JPS62262348A - Image pickup tube target - Google Patents

Image pickup tube target

Info

Publication number
JPS62262348A
JPS62262348A JP61104643A JP10464386A JPS62262348A JP S62262348 A JPS62262348 A JP S62262348A JP 61104643 A JP61104643 A JP 61104643A JP 10464386 A JP10464386 A JP 10464386A JP S62262348 A JPS62262348 A JP S62262348A
Authority
JP
Japan
Prior art keywords
layer
photoconductive
holes
image pickup
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61104643A
Other languages
Japanese (ja)
Inventor
Kazutaka Tsuji
和隆 辻
Taiji Shimomoto
下元 泰治
Yoshio Ishioka
石岡 祥男
Hirokazu Matsubara
松原 宏和
Kenji Samejima
賢二 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61104643A priority Critical patent/JPS62262348A/en
Publication of JPS62262348A publication Critical patent/JPS62262348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a highly sensitive image pickup tube having an amplifying effect in the image pickup tube target itself, by furnishing a potential barrier to the holes at the scanning surface side of a photoconductive membrane, and forming a hole accumulation layer to accumulate the holes before they reach to an electron accumulation layer. CONSTITUTION:After a base plate temperature is set, a reactive spattering is carried out, and on a base plate on which a light permeable equipotential membrane 3 and a hole pouring check layer 4 are formed, a photoconductive membrane 1 consisting of a-Si:H membrane is formed. On the photoconductive membrane 1, a layer 2 consisting of noncrystalline Se is piled, and thus-formed photoconductive target is combined with an electron gun, the inside of the tube is evacuated to a vacuum, and then sealed to make up an image pickup tube. Between the photoconductive membrane 1 and the Se layer 2, a pontential barrier of about 0.4 eV high is formed against the holes travelling from the photoconductive membrane to the scanning side, and the electrons travelling from the scanning surface to the photoconductive membrane respectively, and the holes whose travel is checked by the Se layer are accumulated at the end of the scanning side of the photoconductive membrane, making a hole accumulation layer 6, while the Se layer is made into an electron accumulation layer 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導電型撮像管に係り、特に高感度の撮像管を
得るに好適な撮像管ターゲットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoconductive image pickup tube, and particularly to an image pickup tube target suitable for obtaining a highly sensitive image pickup tube.

〔従来の技術〕[Conventional technology]

従来一般に用いられている光導電型撮像管の基本的ター
ゲラ1−構造を第5図に示す、光導電膜1の電子ビーム
走査側には、電子の走行性が悪い層を設けるか又は先導
?li膜との間にポテンシャル障壁を設けることにより
、走査電子が蓄積されろ電子蓄積層2が形成されている
。そのため、カソードから放出されて走査面に到達した
走査電子は、走査面の電位がカソード電位に平衡して走
査電子が走査面に到達できなくなるまで電子M′!It
m2に蓄積されて負の空間電荷を形成する。透光性導電
膜3と光導電膜1の間には正孔の光導電膜への注入を阻
止する層4が設けられている。このように光導電膜1に
外部から電子や正孔が注入されないような阻止型構造は
、例えばビジコンのような注入型構造に比べて暗電流や
残像が小さいという利点がある1以上のような構造の撮
像管ターゲットにおいて、透光性導電膜t膜1をカソー
ド電位よりも高い電位にすると、光導電膜1内には光入
射側の電位が走査側よりも高いような電界が生じる。透
光性絶縁基板5を通して光が入射すると、光導電膜1中
で吸収されて電子・正孔対が発生し、上記電界によって
電子は光入射側に正孔は走査面側にそれぞれ走行し、電
子は透光性導電膜3から流出する。一方、正孔は上記電
子蓄積層2に到達して蓄積されている電子と再結合する
。これによって光が入射した部分に対応する走査面の電
位はカソード電位よりも高くなる0次の走査時に表面電
位はカソード電位に戻るが、その時正孔と再結合して消
滅した分だけ電子蓄積M2に電子が補充され、それによ
る電流値が信号となる。従って、このような従来一般に
用いられている方式の撮像管では。
The basic structure of the target layer 1 of a photoconductive image pickup tube commonly used in the past is shown in FIG. An electron storage layer 2 is formed in which scanning electrons are accumulated by providing a potential barrier between the lithium layer and the li film. Therefore, the scanning electrons emitted from the cathode and reaching the scanning surface will continue to hold electrons M'! until the potential of the scanning surface is balanced with the cathode potential and the scanning electrons can no longer reach the scanning surface. It
m2 to form a negative space charge. A layer 4 is provided between the transparent conductive film 3 and the photoconductive film 1 to prevent holes from being injected into the photoconductive film. A blocking type structure in which electrons and holes are not injected into the photoconductive film 1 from the outside has the advantage of having smaller dark current and afterimage than an injection type structure such as a bidicon, for example. In the image pickup tube target of this structure, when the light-transmitting conductive film 1 is set to a higher potential than the cathode potential, an electric field is generated in the photoconductive film 1 such that the potential on the light incident side is higher than on the scanning side. When light enters through the transparent insulating substrate 5, it is absorbed in the photoconductive film 1 and generates electron-hole pairs, and the electric field causes the electrons to travel to the light incident side and the holes to the scanning surface side, respectively. Electrons flow out from the transparent conductive film 3. On the other hand, the holes reach the electron storage layer 2 and recombine with the stored electrons. As a result, the potential of the scanning surface corresponding to the part where the light is incident becomes higher than the cathode potential.During the 0th order scanning, the surface potential returns to the cathode potential, but at that time, the electrons accumulated by the amount recombined with holes and annihilated M2 Electrons are replenished, and the resulting current value becomes a signal. Therefore, in the image pickup tube of such a conventionally commonly used type.

