JPS622625B2 - - Google Patents

Info

Publication number
JPS622625B2
JPS622625B2 JP55051177A JP5117780A JPS622625B2 JP S622625 B2 JPS622625 B2 JP S622625B2 JP 55051177 A JP55051177 A JP 55051177A JP 5117780 A JP5117780 A JP 5117780A JP S622625 B2 JPS622625 B2 JP S622625B2
Authority
JP
Japan
Prior art keywords
fluidized bed
gas
fuel gas
furnace
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55051177A
Other languages
Japanese (ja)
Other versions
JPS56146878A (en
Inventor
Daburu Reinorudoson Aaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP5117780A priority Critical patent/JPS56146878A/en
Publication of JPS56146878A publication Critical patent/JPS56146878A/en
Publication of JPS622625B2 publication Critical patent/JPS622625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は流動層炉による浸炭窒化方法に関する
ものである。 更に詳細には、流動層炉を用いて低温ゾーン
(500℃〜580℃)で浸炭窒化を行なう方法に関す
るものである。 (従来の技術) 軸、歯車等の耐摩耗性、耐腐食性などを向上さ
せるために、従来から低温ゾーンで浸炭窒化処理
が行なわれている。たとえば、青化ソーダを主成
分とした塩浴中で処理する塩浴法、あるいは吸熱
性浸炭ガスとアンモニアガスとを混合した雰囲気
用ガスが供給される炉内で処理するガス炉法等に
よつて行なわれている。しかし前記塩浴法は公害
の面から実施が困難視されて来ており、また前記
ガス炉法は、品質のバラツキが発生しやすい欠点
があり、このため関係会社等においてはより良い
浸炭窒化法の開発を行ないつつある。 (発明において解決しようとする問題点) 本発明は、このような背景の下に発明されたも
のであり、公害の発生防止化、品質のバラツキ防
止化、及び省エネルギー化等がはかれる低温ゾー
ンでの浸炭窒化方法を提供しようとするものであ
る。 (問題点を解決するための手段) この目的を達成する本発明の浸炭窒化方法は、
窒素と、アンモニアと、二酸化炭素もしくは酸素
とを混合した雰囲気用ガスを、炉床の耐火性粒状
物が流動層を形成しうるように供給すると共に、
前記流動層の上面よりわずか下方もしくは上方
に、燃料ガスおよびこの燃料ガスを燃焼させるに
必要な空気を供給し、前記流動層の上面付近領域
のみにおいて前記燃料ガスを燃焼させて炉内温度
を500℃〜580℃に保ちながら処理することを特徴
とするものである。 (実施例) 以下、図面に基いて説明すると、第1図及び第
2図において、炉1には配管2から雰囲気用ガス
が供給されると共に、配管3a,3bから燃料ガ
スが、また配管4a,4bから前記燃料ガスを燃
焼させるに必要な空気が供給される。なお前記雰
囲気用ガスは、窒素と、アンモニアと、二酸化炭
素もしくは酸素とを混合したガスであり、これら
は図示しない適当な混合装置を介して、60%(窒
素):35%(アンモニア):5%(二酸化炭素)
の割合に、または60%(窒素):39%(アンモニ
ア):1%(酸素)の割合に混合されている。ま
た、前記燃料ガスは、メタン、エタン、プロパ
ン、ブタン等の炭化水素系ガス、あるいは天然ガ
スなどが用いられる。雰囲気用ガスは、処理雰囲
気形成と、コンテナ7内の耐熱性粒子、例えばア
ルミナ粒子、ジルコン砂などが流動層形成に必要
な量を、燃料ガス及び空気は流動層が所定の温度
を維持するに必要な量を供給する。配管2から炉
1の圧力室5に供給される雰囲気用ガスは、多孔
性のセラミツク材で構成される分散板6を介して
均一にコンテナー7内に分散される。分散板は金
属製多孔板等公知の適当なものが用いられる。分
散板6上に堆積されているアルミナ粒子を流動さ
せて流動層を形成する。なおこの流動層の上面は
図示Aの所に位置されている。一方、配管3a,
3bで供給される燃料ガスの必要量は、ノズル8
a,8bから前記流動層中に噴出される。また配
管4a,4bで供給される空気もノズル9a,9
bから前記流動層中に噴出される。これらノズル
8a,8b及び9a,9bは、図示のように流動
層の上面Aよりわずか下方に配され、かつノズル
8a,8bはノズル9a,9bよりもわずか下方
に配されている。このためノズル8a,8bから
流動層中に噴出された燃料ガスは、配管2から供
給されて流動層中を上昇して来る雰囲気用ガスに
よつて上方へ流され、ノズル9a,9bから流動
層中に噴出された空気と混合されて燃焼しうる状
態となり、図示しない着火装置で着火されると燃
焼し、流動層を加熱する。流動層は上面A側から
次第に下方に向つて加熱され、所定時間が経過す
ると所定温度に均一に加熱される。たとえば570
℃±5℃のように加熱される。なお炉1からの排
ガスは、炉1の上端に着脱できるように装着され
た蓋体10のフイルター11を通過して排気され
る。 処理する軸、歯車等の物品は、図示しない適当
な手段によつて炉1の上方から流動層中に浸漬さ
れ、水平格子12で支持される。この場合、蓋体
10は事前に炉1から離脱され、流動層中に物品
が浸漬されると再び装着される。流動層中に浸漬
されている物品は、均一に加熱されて流動してい
る雰囲気用ガスと接触して浸炭窒化される。たと
えば570℃、2時間の処理によつて15〜20ミクロ
ンの白いε層が得られる。なお処理中において
は、雰囲気用ガスの供給量、燃料ガスの供給量及
び空気の供給量が所定にコントロールされる。浸
炭窒化された物品は、蓋体10を炉1から離脱し
て図示しない適当な手段によつて炉外へ取り出さ
れる。 処理中、ノズル8a,8bから流動層中に噴出
されなかつた余剰の燃料ガスは、配管3a,3b
の排出側へ送られ、そして再び供給側へ送られ
る。また配管4a,4bに設けられている補助ノ
ズル13a,13bから流動層の上面A上の空間
に噴出される空気によつて排ガスの完全燃焼を行
なうことができ、更に通路14に冷気を供給する
ことによつて分散板6及び圧力室5内の雰囲気用
ガスが過度に加熱されるのを防止することができ
る。なお図中、15は断熱材である。本発明にお
いては、燃焼用ガス及び空気を第3図あるいは第
4図に示す方法で供給してもよい。第3図におい
ては、配管16からの空気と、配管17からの燃
料ガスとが、噴出口18で合流混合されて流動層
の上面Aよりわずか下方に噴出される。また第4
図においては、配管19からの空気と、配管20
からの燃料ガスとが、噴出口21で合流混合され
て流動層の上面Aよりわずか上方に水平に噴出さ
れる。なお斜め下方に向けて噴出口21を配して
もよい。また配管19と配管20を分離して配し
てもよい。この場合、配管19は配管20の上方
に配される。而して炉内に供給された燃料ガス
は、流動層の上面A付近領域のみで燃焼し、流動
層の下方部分を処理するに好適な雰囲気にするこ
とができる。なお雰囲気用ガスは、窒素:アンモ
ニア:二酸化炭素もしくは酸素の混合割合を各種
にすることができるが、前述した混合割合がもつ
とも好ましい。流動層内の温度は燃焼ガス及び空
気の供給量と割合を制御することによつて行う
が、処理温度ゾーンは、500℃〜580℃に低温ゾー
ンが好ましい。更に、燃料ガスを噴出するノズル
8a,8bは、水平方向のみに噴出しうるように
設ける場合のみならず、斜め上方のみもしくは斜
め下方のみ、または水平と斜め上下の多方向に噴
出しうるように設けても良い。斜め上方に噴出し
うるように設ける場合は60゜以下、また斜め下方
