JPS62262413A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPS62262413A
JPS62262413A JP10596186A JP10596186A JPS62262413A JP S62262413 A JPS62262413 A JP S62262413A JP 10596186 A JP10596186 A JP 10596186A JP 10596186 A JP10596186 A JP 10596186A JP S62262413 A JPS62262413 A JP S62262413A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
magnetic field
molded
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10596186A
Other languages
Japanese (ja)
Other versions
JPH0785458B2 (en
Inventor
Seiji Miyazawa
宮沢 清治
Itaru Okonogi
格 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61105961A priority Critical patent/JPH0785458B2/en
Publication of JPS62262413A publication Critical patent/JPS62262413A/en
Publication of JPH0785458B2 publication Critical patent/JPH0785458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To efficiently obtain a pole anisotropic magnet by employing orientation by means of a pulse magnetic field and molding by means of a mechanical pressing when a resinbound rare earth magnet is formed. CONSTITUTION:A mixture made by mixing a rare earth metal compound magnet powder consisting of a rare earth metal and a transmission metal as a basic composition with an epoxy resin as a binder is molded by using pressure in a magnetic field to obtain a pole anisotropic magnet. At that time, the mixture is oriented into pole anisotropic orientation in a pulse magnetic field of 0.5 sec or under and it is molded by mechanical pressing. Thus, a pole anisotropic magnet can be efficiently obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類金属化合物磁石粉末とエポキシ樹脂か
らなる樹脂結合型希土類磁石の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a resin-bonded rare earth magnet made of rare earth metal compound magnet powder and an epoxy resin.

〔従来の技術〕[Conventional technology]

従来、基本組成が希土類金属と遷移金属からなる希土類
金属間化合物磁石粉末とバインダーとしてエポキシ樹上
を混合し磁場中で加圧成形する製造方法は、直流電磁石
と油圧プレスを用い金型あるいは金型の一部とプレス本
体とを磁気回路として用い、前記磁石粉末をラジアル異
方性に配向し加圧成形しその後金型外に取り出しエポキ
シ樹脂を加熱固化する方法が知られ、また最近ではパル
ス磁場とエアー圧力源を用いるインパクトプレスを用い
磁場方向と加圧方向とが単純な直角方向の横異方性磁石
の成形を行う製造方法も現われ知られている。
Conventionally, the manufacturing method involves mixing rare earth intermetallic compound magnet powder, whose basic composition is rare earth metals and transition metals, and epoxy resin as a binder and press-molding it in a magnetic field. A method is known in which a part of the magnet powder and the press body are used as a magnetic circuit, the magnet powder is oriented in a radial anisotropy, pressure molded, and then taken out of the mold to heat and solidify the epoxy resin. A manufacturing method has also appeared and is known in which a transversely anisotropic magnet in which the direction of the magnetic field and the direction of pressure are simply perpendicular to each other is formed using an impact press using an air pressure source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、プレス成形金型及びプレス本体を磁気回
路として用いる方法だと配向のための磁場がピークに達
するまでの立上り時間が遅くなり、そのためパルス磁場
では追従不可能で、直流電相′Ft8#イ4i用1− 
事に加圧スピーrを誼煽の立トhと同調するために機械
プレスに比べ加圧スピードの遅い油圧プレスによる成形
となり、成形時間の面からしても生産性の低い作業とな
る。
However, if the press molding die and the press body are used as a magnetic circuit, the rise time for the magnetic field for orientation to reach its peak is delayed, making it impossible to follow with a pulsed magnetic field, and the DC electric phase 'Ft8#I4i For 1-
In particular, in order to synchronize the pressurizing speed r with the rising height h of the agitation, forming is performed using a hydraulic press, which has a slower pressurizing speed than a mechanical press, resulting in low productivity in terms of forming time.