入射光によって励起されて電子W積層に走行してきた正
孔の数と同等の信号電流が検出されるため、原理的に光
導電ターゲットにおける増幅作用はなし1゜ これに対して、増幅作用を持つ撮像管として。
Since a signal current equivalent to the number of holes excited by the incident light and traveling to the electron W stack is detected, there is no amplification effect in the photoconductive target in principle.1 In contrast, imaging with an amplification effect as a tube.

非晶質Saよりなる光導i!I!膜の走査側に、As及
びBrをドープしたSsよりなる電子W積層とこの電子
蓄積層よりもビーム走査側にありAs及びNaをドープ
したSeよりなる正孔蓄積層とを設けた構造が提案され
ている。  (1935年テレビジョン学会全国大会予
稿集p25)この撮a管は、電子蓄[p!I及び正孔W
積層における電子の寿命時間を走行時間よりも長くする
ことにより、走査電子ビームが当たっている時、正孔が
再結合するまでの間走査電子が光導電膜に注入されて増
幅効果を生じるものである。
Light guide made of amorphous Sa! I! A structure is proposed in which an electron W stack made of Ss doped with As and Br is provided on the scanning side of the film, and a hole accumulation layer made of Se doped with As and Na is provided on the beam scanning side of the electron storage layer. has been done. (Proceedings of the 1935 National Conference of the Television Society, p. 25) This camera tube is an electronic storage [p! I and hole W
By making the lifetime of the electrons in the stack longer than the transit time, when the scanning electron beam hits, the scanning electrons are injected into the photoconductive film until the holes recombine, producing an amplification effect. be.

また、光導電膜の光入射側に不純物をドープした層を設
けることによって、透光性導電膜からのキャリア注入に
よる増幅作用を有するような撮像素子を得ることも提案
されている。  (1985年テレビジョン学会全国大
会予稿集p27) 以上のような従来例による撮像管では、入射光によって
励起された正孔に対しては、その走行を妨げることがな
いような構造を特徴としており、入射光によって生じた
正孔は阻止されることなく走査面側の電子M積層に注入
され得るようになっていた。
It has also been proposed to provide an imaging element having an amplification effect due to carrier injection from the transparent conductive film by providing a layer doped with impurities on the light incident side of the photoconductive film. (Proceedings of the 1985 National Television Society of Japan Conference, p. 27) The conventional image pickup tube described above is characterized by a structure that does not impede the movement of holes excited by incident light. , holes generated by incident light could be injected into the electron M stack on the scanning surface side without being blocked.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術のうち、光導電膜の走査面側に不純物をド
ープした層を設け、走査時に正孔が電子と再結合して消
滅するまでの間に走査電子が光導電膜に注入されるよう
にした撮像管では、入射光によって生じた正孔は電子蓄
積層を再結合することなく走り抜けないと正孔蓄積層に
到達できず、且つ走査電子は正孔77積層と電子J9積
層の両方を、蓄積されることも再結合することもなく走
り抜けないと増幅効果に寄与しない、そのため、暗電流
や残像等の特性を損うことなく高い増幅効率が得られて
しかも連続して入射してくる光のもとでも安定に動作し
得るような材料を選ぶのがむずかしいという問題点があ
った。
Among the above conventional techniques, a layer doped with impurities is provided on the scanning surface side of the photoconductive film so that scanning electrons are injected into the photoconductive film during scanning until holes recombine with electrons and disappear. In an image pickup tube with a 300-millimeter structure, holes generated by incident light cannot reach the hole storage layer unless they pass through the electron storage layer without recombining, and the scanning electrons pass through both the hole 77 stack and the electron J9 stack. , it does not contribute to the amplification effect unless it passes through without being accumulated or recombined.Therefore, high amplification efficiency can be obtained without impairing characteristics such as dark current and afterimage, and it is incident continuously. The problem was that it was difficult to select materials that could operate stably even under light.