に噴出しうるように設ける場合は30゜以下の範囲
が好ましい。 実施例 1 直径500mmのコンテナ7内に深さ約500mmに120
メツシユ篩上80メツシユ篩下のアルミナ粒子を入
れ、これに350N/分の割合で、金属製多孔板
である分散板6を介しガスを吹き込んで流動層を
形成した。流動化時のアルミナ層の深さは600mm
ないし700mmであつた。 サンプル処理時のガス組成は、窒素60%、アン
モニア35%、二酸化水素5%の割合とし、燃料ガ
スにはプロパンを用い、流動層が570℃±5℃に
なるように制御した。 処理サンプルは直径10mm、長さ250mmの
SACM645材の丸棒の上部に小孔を穿ち、ステン
レスの針金を通して流動層の中央部にサンプルの
上端が表面から約100mm流動層内に潜るよううに
浸漬した。浸漬後、約2時間でサンプルを引き上
げ冷却後、サンプルを長手方向125mmのところで
切断し、断面のヌープ硬度(HK)を測定した。
結果を表1に示すが、良好な硬度が得られ、十分
な浸炭窒化が行われていることが判る。 実施例 2 実施例1と同じ装置で雰囲気ガス組成、量共に
実施例1と同じ条件を用い、直径10mm、長さ30mm
のS15C材の丸棒切断片を570℃、2時間処理した
ときの表面硬度(HK)は550、硬化深さは0.43mm
であつた。 比較実施例 1 従来の雰囲気炉を用い、アンモニア50%、PX
ガス50%の混合ガス雰囲気下570℃、2時間同じ
寸法のS15C材を処理したときの表面硬さ(HK)
は510、硬化深さは0.32mmであつた。 実施例 3 実施例1と同じ装置で同様の組成の雰囲気ガス
を流し、直径10mm、長さ30mmのSACM645材の円
柱サンプルを温度を変えて1時間処理した。得ら
れたサンプルの表面硬度(HK)を表2に示す。
処理温度500℃〜580℃において高い硬度(HK)
が得られていることが判る。
(Industrial Application Field) The present invention relates to a carbonitriding method using a fluidized bed furnace. More specifically, the present invention relates to a method of carbonitriding in a low temperature zone (500°C to 580°C) using a fluidized bed furnace. (Prior Art) In order to improve the wear resistance, corrosion resistance, etc. of shafts, gears, etc., carbonitriding treatment has conventionally been performed in a low temperature zone. For example, the salt bath method involves treatment in a salt bath containing soda cyanide as the main component, or the gas furnace method involves treatment in a furnace supplied with an atmospheric gas containing a mixture of endothermic carburizing gas and ammonia gas. It is being carried out. However, the salt bath method has been considered difficult to implement due to pollution concerns, and the gas furnace method has the disadvantage of easily causing quality variations. We are in the process of developing. (Problems to be solved by the invention) The present invention was invented against this background, and is intended to be used in low-temperature zones to prevent pollution, prevent quality variations, and save energy. It is an object of the present invention to provide a carbonitriding method. (Means for solving the problem) The carbonitriding method of the present invention that achieves this objective is as follows:
Supplying an atmospheric gas containing a mixture of nitrogen, ammonia, and carbon dioxide or oxygen so that the refractory granules in the hearth can form a fluidized bed;
Fuel gas and the air necessary to combust the fuel gas are supplied slightly below or above the upper surface of the fluidized bed, and the fuel gas is combusted only in the region near the upper surface of the fluidized bed to lower the furnace temperature to 500°C. It is characterized by processing while maintaining the temperature between ℃ and 580℃. (Example) The following will explain based on the drawings. In FIGS. 1 and 2, atmospheric gas is supplied to the furnace 1 from the pipe 2, fuel gas is supplied from the pipes 3a and 3b, and the furnace 1 is supplied with the gas from the pipe 4a. , 4b supply the air necessary to combust the fuel gas. The atmosphere gas is a mixture of nitrogen, ammonia, and carbon dioxide or oxygen, and these are mixed into a mixture of 60% (nitrogen): 35% (ammonia): 5 through an appropriate mixing device (not shown). %(carbon dioxide)