また、成形されたラジアル異方性磁石は、その配向のた
め多極着磁を行っても、その表面磁束密度波形は先端の
鋭い波形となるためモーター等に組み込み使用した場合
はトルク量が少なくなることがアっり。つぎに、パルス
磁場とエアー圧力源によるインパクトプレスでは、プレ
ス成形自体の生産性は高いものの、磁石粉末の給材、成
形品の除材などの付帯工程がそのスピードに追い付かず
、結果として生産性の低い方法となり、インパクトプレ
スの持つ利点が生されず、また成形品も単純な横異方性
磁石の成形しかできないという問題点を有していた。本
発明は以上の問題点を解決するためのもので、その目的
とするところは、多極着磁、を行りた時にその磁石の表
面磁束密度波形のピーク値が高く、面積の広く取れる、
モーターに使用した時にトルク量が取れる極異方性永久
磁石を、油圧プレス成形に比べ成形時間の短い機械プレ
スとパルス磁場配向により効率良く生産できる生産性の
高い製造方法を提供するところにある。
In addition, even if a molded radial anisotropic magnet is magnetized with multiple poles due to its orientation, the surface magnetic flux density waveform will have a sharp tip, so when used in a motor etc., the amount of torque will be low. I'm sure it will happen. Next, with impact presses using a pulsed magnetic field and air pressure source, although the productivity of press forming itself is high, ancillary processes such as feeding magnet powder and removing material from molded products cannot keep up with the speed, resulting in low productivity. This method has a problem in that the advantages of an impact press cannot be realized, and the molded product can only be molded into a simple transversely anisotropic magnet. The present invention is intended to solve the above problems, and its purpose is to provide a magnet with a high peak value of the surface magnetic flux density waveform when multi-pole magnetization is performed, and a large area can be obtained.
The purpose of the present invention is to provide a highly productive manufacturing method that can efficiently produce polar anisotropic permanent magnets that can obtain a high torque when used in motors using a mechanical press and pulsed magnetic field orientation, which takes a shorter molding time than hydraulic press molding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の希土類磁石の製造方法は、基本組成が希土類金
属と遷移金属からなる希土類金属間化合物磁石粉末とバ
インダーであるエポキシ樹脂との混合物を、Q、5秒を
越えないパルス磁場中で極異方性に配向し機械プレスに
より加圧成形することを特徴とする。
The method for producing a rare earth magnet of the present invention involves heating a mixture of rare earth intermetallic compound magnet powder whose basic composition is a rare earth metal and a transition metal and an epoxy resin as a binder in a pulsed magnetic field for no more than Q, 5 seconds. It is characterized by being oriented in a direction and being pressure-molded using a mechanical press.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

使用した希土類磁石粉末は、一般式で表わすとsm(c
oo、6270uo、os I!’eo、22 zro
、028 ) L35からなる2−17系希土類金属間
化合物合金を用いた。この合金をボールミルを用いて粒
度2〜80ミクロンに粉砕し磁石粉末とした。このよう
にして造られた粉末98重量%に熱硬化性である2液性
工ポキシ樹脂2重J!t%をバインダーとして加え混合
し、樹脂結合型希土類磁石粉末とした。
The rare earth magnet powder used has the general formula sm(c
oo, 6270uo, os I! 'eo, 22 zro
, 028) A 2-17 rare earth intermetallic compound alloy consisting of L35 was used. This alloy was ground to a particle size of 2 to 80 microns using a ball mill to obtain magnet powder. 98% by weight of the powder thus produced is a thermosetting two-component engineering poxy resin 2-layer J! t% as a binder and mixed to obtain resin-bonded rare earth magnet powder.

第1図は、本実施例に用いた加圧成形装置を示す7リク
シ璽ンプレスを用いたこの加圧成形装置は同方向に回転
するマサツ車(A)6とマサツ車(B)7が同じく軸方
向にスライドし、マサツ車(C)8を回転させこの回転
方向により上パンチ2、非磁性材料よりなる上コア5を
上下させ加圧したり、上ラムを上昇したりする。前記の
磁石粉末は、磁場ヨーク1と下パンチ3と非磁性材料よ
りなる下コア4とに1115まれる空間9に充填し、上
パンチにより加圧成形する。
Figure 1 shows the pressure molding device used in this example. This pressure molding device uses a seven-wheel press, and the massaging wheel (A) 6 and massaging wheel (B) 7, which rotate in the same direction, are the same. It slides in the axial direction and rotates the massaging wheel (C) 8, and depending on the direction of rotation, the upper punch 2 and the upper core 5 made of non-magnetic material are moved up and down to apply pressure, and the upper ram is raised. The magnet powder is filled in a space 9 defined by the magnetic field yoke 1, the lower punch 3, and the lower core 4 made of a non-magnetic material, and is press-molded by the upper punch.