一方、透光性導電膜からのキャリア注入による増幅作用
を有する撮像素子の場合には、光導電膜の光入射側、即
ち短波長光をほとんど吸収する領域に不純物ドープによ
って増幅効果のための構造を形成するため、短波長側で
の増幅効率が落ちるという問題点があった。
On the other hand, in the case of an image sensor that has an amplification effect by carrier injection from a transparent conductive film, a structure for an amplification effect is created by doping impurities on the light incident side of the photoconductive film, that is, the region that absorbs most of the short wavelength light. , there was a problem in that the amplification efficiency on the short wavelength side decreased.

本発明の目的は、上記問題点を解決し、入射光によって
励起されたキャリアの数より多い数のキャリアを信号と
して検出し、wi像骨管ターゲット自体増幅効果を有す
る高感度の撮像管を得ることにある。
An object of the present invention is to solve the above-mentioned problems, to detect as a signal a number of carriers greater than the number of carriers excited by incident light, and to obtain a highly sensitive imaging tube that has an amplification effect on the bone canal target itself. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、先導ffL膜の走査面側に正孔に対するポ
テンシャル障壁又は正孔捕獲層を設けることにより、入
射光によって励起されて走査面側に走行してくる正孔が
電子8111層に到達する前に蓄積されるような正孔蓄
積層を形成し、且つ上記正孔蓄積層における電子の平均
走行時間が平均再結合時間よりも短いようにすることで
達成される。
The above purpose is to provide a potential barrier for holes or a hole trapping layer on the scanning surface side of the leading ffL film, so that holes that are excited by incident light and travel toward the scanning surface side reach the electron 8111 layer. This is achieved by forming a hole storage layer that is previously stored, and by making the average transit time of electrons in the hole storage layer shorter than the average recombination time.

〔作用〕[Effect]

以下、本発明による撮像管ターゲットの作用について図
面を用いて説明する。第1図は本発明による撮像管ター
ゲットの構造を示す図である。図中2は、電子の走行性
が悪い材料を用いるか又は電子に対するポテンシャル障
壁を設けることにより電子蓄積機能を持たせた電子蓄積
層である。また4は透光性導電膜3からの正孔の注入を
阻止する正孔注入阻止層である。さらに本発明による撮
像管では、図中6に示したように光導電[1と電子蓄積
層2の間に正孔に対するポテンシャル障壁又は正孔捕獲
層を設けることにより正孔蓄積層6を形成してあり、走
査面側に走行する正孔は電子蓄積P!j2に注入して再
結合せずに正孔蓄積Jl!J6に蓄積される。電子ビー
ムによる走査を行うと、走査面の電位がカソード電位に
等しくなるまで走査電子が電子蓄積層2に蓄積されるが
、このとき走査面電位がカソード電位に等しくなるため
の電子の蓄MfQは上記正孔蓄積層6に蓄積されている
正孔の量qが大きいほど大きくなる。そのため。
Hereinafter, the operation of the image pickup tube target according to the present invention will be explained using the drawings. FIG. 1 is a diagram showing the structure of an image pickup tube target according to the present invention. In the figure, 2 is an electron storage layer that has an electron storage function by using a material with poor electron mobility or by providing a potential barrier to electrons. Further, 4 is a hole injection blocking layer that blocks injection of holes from the transparent conductive film 3 . Furthermore, in the image pickup tube according to the present invention, as shown in 6 in the figure, a hole accumulation layer 6 is formed by providing a potential barrier for holes or a hole trapping layer between the photoconductive layer 1 and the electron accumulation layer 2. , and the holes traveling toward the scanning surface are electron accumulation P! Holes are accumulated Jl without being injected into j2 and recombined! It is stored in J6. When scanning with an electron beam is performed, scanning electrons are accumulated in the electron storage layer 2 until the potential of the scanning surface becomes equal to the cathode potential. At this time, the accumulation of electrons MfQ for the scanning surface potential to become equal to the cathode potential is The larger the amount q of holes accumulated in the hole accumulation layer 6, the larger the amount. Therefore.

