動等の外乱に対し安
定かつ迅速に応答し、系統に悪影響を及ぼすことなく所
望の有効、無効電力制御のできることが望ましい。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a voltage-type converter that is operated in connection with an electric power system. I have 1 child. Such a system responds stably and quickly to disturbances such as changes in active and reactive power settings, disturbances in the grid, and fluctuations in the DC N source, and achieves the desired effective power output without adversely affecting the grid. It is desirable to be able to control reactive power.

〔従来の技術〕[Conventional technology]

第3図は連系インバータシステムの基本構成を示す概略
図である。同図において、11は直流電圧源、12は電
圧形自励インバータ、13は変圧器、14は電力系統で
ある。これを等価モデルで示すと第4図の如く、交流電
圧源20.21とインピーダンスXで表わすことができ
る。なお、20はインバータの等価モデル、21は電力
系統の等価モデルを表わす。
FIG. 3 is a schematic diagram showing the basic configuration of the interconnected inverter system. In the figure, 11 is a DC voltage source, 12 is a voltage type self-excited inverter, 13 is a transformer, and 14 is a power system. This can be expressed as an equivalent model using an AC voltage source 20, 21 and an impedance X as shown in FIG. Note that 20 represents an equivalent model of the inverter, and 21 represents an equivalent model of the power system.

このようなシステムにおける有効電力P、無効電力Qの
制御は、例えば以下の如く行なわれる。
Control of active power P and reactive power Q in such a system is performed, for example, as follows.

第5図はインバータによる有効、無効電力制御方式の従
来例を示す簡成図である。同図において、1は有効電力
調節器(APR)、2は無効電力調m器(人Q几)、4
は点弧角演算器、11は直流電圧源、12は電圧形自励
インバータ、13.15は変圧器、14は電力系統、1
6は変流器、17は有効、無効電力検出器(PQ検出器
)である。
FIG. 5 is a simplified diagram showing a conventional example of an effective/reactive power control method using an inverter. In the figure, 1 is an active power regulator (APR), 2 is a reactive power regulator (人Q几), and 4 is an active power regulator (APR).
is a firing angle calculator, 11 is a DC voltage source, 12 is a voltage type self-excited inverter, 13.15 is a transformer, 14 is a power system, 1
6 is a current transformer, and 17 is an active and reactive power detector (PQ detector).

これは、AP凡lの出力およびAQ几2の出力をそれぞ
れインバータ出力電圧tiの系統電圧vsに対する位相
成分(IVi)と振幅成分(IVi I )として扱い
、これにもとづき点弧角演算器4にてインバータ12の
スイッチング素子に与えるヘキ点弧パルスを求めてその
制御を行なうものである@なお、符号にドツト「・」を
付してベクトルmを示す。
This is done by treating the output of AP 1 and the output of AQ 2 as the phase component (IVi) and amplitude component (IVi I) of the inverter output voltage ti with respect to the grid voltage vs. The vector m is indicated by adding a dot "." to the symbol.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の如き方式ではIVilおよびlV
iがPとQに対してそれぞれ一対一に対応せずに双方の
関数となっているため、列えばPまたはQの設定変更に
よってlViが影響を受け、このlViの変化によって
P、Qの双方が変化してしまう現象が生じる。これは、
系統連系インバータの大容拉化が進むにつれ系統の外乱
として問題となり、またか\る相互千渉性によってシス
テムの応答性を速めることが困難となり、高速の制御が
できないと云う問題が生じている。
However, in the above method, IVil and lV
Since i does not have a one-to-one correspondence with P and Q, but is a function of both, lVi is affected by a change in the setting of P or Q, and this change in lVi changes both P and Q. A phenomenon occurs in which the this is,
As the capacity of grid-connected inverters becomes larger, it becomes a problem as a disturbance to the grid, and due to such interoperability, it becomes difficult to increase the responsiveness of the system, resulting in the problem of not being able to perform high-speed control. There is.