or 60% (nitrogen): 39% (ammonia): 1% (oxygen). Further, as the fuel gas, hydrocarbon gas such as methane, ethane, propane, butane, or natural gas is used. Atmosphere gas is used to form a processing atmosphere and heat-resistant particles such as alumina particles and zircon sand in the container 7 are used in an amount necessary to form a fluidized bed, and fuel gas and air are used to maintain a predetermined temperature of the fluidized bed. Supply the required amount. Atmospheric gas supplied from the pipe 2 to the pressure chamber 5 of the furnace 1 is uniformly dispersed into the container 7 via a distribution plate 6 made of porous ceramic material. As the dispersion plate, a known suitable one such as a metal perforated plate is used. Alumina particles deposited on the dispersion plate 6 are fluidized to form a fluidized bed. Note that the upper surface of this fluidized bed is located at A in the figure. On the other hand, the piping 3a,
The required amount of fuel gas supplied through nozzle 8
It is ejected from a and 8b into the fluidized bed. Furthermore, the air supplied through the pipes 4a and 4b is also supplied to the nozzles 9a and 9.
b is ejected into the fluidized bed. These nozzles 8a, 8b and 9a, 9b are arranged slightly below the upper surface A of the fluidized bed, and the nozzles 8a, 8b are arranged slightly below the nozzles 9a, 9b. Therefore, the fuel gas ejected into the fluidized bed from the nozzles 8a and 8b is flown upward by the atmospheric gas supplied from the pipe 2 and rising in the fluidized bed, and is flowed upward from the nozzles 9a and 9b into the fluidized bed. The mixture becomes combustible when mixed with the air ejected inside, and when ignited by an ignition device (not shown), it burns and heats the fluidized bed. The fluidized bed is heated gradually downward from the upper surface A side, and after a predetermined time elapses, it is uniformly heated to a predetermined temperature. For example 570
℃±5℃. Note that the exhaust gas from the furnace 1 is exhausted through a filter 11 of a lid 10 that is removably attached to the upper end of the furnace 1. Articles to be treated, such as shafts and gears, are immersed into the fluidized bed from above the furnace 1 by suitable means (not shown) and supported by a horizontal grid 12. In this case, the lid 10 is removed from the furnace 1 in advance and reattached once the article is immersed in the fluidized bed. The article immersed in the fluidized bed is carbonitrided by contact with uniformly heated and flowing atmospheric gas. For example, a white ε layer of 15 to 20 microns can be obtained by treatment at 570 DEG C. for 2 hours. Note that during the process, the supply amount of atmospheric gas, fuel gas supply, and air supply amount are controlled to predetermined values. The carbonitrided article is taken out of the furnace by removing the lid 10 from the furnace 1 and using an appropriate means (not shown). During the treatment, surplus fuel gas that was not ejected into the fluidized bed from the nozzles 8a and 8b is transferred to the pipes 3a and 3b.
is sent to the discharge side, and then sent back to the supply side. In addition, the exhaust gas can be completely burned by the air jetted into the space above the upper surface A of the fluidized bed from the auxiliary nozzles 13a and 13b provided in the pipes 4a and 4b, and cold air is also supplied to the passage 14. This can prevent the atmospheric gas in the dispersion plate 6 and the pressure chamber 5 from being excessively heated. In addition, in the figure, 15 is a heat insulating material. In the present invention, combustion gas and air may be supplied by the method shown in FIG. 3 or FIG. 4. In FIG. 3, air from the pipe 16 and fuel gas from the pipe 17 are mixed together at the jet port 18 and jetted slightly below the upper surface A of the fluidized bed. Also the fourth
In the figure, air from pipe 19 and pipe 20