動作開始時の入射光によって9が増大するにつれて蓄M
f!E子量Qも増大する。電子蓄積層2において電子を
膜内に注入させるような向きの電界は、正孔蓄積量qが
大きいほど大きいため、qがある値qo以上になると電
子蓄積層2の電子が光導電膜lの方向に注入してその一
部が正孔蓄積6において正孔と再結合してqを減少させ
る。従って。
As 9 increases due to the incident light at the start of operation, the storage M
f! The E molecular weight Q also increases. The electric field in the direction that injects electrons into the film in the electron storage layer 2 increases as the hole storage amount q increases. Therefore, when q exceeds a certain value qo, the electrons in the electron storage layer 2 are injected into the photoconductive film l. A part of the injected holes recombines with holes in the hole storage 6 and reduces q. Therefore.

走査面の電位がカソード電位に等しくなったとき正孔蓄
積層6にVIfIされている正孔の量はq。に平衡する
。この状態で透光性絶縁基板5を通して光が入射すると
、光導電膜1で吸収されて電子・正孔対が発生し、電子
は光入射側に走行して透光性導電[3から流出する。一
方、正孔は走査面側に走行して正孔蓄積層6に蓄積され
るため、正孔蓄積量は上記平衡値qoよりも大きい値q
o+Δqとなる。従って、次の走査時には、正孔蓄積量
が90に戻るまで電子蓄積層2から電子が光導電膜1の
方向に注入される。上述の如く正孔??fJm6は電子
の平均走行時間が平均再結合時間よりも短いようにして
おく、そのため走査時に正孔Mf!を層6に注入された
電子が1個の正孔と再結合する間に2個以上の電子が電
子蓄積層2から注入される。
When the potential of the scanning surface becomes equal to the cathode potential, the amount of holes VIfI in the hole storage layer 6 is q. equilibrium. When light enters through the transparent insulating substrate 5 in this state, it is absorbed by the photoconductive film 1 and electron-hole pairs are generated, and the electrons travel toward the light incident side and flow out from the transparent conductor [3]. . On the other hand, since the holes travel toward the scanning surface side and are accumulated in the hole accumulation layer 6, the amount of accumulated holes is a value q larger than the equilibrium value qo.
It becomes o+Δq. Therefore, during the next scan, electrons are injected from the electron storage layer 2 toward the photoconductive film 1 until the hole storage amount returns to 90. A hole as mentioned above? ? fJm6 is set so that the average transit time of electrons is shorter than the average recombination time, so that holes Mf! While the electrons injected into the layer 6 recombine with one hole, two or more electrons are injected from the electron storage layer 2.

従って、正孔のM積置が平衡値q。に戻って電子の注入
が止まり、走査面電位がカソード電位に等しくなるまで
に、入射光によって生じて走行してきた正孔の量Δqよ
りも多い数の走査電子が撮像管ターゲットに入射して、
その分だけ信号が増幅されて高い感度を得ることができ
る。
Therefore, the M accumulation of holes is the equilibrium value q. By the time the injection of electrons stops and the scanning surface potential becomes equal to the cathode potential, a number of scanning electrons greater than the amount of holes Δq generated by the incident light and traveling have entered the image pickup tube target.
The signal is amplified by that amount and high sensitivity can be obtained.

本発明で特徴的なことは、上述したように、正孔88層
6を電子蓄積層2よりも光入射側に設けて、蓄積された
正孔によって電子蓄積層の電子を光導電膜に向かって注
入させるような電界を形成したことである。
As described above, the characteristic feature of the present invention is that the hole 88 layer 6 is provided on the light incident side of the electron storage layer 2, and the accumulated holes direct electrons in the electron storage layer toward the photoconductive film. The idea is to create an electric field that causes the injection.