したがって、この発明は有効、無効電力を互いに非干渉
化して制御できるようにして安定かつ高速で、過渡応答
特性に優れた制御方式を提供すること金目的とする。
Accordingly, it is an object of the present invention to provide a stable, high-speed control system that can control effective and reactive powers while making them non-interfering with each other, and has excellent transient response characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

有効、!動電力と一対一に対応するインバータ出力電流
の有効電流成分と無効電流成分それぞれの目標値を得る
目標値発生手段と、この有効、無効1[流の各目標値か
らそれと対応するインバータ出力電圧の各目標値を演算
する演算手段とを設ける0 〔作用〕 この発明は、系統と連系運転して有効電力と無効電力の
制御を行う電圧形自励インバータの制御系において、イ
ンバータの出力電流を有効電力と無効電力のそれぞれに
一義的に対応する有効電流成分と無効1!流成分とに分
けて考え、これら有効。
valid,! target value generation means for obtaining target values of active and reactive current components of the inverter output current in one-to-one correspondence with the dynamic force; [Operation] The present invention provides a control system for a voltage-type self-excited inverter that operates in connection with a grid to control active power and reactive power. Active current components and reactive 1 that uniquely correspond to active power and reactive power, respectively! These are effective when considered separately from the flow components.

無効電b!の目標値を導きこの有効、@効N、流とイン
バータ出力電圧の関係式を展開した演算器によって有効
、無効電流の目標値に対するインバータの出力すべき電
圧の目標VL′t−求め、これに基づいてインバータの
電圧制?#を行うことにより、有効。
Inactive electricity b! The target value of the voltage to be output from the inverter with respect to the target value of the effective and reactive current is determined by a calculator that expands the relational expression between the effective and reactive current and the inverter output voltage. Inverter voltage regulation based? Enable by doing #.

無効電力を非干渉化して制置できるようにする。To make it possible to control reactive power by making it non-interfering.

こ\で、第3図に示したような系統連系インバータシス
テムについて%数式を用いて検討してみるO いま、系統連系インバータシステム!第2図(イ)の様
に考える。ここでは、インバータと系統の間のインピー
ダンスをインダクタンスLと抵抗rで表わしている。そ
して、系絖箪圧Vst−基準にして、インバータ出力電
圧Vjs出力電流iを第2図(ロ)に示す様にa−β座
標上のベクトルとして扱う。このとき、それぞれのα−
β成分は、となっている。この様に表わされる連系シス
テムにおいて、インバータ出力電圧と電流の関係式は所
定の微分方程式を解くことにより、次の様に求めること
ができる。なお、Pは微分演算子(d/di)である。
Now let's consider a grid-connected inverter system like the one shown in Figure 3 using the % formula. Now, let's examine the grid-connected inverter system! Think of it as shown in Figure 2 (a). Here, the impedance between the inverter and the grid is represented by an inductance L and a resistance r. Then, the inverter output voltage Vjs output current i is treated as a vector on the a-β coordinate as shown in FIG. At this time, each α−
The β component is as follows. In the interconnected system expressed in this manner, the relational expression between the inverter output voltage and current can be obtained as follows by solving a predetermined differential equation. Note that P is a differential operator (d/di).

・・・・・・ (4) また、有効電力Pと無効電力Qは系統電圧との同相成分
と鉦交成分の電池から、 (T ニーツノ−1期) となる。つまり%1aeiβはそれぞれ有効、無効気力
に一対一に対応する有効、無効電流である。
...... (4) Also, the active power P and the reactive power Q are as follows from the in-phase component and cross-sectional component of the battery with the grid voltage. In other words, %1aeiβ are effective and reactive currents that correspond one-to-one to the effective and reactive energies, respectively.

従って、)’、Qを制御するには、これら有効、無  
  効[流鳴、iβを制御すれば良い。そして、この鴎
、iβはインバータ出力電圧に対して(4)式の関係に
あることから、この式を制御系内で実際に展開する演算
装置または電流/を圧(工/■)変換装置を設けて制御
すれば、理想的な制御性能が得られることになる◇ 〔実施例〕 第1図は、以上の考えに基づくこの発明の実施例を示す
構成図である。同図からも明らかなように、この実施例
は一点鎖線で示す演算器[(I/V変侯装置)3を設け
た点が特徴である。つまり、こ\には前記(4)式に基
づく演算を行なう各種演算器31a、31b、32a、
32b、33a*33bが設けられ、有効、無効電流の
目標値1 、籠βからインバータが出力すべき電圧の制
御信号va。
Therefore, to control )', Q, these valid and
The effect [flow sound, iβ should be controlled. Since this iβ has the relationship of equation (4) with respect to the inverter output voltage, an arithmetic device or a current/pressure converter that actually develops this equation within the control system is required. If provided and controlled, ideal control performance can be obtained. ◇ [Embodiment] FIG. 1 is a block diagram showing an embodiment of the present invention based on the above idea. As is clear from the figure, this embodiment is characterized by the provision of an arithmetic unit (I/V conversion device) 3 indicated by a dashed line. In other words, this includes various computing units 31a, 31b, 32a, which perform calculations based on equation (4) above,
32b, 33a*33b are provided, a target value 1 of active and reactive currents, and a control signal va of the voltage that the inverter should output from the cage β.

v、* 、演算する。そして、これらV、、Vβから点
弧角演算器4によって実際にイン/(−夕に与えられる
べき点弧パルスを発生するようにしている。
v, *, is calculated. Then, from these V, .