The fuel gases from the fluidized bed are mixed together at the ejection port 21 and ejected horizontally slightly above the upper surface A of the fluidized bed. Note that the spout 21 may be arranged diagonally downward. Further, the pipe 19 and the pipe 20 may be arranged separately. In this case, the pipe 19 is arranged above the pipe 20. The fuel gas supplied into the furnace burns only in the area near the upper surface A of the fluidized bed, making it possible to create an atmosphere suitable for treating the lower part of the fluidized bed. Note that the atmospheric gas can have various mixing ratios of nitrogen:ammonia:carbon dioxide or oxygen, but it is preferable to have the above-mentioned mixing ratio. The temperature in the fluidized bed is controlled by controlling the supply amount and ratio of combustion gas and air, and the treatment temperature zone is preferably a low temperature zone of 500°C to 580°C. Furthermore, the nozzles 8a and 8b for ejecting fuel gas are not only provided so as to be able to eject only in the horizontal direction, but also to be able to eject only diagonally upward, only diagonally downward, or in multiple directions such as horizontally and diagonally up and down. It may be provided. The angle is preferably 60° or less when provided so that it can be ejected diagonally upward, and 30° or less when provided so that it can be ejected diagonally downward. Example 1 120 cells at a depth of about 500 mm in a container 7 with a diameter of 500 mm
Alumina particles in an amount of 80% above the mesh sieve and below the mesh sieve were charged, and gas was blown into the solution at a rate of 350 N/min through the dispersion plate 6, which was a perforated metal plate, to form a fluidized bed. The depth of the alumina layer during fluidization is 600mm
It was about 700mm. The gas composition during sample processing was 60% nitrogen, 35% ammonia, and 5% hydrogen dioxide, propane was used as the fuel gas, and the temperature of the fluidized bed was controlled to be 570°C ± 5°C. The processed sample has a diameter of 10 mm and a length of 250 mm.
A small hole was made in the top of a round bar made of SACM645 material, and a stainless steel wire was passed through the sample into the center of the fluidized bed so that the top end of the sample was submerged into the fluidized bed approximately 100 mm from the surface. After about 2 hours of immersion, the sample was pulled up and cooled. The sample was cut at a length of 125 mm in the longitudinal direction, and the Knoop hardness (HK) of the cross section was measured.
The results are shown in Table 1, and it can be seen that good hardness was obtained and sufficient carbonitriding was performed. Example 2 Using the same equipment as Example 1, using the same atmospheric gas composition and amount as Example 1, diameter 10 mm, length 30 mm.
When a round bar cut piece of S15C material was treated at 570℃ for 2 hours, the surface hardness (HK) was 550 and the hardening depth was 0.43mm.
It was hot. Comparative Example 1 Using a conventional atmosphere furnace, ammonia 50%, PX
Surface hardness (HK) when treating S15C material with the same dimensions at 570℃ for 2 hours in a 50% mixed gas atmosphere
was 510, and the hardening depth was 0.32 mm. Example 3 A cylindrical sample of SACM645 material with a diameter of 10 mm and a length of 30 mm was treated for 1 hour at different temperatures using the same apparatus as in Example 1 and flowing an atmospheric gas having the same composition. Table 2 shows the surface hardness (HK) of the obtained samples.
High hardness (HK) at processing temperature 500℃~580℃
It can be seen that is obtained.