第2図は、金型として使用する磁場ヨーク1の上面より
見た詳細図である。磁場ヨークは、磁性材料である純鉄
等を図のごとく溝切シしこの溝部に絶縁鋼線をコイル1
1として巻装し、導線12より接続されたパルス磁場電
源よりパルス電流を流し、リング状永久磁石を多極着磁
する時と同様に磁気による影響を少なくするため、磁石
粉末と接触する部分に非磁性材料よりなる例えばステラ
イトを金型リング10として入れ、上下パンチ゛−2・
3は非磁性超硬などの非磁性金属を使用した。
FIG. 2 is a detailed view of the magnetic field yoke 1 used as a mold seen from above. The magnetic field yoke is made by cutting a groove in a magnetic material such as pure iron as shown in the diagram, and inserting an insulated steel wire into the groove as a coil 1.
1, and a pulsed current is applied from a pulsed magnetic field power supply connected through a conductor 12 to the part that comes into contact with the magnet powder in order to reduce the influence of magnetism, similar to when magnetizing a ring-shaped permanent magnet with multiple poles. For example, stellite made of non-magnetic material is placed as the mold ring 10, and upper and lower punches 2 and 3 are formed.
In No. 3, a non-magnetic metal such as non-magnetic carbide was used.

パルス電流を流した時の磁力線13は、磁場ヨーク1の
凸部より出て瞬接する凸部に流れ込むように空間9を流
れこの働きにより充填された磁石粉末が配向する。尚、
第2図では、コイル11と磁力線13は、図を見やすく
するためそれぞれ半分ずつ省略しである。また、前述し
たように、極異方性に配向した磁石粉末は、コイル11
に流すパルス電流を止めた時点で加圧するとその配向が
乱れてしまうため第3図に示すように、パルス電流によ
り発生する極異方性磁場(H)とプレスの加圧力(P)
とが特定の時間(T)をおいて同期を取るよう別設の制
御回路によりコントロサルされる。この時の代表的な条
件は、パルス磁場電源の最大出力が4000V、120
0μ?、で空間9に入れたホールプローブによりピーク
ホールトタると磁場のピークが約25000(Os)、
立上りからゼロに終息するまでの時間が約41 mst
:であり、プレスによる加圧はこのピークよりT=17
.5m5ec遅れた位置に加圧のピークである3トン/
−が同期するように設定した。こ?ようにして極異方性
に配向し加圧成形した磁石は上パンチ2を上昇する前に
配向時とは逆方向の所定のパルス電流をコイル9に流し
磁石の残留磁気を減少させる。さらに上パンチ2を上昇
し、下パンチ3の上昇により空間9より除材し、150
℃の恒温槽で2時間加熱固化し、端面の寸法出し工程を
経て外径φ18.内径φ16.高さ4mのリング状樹脂
結合型希土類磁石とした。このリング状磁石の内周面に
密着するように、プラスチック製のスペーサーを入れ極
異方性磁場を印加した磁場ヨークと同様の構造を持つ着
磁ヨークを用い、磁極の位置合せをしてパルス電源装置
により着磁を行った。第4図に、iF?iLだ後の様子
を示す、極異方性に配向した磁石14は、スペーサー1
5と組み合せローター磁石として配向時と同様な磁力線
の流れにより、磁力線13によりN、Sの磁極が発生す
る。このローター磁石の表面磁束密度はガウスメーター
とホールプローブにより測定すると、磁力線は磁石の中
を流れるためN、S極ともそれぞれ1950〜2100
G、平均で2050Gありモーターのローター磁石とし
て充分使用できるものである。また比較例として本発明
に使用した磁石粉末を用い従来の直流電磁石と油圧プレ
スによるラジアル異方性磁石を成形し、同様の寸法のリ
ング状樹脂結合型希土類磁石とした。
When a pulsed current is applied, the magnetic lines of force 13 flow through the space 9 so as to exit from the convex portion of the magnetic field yoke 1 and flow into the convex portion that makes instant contact, and this action orients the filled magnet powder. still,
In FIG. 2, half of each of the coil 11 and the lines of magnetic force 13 are omitted for clarity. Further, as described above, the polar anisotropically oriented magnetic powder is
If pressure is applied when the pulsed current is stopped, the orientation will be disturbed, so as shown in Figure 3, the polar anisotropic magnetic field (H) generated by the pulsed current and the pressing force (P) of the press
A separate control circuit controls the synchronization at a specific time (T). Typical conditions at this time are that the maximum output of the pulsed magnetic field power supply is 4000V, 120V
0 μ? When the Hall probe inserted into the space 9 at
The time from rising to ending at zero is approximately 41 mst
:, and the pressure applied by the press is T=17 from this peak.
.. The peak of pressurization, 3 tons/
- was set to synchronize. child? Before the magnet oriented in polar anisotropy and pressure-molded in this way is moved up the upper punch 2, a predetermined pulse current in the opposite direction to that during orientation is passed through the coil 9 to reduce the residual magnetism of the magnet. Furthermore, the upper punch 2 is raised, and the material is removed from the space 9 by raising the lower punch 3.
After heating and solidifying in a constant temperature bath at ℃ for 2 hours, the end face was dimensioned to an outer diameter of φ18. Inner diameter φ16. A ring-shaped resin bonded rare earth magnet with a height of 4 m was used. A magnetizing yoke with a structure similar to the magnetic field yoke with a plastic spacer inserted into it and applying a polar anisotropic magnetic field is used so as to be in close contact with the inner peripheral surface of this ring-shaped magnet, and the magnetic poles are aligned to generate pulses. Magnetization was performed using a power supply device. In Figure 4, iF? The polar anisotropically oriented magnet 14 shown after iL is the spacer 1
In combination with 5, N and S magnetic poles are generated by the magnetic lines of force 13 due to the same flow of magnetic lines of force as when oriented as a rotor magnet. When the surface magnetic flux density of this rotor magnet is measured using a Gaussmeter and a Hall probe, it is 1950 to 2100 for both N and S poles, since the magnetic lines of force flow inside the magnet.
It has an average G of 2050 G, which is sufficient for use as a motor rotor magnet. Further, as a comparative example, a radial anisotropic magnet was molded using the magnet powder used in the present invention using a conventional DC electromagnet and a hydraulic press to obtain a ring-shaped resin-bonded rare earth magnet with similar dimensions.