本発明による撮像管ターゲットでは、正孔71積層にお
いて電子が再結合せずに光導電膜まで走行する確率がO
より大きければ増幅作用が生じるが、特に正孔蓄積層に
おける電子の平均走行時間が平均再結合時間よりも短い
場合に増幅率が大きくなる。また、正孔蓄積層における
平均再結合時間を1画素走査時間よりも短くすることに
よって蓄積された正孔による残像が生じないようにする
ことができる。
In the image pickup tube target according to the present invention, the probability that electrons will travel to the photoconductive film without recombining in the stack of holes 71 is O.
If it is larger, an amplification effect occurs, but especially when the average transit time of electrons in the hole storage layer is shorter than the average recombination time, the amplification factor becomes large. Further, by making the average recombination time in the hole accumulation layer shorter than the one-pixel scanning time, it is possible to prevent an afterimage caused by accumulated holes from occurring.

なお、本発明による搬像管ターゲットでは蓄積電子の注
入によって増幅効果を得るため、光導電膜中を電子がス
ムーズに走行することが望ましい。
Note that in the image carrier target according to the present invention, since an amplification effect is obtained by injecting accumulated electrons, it is desirable that the electrons travel smoothly through the photoconductive film.

従って、光導電膜に水素化非晶質シリコン(a −8i
:H)のように電子、正孔ともに走行性が良い材料を用
いると一層効果がある。
Therefore, hydrogenated amorphous silicon (a-8i
It is even more effective to use a material with good mobility for both electrons and holes, such as :H).

〔実施例〕〔Example〕

以下1本発明の実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の第1の実施例における撮像管ターゲッ
トの断面図である6透光性ガラス基板5上にCVD法に
より酸化錫を主体とする透光性導電膜3を形成する6つ
ぎに上記透光性導電膜3上に反応性スパッタリングによ
ってSiO2よりなる正孔注入阻止層4を堆積したのち
、高純度Siをターゲットに使用した高周波スパッタ装
置内に上記基板を設置し、上記スパッタ装置内を1×L
 O−’Torr以下の高真空に排気してArおよびH
zの混合ガスを導入し、上記装置内を5XIQ”’4〜
5 X 10−8Torrの圧力にする。上記混合ガス
中の水素の濃度は30〜65%とする。上記基板温度を
150〜300℃に設定したのち反応性スパッタリング
を行い、透光性等電膜3および正孔注入阻止RIJ4が
形成された載板上に、膜厚約2μmのn−8i:Hli
よりなる光導電膜1を形成する。
FIG. 2 is a cross-sectional view of an image pickup tube target in the first embodiment of the present invention. A transparent conductive film 3 mainly made of tin oxide is formed on a transparent glass substrate 5 by the CVD method. After depositing a hole injection blocking layer 4 made of SiO2 on the transparent conductive film 3 by reactive sputtering, the substrate was placed in a high frequency sputtering device using high purity Si as a target, and the substrate was placed in a high frequency sputtering device using high purity Si as a target. 1 x L inside
Evacuate to high vacuum below O-'Torr and remove Ar and H.
Introduce the mixed gas of
Bring the pressure to 5 x 10-8 Torr. The concentration of hydrogen in the mixed gas is 30 to 65%. After setting the substrate temperature to 150 to 300°C, reactive sputtering is performed, and n-8i:Hli with a thickness of approximately 2 μm is placed on the mounting plate on which the transparent isoelectric film 3 and the hole injection blocking RIJ 4 are formed.
A photoconductive film 1 is formed.

つぎに上記基板を蒸着ボートに88を入れた真空蒸着装
置内に移動し、上記蒸着装置内を3×10”−’Tor
rの圧力にして、上記光導電膜1の上に非晶JFjS 
sよりなる層2を約1100n堆積する。
Next, the above-mentioned substrate was moved into a vacuum evaporation apparatus in which 88 was placed in the evaporation boat, and the inside of the above-mentioned evaporation apparatus was heated to 3×10''-'Tor.
Amorphous JFjS is deposited on the photoconductive film 1 at a pressure of r.
A layer 2 of about 1100 nm is deposited.

以上のようにして作られた光導電ターゲラ!−を電子銃
と結合させ、管内を真空排気したのち封止して本実施例
の撮像管を得た。
Photoconductive targetera made as above! - was combined with an electron gun, the inside of the tube was evacuated, and then sealed to obtain the imaging tube of this example.