【表】 実施例 4 実施例1に使用したと同じ装置を用い処理の均
一性を確めるテストを行つた。 先ず、直径500mm、深さ400mmのバスケツトの最
上部、中央部、底夫々3箇所、計9箇所に熱電対
を取付け、流動層中に浸漬し、実施例1と同じ条
件下で各部の温度を測定した。結果を表3に示
す。なお、バスケツトの上端面は流動層表面から
約150mm内部に入つていた。各部において測定位
置を変え夫々3箇所測定した。
[Table] Example 4 Using the same equipment as used in Example 1, a test was conducted to confirm the uniformity of the process. First, thermocouples were attached to a basket with a diameter of 500 mm and a depth of 400 mm at 9 locations, 3 locations each at the top, center, and bottom, and the basket was immersed in a fluidized bed to measure the temperature at each location under the same conditions as in Example 1. It was measured. The results are shown in Table 3. Note that the upper end surface of the basket was located approximately 150 mm inside the surface of the fluidized bed. Measurements were taken at three different locations for each part.

【表】 次に、バスケツトの最上部、中央部、底部に
夫々5個の直径10mm、長さ30mmのS15C材の丸棒
切断片をサンプルとして取り付け、その上端部が
流動層内約150mmとなるよう浸漬し、570℃で2時
間処理した。冷却後、各サンプルの表面の化合物
層厚さを顕微鏡で測定した。 なお、各部において測定位置を変え夫々5箇所
測定した。結果を表4に示す。従来の同規模の雰
囲気炉の処理では化合物層厚さは、±15μのバラ
ツキがあつたことと較べると良好である。
[Table] Next, attach five round cut pieces of S15C material with a diameter of 10 mm and a length of 30 mm to the top, center, and bottom of the basket as samples, so that their upper ends are approximately 150 mm inside the fluidized bed. The samples were soaked for 2 hours at 570°C. After cooling, the thickness of the compound layer on the surface of each sample was measured using a microscope. In addition, the measurement positions were changed in each part, and measurements were taken at five locations. The results are shown in Table 4. This is better compared to conventional treatment using an atmospheric furnace of the same scale, where the compound layer thickness varied by ±15μ.