磁石寸法、配向磁場及び加圧力とも本発明の実施例と同
様にし、内周面に密着するよ°うにφ16×φ14.高
さ4mmの純鉄製リングを圧入し、その内部にプラスチ
ック製のスペーサを入れ、同様に着磁ヨークを用いパル
ス電源装置により着磁を行った。その表面磁束密度は、
測定の結果N、S極ともそれぞれ1920〜2070G
、平均で201.0Gありモーターのローター磁石とし
ては充分使用できるものであったが、極異方性樹脂結合
型磁石に比べやや低い値を示した。第5図に測定結果を
示す、また、本発明の実施例では、成形時の各条件の一
例のみ示したが、各条件による結果はつぎのとうりであ
る。
The magnet dimensions, orientation magnetic field, and pressing force are the same as in the embodiment of the present invention, and the magnet size is φ16×φ14. A pure iron ring with a height of 4 mm was press-fitted, a plastic spacer was placed inside the ring, and magnetization was similarly performed using a magnetizing yoke and a pulse power supply. Its surface magnetic flux density is
Measurement results: 1920~2070G for both N and S poles
, an average of 201.0G, which was sufficient to be used as a motor rotor magnet, but it showed a slightly lower value than a polar anisotropic resin-bonded magnet. The measurement results are shown in FIG. 5. In addition, in the embodiment of the present invention, only an example of each condition during molding was shown, but the results under each condition are as follows.

第1表は、成形時の極異方性磁場(H)の時間とプレス
の加圧力(P)とが同期を取る特定の時間(T)を変化
させ成形した結果を示す。
Table 1 shows the results of molding by varying the specific time (T) during which the time of the polar anisotropic magnetic field (H) and the pressing force (P) of the press are synchronized during molding.

尚、磁場のピークは約25,000(Os)となるよう
にパルス磁場電源側で調整したが、プレスの加圧力ピー
ク3トン/ ctltと、加圧力CP)は変化させなか
った。
The peak of the magnetic field was adjusted on the pulsed magnetic field power supply side so that it was approximately 25,000 (Os), but the pressing force peak of the press (3 tons/ctlt) and the pressing force CP) were not changed.