また、この実施例においては、有効、無効電力と有効、
無効電流とが一対一に対応することから、有効電力調節
器1と無効電力調節器2のそれぞれの出力t−有効′a
L流および無効電流の目標値として扱っている、つまり
調節器1,2を1!死目標値発虫手段として用いている
が、これは特にこの方式に限定されるものではなく、系
統電圧が一定であれば、有効、無効電力の目標値を単に
比例倍する係数器を設け、これにより有効、無効電力の
目標値を得るようにしても良いものである。
In addition, in this embodiment, active power, reactive power and active power,
Since there is a one-to-one correspondence with the reactive currents, the respective outputs t-active'a of the active power regulator 1 and the reactive power regulator 2
It is treated as the target value of L current and reactive current, that is, regulators 1 and 2 are set to 1! Although it is used as a means of generating a death target value, it is not limited to this method in particular.If the system voltage is constant, a coefficient unit that simply proportionally multiplies the target values of active and reactive power is provided. In this way, target values of effective and reactive power may be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、有効電力と無効電力に対し一義的に
対応する有効vL流と無効電流の目標値を制御量として
導き、有効前動電流とインバータ出力電圧の関係式をも
とに展開した演!I器により、インバータの出力すべき
電圧の目橙値ヲ求めて出力電圧制御する様にしたため、
有効電力と無効電力を互いに非干渉化して制御すること
ができ、過渡特性の大幅な向上を図ることができる。
According to this invention, target values of effective vL current and reactive current, which uniquely correspond to active power and reactive power, are derived as control variables, and developed based on the relational expression between effective forward current and inverter output voltage. Performance! Since the output voltage is controlled by determining the target value of the voltage that the inverter should output using the I-device,
It is possible to control active power and reactive power so that they do not interfere with each other, and it is possible to significantly improve transient characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す構成図、第2図はこの
発明の詳細な説明するための説明図、第3図は系統連系
インバータシステムの基本構成を示す概略図、第4図は
第3図の等価ブロック図、第5図はインバータによる有
効、無効電力制御方式の従来例を示す構成図である。 符号説明 l・・・・・・有効電力調節器(APR)、2・・・・
・・無効%lami(AQR)、3−−−−−− Hn
装置−(I / V変換装置)、4・・・・・・点弧角
演算器、11・・・・・・直流NFEr2.12・・・
・・・電圧形自励インバータ、13゜15・・・・・・
変圧器、14・・・・・・電力系統、16・・・・・・
変流器、17・・・・・・有効、無効電力検出器(PQ
検出器)、20・・・・・・インバータ等価モデル、2
1・・・・・・電力系統等価モデル、31a、31b・
・・・・・微分演算器、32a 、32b・・・・・・
比例演算器、33a。 33b・・・・・・加減算器。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 璽1 閃 饗2 図 (イ)
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram for explaining the invention in detail, FIG. 3 is a schematic diagram showing the basic configuration of a grid-connected inverter system, and FIG. 4 is an equivalent block diagram of FIG. 3, and FIG. 5 is a configuration diagram showing a conventional example of an active/reactive power control method using an inverter. Description of symbols l... Active power regulator (APR), 2...
・・Invalid%lami(AQR), 3------ Hn
Device - (I/V converter), 4... Firing angle calculator, 11... DC NFEr2.12...
...Voltage type self-excited inverter, 13°15...
Transformer, 14...Power system, 16...
Current transformer, 17... Active, reactive power detector (PQ
detector), 20...Inverter equivalent model, 2
1... Power system equivalent model, 31a, 31b.
...differential calculator, 32a, 32b...
Proportional calculator, 33a. 33b... Addition/subtraction device. Agent Patent Attorney Akio Namiki Agent Patent Attorney Seishi Matsuzaki 1 Senjo 2 Diagram (a)