【表】 (発明の効果) 以上からして本発明によれば次のような効果が
得られる。 (イ) 均一な温度分布及び雰囲気が得られるから、
浸炭窒化むらの発生防止化が図れると共に被処
理物の変形防止化も図ることができる。 (ロ) 耐火性粒状物の流動作用によつて被処理物の
表面が常に活性化されるので炭素及び窒素成分
の拡散が促進される。 (ハ) 浸炭窒化するに好適な雰囲気が容易に得ら
れ、品質のバラツキを小さくすることができ
る。 (ニ) 伝熱速度、浸炭窒化速度がはやく合理的に浸
炭窒化を行なうことができる。 (ホ) 公害や衛生上の問題がなく安全化がはかれる
と共に、省エネルギー化がはかれる。
[Table] (Effects of the Invention) Based on the above, according to the present invention, the following effects can be obtained. (b) Because uniform temperature distribution and atmosphere can be obtained,
It is possible to prevent uneven carbonitriding from occurring and also to prevent deformation of the object to be treated. (b) Since the surface of the object to be treated is constantly activated by the flowing action of the refractory granules, the diffusion of carbon and nitrogen components is promoted. (c) An atmosphere suitable for carbonitriding can be easily obtained, and variations in quality can be reduced. (d) Heat transfer rate and carbonitriding rate are fast, and carbonitriding can be carried out reasonably. (e) There are no pollution or hygiene problems, making it safer and energy-saving.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉の縦断面図、第2図は第1図の一部
斜視図、第3,4図は燃料ガス及び空気の供給方
法の他の例を示す概略図である。 1:炉、2:雰囲気用ガスを供給する配管、3
a,3b:燃料ガスを供給する配管、4a,4
b:燃料ガスを燃焼させるに必要な空気を供給す
る配管、A:流動層の上面。
FIG. 1 is a longitudinal sectional view of the furnace, FIG. 2 is a partial perspective view of FIG. 1, and FIGS. 3 and 4 are schematic diagrams showing other examples of the method of supplying fuel gas and air. 1: Furnace, 2: Piping for supplying atmospheric gas, 3
a, 3b: Piping for supplying fuel gas, 4a, 4
b: Piping that supplies the air necessary to burn the fuel gas, A: The top surface of the fluidized bed.