本実施例による方法で作成したa−3i:HとSaは禁
制帯幅がほぼ等しく、a子親和力はSaの方がa−3i
:Hよりも約0.4  eV大きい。
a-3i:H and Sa created by the method according to this example have almost the same forbidden band width, and the a-3i affinity of Sa is higher than that of a-3i.
: Approximately 0.4 eV larger than H.

そのため、光f[膜とSe層の間には光導電膜から走査
側に走行する正孔および走査面から光導電膜に走行しよ
うとする電子に対してそれぞれ約0.4  eVの高さ
のポテンシャル障壁が形成されている。従つ°C本本実
側ではSe層によって走行を阻止された正孔が光導電膜
の走査側の端部に傳積されてこれが正孔蓄積層6となり
、Se層が電子蓄積層2となる。
Therefore, the light f [between the film and the Se layer has a height of about 0.4 eV for holes traveling from the photoconductive film to the scanning side and electrons trying to travel from the scanning surface to the photoconductive film, respectively. A potential barrier is formed. Therefore, on the real side, the holes whose travel is blocked by the Se layer are accumulated at the scanning side end of the photoconductive film, and this becomes the hole storage layer 6, and the Se layer becomes the electron storage layer 2. .

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第3図は本発明の第2の実施例によるma管メタ−ゲッ
ト断面図である。透光性ガラス基板5上に酸化インジウ
ムを主体とする透光性導電膜3を形成したのち、第1の
実施例と同様にして5iOzよりなる正孔注入阻止NJ
4およびa−8i:Hよりなる光導電膜1を堆積する。
FIG. 3 is a sectional view of the MA tube metal gett according to the second embodiment of the present invention. After forming a transparent conductive film 3 mainly made of indium oxide on a transparent glass substrate 5, a hole injection blocking NJ made of 5iOz was formed in the same manner as in the first embodiment.
4 and a-8i: A photoconductive film 1 consisting of H is deposited.

つづいて上記a−3i:)Iを堆積したスパッタ装置内
をlX1.0−”Torr以下の高真空に排気したのち
、Arおよび02の混合ガスを導入して上記装置内を約
2.5 ×10−’Torrの圧力にする。混合ガス中
の酸素の濃度は約75%とした。基板温度を約200℃
に設定して反応性スパッタリングを行い、上記基板のa
−8i:H光導電膜1の上に約10nmの厚さまで5i
Oz層7を堆積する。つぎに上記基板を真空蒸着装置内
に設置し、約1 、5 X 10”−”TorrのAr
ガス中で蒸着によって多孔質Ce0zよりなる電子蓄積
層2を堆積する1以上のようにして作られた光導電ター
ゲットを電子銃と結合させ。
Next, the inside of the sputtering apparatus in which the above a-3i:) I was deposited was evacuated to a high vacuum of 1.0-'' Torr or less, and a mixed gas of Ar and 02 was introduced to create a vacuum of about 2.5 × The pressure was set at 10-'Torr.The concentration of oxygen in the mixed gas was set at about 75%.The substrate temperature was set at about 200°C.
Perform reactive sputtering with the setting of
-8i: 5i on the H photoconductive film 1 to a thickness of about 10 nm
Deposit an Oz layer 7. Next, the above-mentioned substrate was placed in a vacuum evaporation apparatus, and Ar
A photoconductive target prepared as in one or more above, on which an electron storage layer 2 of porous CeOz is deposited by vapor deposition in a gas, is coupled to an electron gun.

管内を真空排気したのち封止して本実2の実施例の撮像
管を得た。
The inside of the tube was evacuated and then sealed to obtain the imaging tube of Example 2.