第  1  表 (H)・・・・・・m5ec (T ) −−m5ec 数値は表面磁束密度のピーク平均値。Table 1 (H)・・・・・・m5ec (T) --m5ec The numerical value is the peak average value of surface magnetic flux density.

単位はG(ガウス)を表わす。The unit represents G (Gauss).

以上第1表で示したように、極異方性磁場(H)が、発
生している間に加圧力(1’)が終了するような特定の
時間(T)を設定することにより、高い表面磁束密度を
得ることができろ。
As shown in Table 1 above, by setting a specific time (T) such that the pressing force (1') ends while the polar anisotropic magnetic field (H) is being generated, it is possible to increase the polar anisotropic magnetic field (H). Can you obtain the surface magnetic flux density?

しかし、(H)の時間が短いと(P)により配向できに
くくなるが、(H)の時間を15秒以上長くすると磁場
ヨークのコイルの発熱が大きくコイルの抵抗が増加しパ
ルス電流が流れにくくなり、磁場のピーク値が小さくな
るなど実用的でなくなる。
However, if the time of (H) is short, orientation will be difficult due to (P), but if the time of (H) is longer than 15 seconds, the coil of the magnetic field yoke will generate a lot of heat, increasing the resistance of the coil and making it difficult for the pulse current to flow. Therefore, the peak value of the magnetic field becomes small, making it impractical.

本実施例では、磁場ヨーク以外の金型回りの部品は非磁
性金属材料を使用したが、成形磁石の配向方向をコント
ロールする目的で例えば下コアに磁性金属材料を使用し
て同様に成形すると、ラジアル異方性配向に近い極異方
性配向となり第4図に示すスペーサー15について極異
方性磁石14に接する部分に磁性体リングを入れるよう
にすると同様に表面磁束密度の取れる磁石となる。
In this example, non-magnetic metal materials were used for the parts around the mold other than the magnetic field yoke, but if a magnetic metal material is used for the lower core and molded in the same way for the purpose of controlling the orientation direction of the molded magnet, If a magnetic ring is inserted in the part of the spacer 15 shown in FIG. 4 that is in contact with the polar anisotropic magnet 14 so that the polar anisotropic orientation is close to the radial anisotropic orientation, a magnet with a similar surface magnetic flux density can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法によれば、樹脂結合希土
類磁石の成形において、機械プレスとパルス磁場による
配向、成形を用いたことにより表面磁束密度の取れる極
異方性磁石が能率の良い生産性の高い方法で製造できる
という効果を有する
As described above, according to the method of the present invention, polar anisotropic magnets with surface magnetic flux density can be produced efficiently by using mechanical press and orientation and molding using a pulsed magnetic field in molding resin-bonded rare earth magnets. It has the effect of being able to be manufactured using a highly efficient method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本実施例に用いた成形装置を示す正面図。第
2図は、磁場ヨーク周辺を示す上面図。 第6図は、磁場と加圧力を示すタイミング図。第4図は
、着磁された成形磁石を示す上面図である。第5図は、
実施例および比較例の磁石の表面磁束密度を示す図であ
る。 1・・・・・・磁場ヨーク 2・・・・・・上パンチ 3・・・・・・下パンチ 4・・・°・・・下コア 5・・・・・・上コア 6・・・・・・マサツ車(A) 7・・・・・・マサツ車(B) 8・・・・・・マサツ車(C) 9・・・・・・空 間 10・・・金型リング 11・・・コイル 12・・・・・・導 線 13・・・・・・磁力線 14・・・・・・極異方性磁石 15・・・・・・スペーサー H・・・・・・極異方性磁場 P ・・・・・・プレスの加圧力 T ・・・・・・時 間 以  上 出願人 セイコーエプソン株式会社 第1h 第2図 Ti Tne、= 第3図
FIG. 1 is a front view showing the molding apparatus used in this example. FIG. 2 is a top view showing the vicinity of the magnetic field yoke. FIG. 6 is a timing diagram showing the magnetic field and pressure force. FIG. 4 is a top view showing a magnetized shaped magnet. Figure 5 shows
It is a figure showing the surface magnetic flux density of magnets of an example and a comparative example. 1... Magnetic field yoke 2... Upper punch 3... Lower punch 4... Lower core 5... Upper core 6... ... Masatsu car (A) 7 ... Masatsu car (B) 8 ... Masatsu car (C) 9 ... Space 10 ... Mold ring 11. ... Coil 12 ... Conductor wire 13 ... Lines of magnetic force 14 ... Polar anisotropic magnet 15 ... Spacer H ... Polar anisotropy Magnetic field P...Press force T...Time or more Applicant Seiko Epson Corporation No. 1h Fig. 2 Ti Tne, = Fig. 3