Claims (1)

【特許請求の範囲】[Claims] 1 窒素と、アンモニアと、二酸化炭素もしくは
酸素とを混合した雰囲気用ガスを、炉床の耐火性
粒状物が流動層を形成しうるように供給すると共
に、前記流動層の上面よりわずか下方もしくは上
方に、燃料ガス及びこの燃料ガスを燃焼させるに
必要な空気を供給し、前記流動層の上面付近領域
のみにおいて前記燃料ガスを燃焼させて炉内温度
を500℃〜580℃に保ちながら処理することを特徴
とする流動層による浸炭窒化方法。
1. An atmospheric gas containing a mixture of nitrogen, ammonia, and carbon dioxide or oxygen is supplied so that the refractory granules in the hearth can form a fluidized bed, and at a position slightly below or above the upper surface of the fluidized bed. The fuel gas and the air necessary to combust the fuel gas are supplied to the fluidized bed, and the fuel gas is combusted only in the region near the upper surface of the fluidized bed, thereby maintaining the furnace temperature at 500°C to 580°C. A fluidized bed carbonitriding method characterized by:
JP5117780A 1980-04-17 1980-04-17 Carbo-nitriding method by fluidized bed furnace Granted JPS56146878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117780A JPS56146878A (en) 1980-04-17 1980-04-17 Carbo-nitriding method by fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5117780A JPS56146878A (en) 1980-04-17 1980-04-17 Carbo-nitriding method by fluidized bed furnace

Publications (2)

Publication Number Publication Date
JPS56146878A JPS56146878A (en) 1981-11-14
JPS622625B2 true JPS622625B2 (en) 1987-01-21

Family

ID=12879552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117780A Granted JPS56146878A (en) 1980-04-17 1980-04-17 Carbo-nitriding method by fluidized bed furnace

Country Status (1)

Country Link
JP (1) JPS56146878A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589154B2 (en) * 1980-08-11 1983-02-19 日本パ−カライジング株式会社 Ammonia gas nitriding method
CN109442217A (en) * 2018-12-17 2019-03-08 江苏丰东热技术有限公司 It is a kind of to nitrogenize two-way feeder and the two-way air supply system of nitridation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050210A (en) * 1973-08-09 1975-05-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050210A (en) * 1973-08-09 1975-05-06

Also Published As

Publication number Publication date
JPS56146878A (en) 1981-11-14

Similar Documents

Publication Publication Date Title
FR2538092A1 (en) FLUIDIZED BED METHOD AND APPARATUS FOR TREATING METALS IN A CONTROLLED ATMOSPHERE
JPH0971791A (en) Method for passivating reactive coal char
US5413623A (en) Process and apparatus for vacuum degassing molten steel
JPS6048407A (en) Method and device for executing clean combustion particularly applied to combustion, etc. of heavy fuel
US4152177A (en) Method of gas carburizing
JPS622625B2 (en)
US4013279A (en) Treatment furnace
JPH0371367B2 (en)
JPS6225745B2 (en)
US20140366993A1 (en) Method of carburizing
US1535992A (en) Furnace
WO1998004749A1 (en) Metal reduction and melting process
US6159306A (en) Carburizing device and method of using the same
US4597807A (en) Accelerated carburizing method with discrete atmospheres
TW202122178A (en) Method for casting molten steel, method for producing continuous cast slab, and method for producing steel for bearing
JPH0331671B2 (en)
CA1129644A (en) Direct heating of heat treat furnace chamber
JP2001107055A (en) Method and apparatus for manufacturing charcoal
JPS6148579B2 (en)
US2089545A (en) Method of producing gas for the carburization of steel
Gao et al. Fluidized-bed heat treating equipment
US1821375A (en) Process of treating glass
US1408686A (en) Method and means for carburizing iron, steel, and alloys thereof
KR100959749B1 (en) Gas Distributor
Darrah Gas carburizing by the Hypercarb process