Claims (1)

【特許請求の範囲】 電力系統と連系運転され有効電力および無効電力の制御
を行う系統連系インバータにおいて、前記有効、無効電
力と一対一に対応するインバータ出力電流の有効電流成
分と無効電流成分それぞれの目標値を得る目標値発生手
段と、 該有効、無効電流の各目標値からそれと対応するインバ
ータ出力電圧の各目標値を演算する演算手段と、 を設け、該演算手段からの出力にもとづきインバータの
出力電圧を制御することにより有効電力および無効電力
の制御を行うことを特徴とする系統連系インバータの制
御方式。
[Scope of Claims] In a grid-connected inverter that is operated in connection with a power grid and controls active power and reactive power, an active current component and a reactive current component of an inverter output current that correspond one-to-one to the active and reactive powers. Target value generation means for obtaining each target value, and calculation means for calculating each corresponding target value of the inverter output voltage from each target value of the active and reactive currents, and based on the output from the calculation means. A control method for a grid-connected inverter, characterized in that active power and reactive power are controlled by controlling the output voltage of the inverter.
JP61103803A 1986-05-08 1986-05-08 Method of controlling system interlinkage inverter Pending JPS62262618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103803A JPS62262618A (en) 1986-05-08 1986-05-08 Method of controlling system interlinkage inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103803A JPS62262618A (en) 1986-05-08 1986-05-08 Method of controlling system interlinkage inverter

Publications (1)

Publication Number Publication Date
JPS62262618A true JPS62262618A (en) 1987-11-14

Family

ID=14363558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103803A Pending JPS62262618A (en) 1986-05-08 1986-05-08 Method of controlling system interlinkage inverter

Country Status (1)

Country Link
JP (1) JPS62262618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290993A (en) * 2008-05-29 2009-12-10 Origin Electric Co Ltd Single-phase voltage type ac-dc conversion device
JP2013158245A (en) * 2013-05-22 2013-08-15 Origin Electric Co Ltd Dispersed power source inverter and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290993A (en) * 2008-05-29 2009-12-10 Origin Electric Co Ltd Single-phase voltage type ac-dc conversion device
JP2013158245A (en) * 2013-05-22 2013-08-15 Origin Electric Co Ltd Dispersed power source inverter and control method thereof

Similar Documents

Publication Publication Date Title
Wang et al. Circulating current suppression for MMC-HVDC under unbalanced grid conditions
Mehrasa et al. Dynamic model, control and stability analysis of MMC in HVDC transmission systems
Chen et al. A minimal harmonic controller for a STATCOM
Lee et al. Time-offset injection method for neutral-point AC ripple voltage reduction in a three-level inverter
Hou et al. Adaptive fuzzy backstepping control of three-phase active power filter
JP2728575B2 (en) Power conversion method and device
Kukrer et al. Model-based current control strategy with virtual time constant for improved dynamic response of three-phase grid-connected VSI
Gao et al. A novel direct power control for DFIG with parallel compensator under unbalanced grid condition
Aissa et al. Design and real time implementation of three-phase three switches three levels Vienna rectifier based on intelligent controllers
JP6851291B2 (en) Power converter and its control method
Routray et al. A robust fuzzy sliding mode control design for current source inverter based STATCOM application
JPS62262618A (en) Method of controlling system interlinkage inverter
Almelian et al. Enhancing the performance of cascaded three-level VSC STATCOM by ANN controller with SVPWM integegration
Chattopadhyay et al. Phase-angle balance control for harmonic filtering of a three-phase shunt active filter system
Yadav et al. Design of integral sliding mode controller for speed control of induction motor
JP2946106B2 (en) AC motor control method and device
Shadangi et al. Space vector pulse width modulation-based DSTATCOM for harmonic compensation
Yue et al. Robustness improvement model predictive control strategy based on Luenberger observer for Y‐type modular multilevel converter
Hou et al. Robust adaptive fuzzy control of a three-phase active power filter based on feedback linearization
JP2909377B2 (en) Control device for voltage source PWM converter
JPS6295973A (en) Power converter
JPH1084675A (en) Power conversion device
JPH03245793A (en) Method and device for controlling ac motor
JP3261952B2 (en) PWM converter control device
Benbouhenni NEW ZERO VOLTAGE VECTORS IN DIRECT TORQUE CONTROL OF INDUCTION MOTOR DRIVE USING INTELLIGENT CONTROLLERS