Claims (1)

【特許請求の範囲】[Claims]  基本組成が希土類金属と遷移金属からなる希土類金属
化合物磁石粉末とバインダーであるエポキシ樹脂とを混
合し磁場中で加圧成形する希土類磁石の製造方法におい
て、0.5秒を越えないパルス磁場中で極異方性に配向
し機械プレスにより加圧成形することを特徴とする希土
類磁石の製造方法
A method for producing rare earth magnets in which a rare earth metal compound magnet powder whose basic composition is a rare earth metal and a transition metal is mixed with an epoxy resin as a binder and then pressure-molded in a magnetic field in a pulsed magnetic field for not more than 0.5 seconds. A method for producing a rare earth magnet characterized by polar anisotropic orientation and pressure forming using a mechanical press.
JP61105961A 1986-05-09 1986-05-09 Rare earth magnet manufacturing method Expired - Lifetime JPH0785458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61105961A JPH0785458B2 (en) 1986-05-09 1986-05-09 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61105961A JPH0785458B2 (en) 1986-05-09 1986-05-09 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPS62262413A true JPS62262413A (en) 1987-11-14
JPH0785458B2 JPH0785458B2 (en) 1995-09-13

Family

ID=14421396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61105961A Expired - Lifetime JPH0785458B2 (en) 1986-05-09 1986-05-09 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0785458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282909A (en) * 2007-05-09 2008-11-20 Tdk Corp Method for manufacturing ring-shaped magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115319A (en) * 1979-02-27 1980-09-05 Inoue Japax Res Inc Manufacturing method of rubber magnet
JPS58200517A (en) * 1982-05-18 1983-11-22 Mitsubishi Metal Corp Formation magnetic field of powder
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS60206111A (en) * 1984-03-30 1985-10-17 Sumitomo Metal Mining Co Ltd Manufacture of rare-earth/resin magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115319A (en) * 1979-02-27 1980-09-05 Inoue Japax Res Inc Manufacturing method of rubber magnet
JPS58200517A (en) * 1982-05-18 1983-11-22 Mitsubishi Metal Corp Formation magnetic field of powder
JPS59216453A (en) * 1983-05-20 1984-12-06 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet
JPS60206111A (en) * 1984-03-30 1985-10-17 Sumitomo Metal Mining Co Ltd Manufacture of rare-earth/resin magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282909A (en) * 2007-05-09 2008-11-20 Tdk Corp Method for manufacturing ring-shaped magnet

Also Published As

Publication number Publication date
JPH0785458B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
KR101375814B1 (en) Process for producing oriented object, molded object, and sintered object and process for producing permanent magnet
JPH1022153A (en) Manufacture of magnetically anisotropic resin bond magnet
WO2007069454A1 (en) Process for producing radially anisotropic magnet
US4990306A (en) Method of producing polar anisotropic rare earth magnet
US4678634A (en) Method for the preparation of an anisotropic sintered permanent magnet
CN110165847B (en) Method for producing radial anisotropic multi-pole solid magnet with different width waveforms
JP4133686B2 (en) Radial anisotropic ring magnet and manufacturing method thereof
JPS62262413A (en) Manufacture of rare earth magnet
JPH11176682A (en) Manufacturing bond (trade mark) magnet
JPS62224916A (en) Manufacture of rare-earth magnet
EP0265016A2 (en) Process of making a permanent magnet
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JPH0559572B2 (en)
JPH04112504A (en) Manufacture of pare-earth magnet
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JPS62224915A (en) Manufacture of rare-earth magnet
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
KR100249968B1 (en) Magnetization yoke of permanent magnet in rare-earth system
JPH1083926A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JP2811708B2 (en) Rare earth-iron permanent magnet manufacturing method and mold used for it
JP2023081698A (en) Magnetic bearing, manufacturing method thereof and motor
JPH07211567A (en) Method of molding cylindrical radial anisotropic bonded magnet
JPH0552654B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term