本実施例で光導電膜1と電子蓄積層2の間に堆積しであ
る5iOzは、禁制帯幅がa−3i:Hより広い絶縁体
であり、正孔に対するポテンシャル障壁層として働く、
また多孔質C802は電子が走行しにくいため電子MM
mとして働く、光導電膜中で入射光によって励起されて
走行してきた正孔はS i Ox層7によって走行を阻
止され、光導電膜の走査側の端部6に蓄禎される。これ
により上記5iOz層2には強い電界が印加された状態
となって電子蓄積層2からの電子の注入が起こり増幅作
用を生じる。なお、正孔に対するポテンシャル障壁層と
しては、水素と燐や砒素等Vb族元素を含有する非晶質
シリコンなどのn型半導体層を用いても好適である。こ
の場合例えば非晶質シリコンに燐をドープするには、上
記光導電膜を堆積するスパッタ装置内にPHaガスを混
入してPを1100pp以下含有せしめるとよい。さら
に、電子蓄積層としては多孔質5bzSsも良好であっ
た。
In this example, 5iOz deposited between the photoconductive film 1 and the electron storage layer 2 is an insulator with a forbidden band width wider than that of a-3i:H, and acts as a potential barrier layer for holes.
In addition, porous C802 is difficult for electrons to travel, so electron MM
The holes excited by the incident light in the photoconductive film and traveling therein are blocked from traveling by the SiOx layer 7, and are accumulated at the scanning side end 6 of the photoconductive film. As a result, a strong electric field is applied to the 5iOz layer 2, and electrons are injected from the electron storage layer 2, resulting in an amplification effect. Note that as the potential barrier layer for holes, it is also suitable to use an n-type semiconductor layer such as amorphous silicon containing hydrogen and a Vb group element such as phosphorus or arsenic. In this case, for example, in order to dope amorphous silicon with phosphorus, it is preferable to mix PHa gas into the sputtering apparatus in which the photoconductive film is deposited so that the amorphous silicon contains 1100 pp or less of P. Furthermore, porous 5bzSs was also good as an electron storage layer.

つぎに本発明の第3の実施例について説明する。Next, a third embodiment of the present invention will be described.

第4図は本発明の第3の実施例による撮像管ターゲット
の断面図である。透光性ガラス基板5上に酸化錫を主体
とする透光性導電膜3を堆積したのち、上記第1.第2
の実施例と同様の方法でSiO2よりなる正孔注入阻止
層4およびa −9i :Hよりなる光導電膜1を堆積
する。つづいて上記a−3i:Hlllを堆積したスパ
ッタ装置内のArおよびHzの混合ガスにさらにN2ガ
スを約0.1 %混合して反応性スパッタリングを行い
、窒素をドープしたa−3i:H層6を約20nmの厚
さまで堆積する。つぎに上記スパッタ装置内をI X 
10−’Tart以下に排気したのち、再び上記第1の
実施例と同様にArおよびH2の混合ガスを導入し、さ
らにBzHaを約50ppm導入して反応性スパッタリ
ングを行い、ボロンをドープしたa−8i:Hよりなる
層2を約20nmの厚さまで堆積する1以上のようにし
て作られた光導電ターゲットを電子銃と結合させ、管内
を真空排気したのち封止して本箱3の実施例の撮像管を
得た。
FIG. 4 is a sectional view of an image pickup tube target according to a third embodiment of the present invention. After depositing a light-transmitting conductive film 3 mainly composed of tin oxide on a light-transmitting glass substrate 5, the above-mentioned first. Second
A hole injection blocking layer 4 made of SiO2 and a photoconductive film 1 made of a -9i :H are deposited in the same manner as in Example 2. Subsequently, reactive sputtering was performed by further mixing about 0.1% N2 gas into the Ar and Hz mixed gas in the sputtering equipment in which the a-3i:Hll was deposited, and the nitrogen-doped a-3i:H layer was formed. 6 is deposited to a thickness of about 20 nm. Next, the inside of the sputtering apparatus is
After evacuation to below 10-'Tart, a mixed gas of Ar and H2 was introduced again in the same manner as in the first embodiment, and approximately 50 ppm of BzHa was introduced to perform reactive sputtering to form a boron-doped a- 8i: A photoconductive target made as described above in which a layer 2 of H is deposited to a thickness of about 20 nm is coupled to an electron gun, and the tube is evacuated and then sealed to form an embodiment of the bookcase 3. An image pickup tube was obtained.

本実施例で用いたNがドープされたa−3i:■(膜は
正孔を捕獲しやすいため、入射光によって励起されて走
行してきた正孔を捕獲する正孔蓄積層となる。また、B
をドープしたa−8i:H膜は電子を捕獲しやすいため
、電子蓄積層として働く。
N-doped a-3i used in this example: (Since the film easily captures holes, it becomes a hole accumulation layer that captures holes that are excited by incident light and travel. B
The a-8i:H film doped with a-8i:H easily captures electrons, and thus functions as an electron storage layer.

以上第1〜第3の実施例で述べた撮像管を動作させたと
ころ、正孔蓄積層を設けずに5bzSaなどの電子蓄積
層のみを有する従来の撮像管に比べて2〜15倍の感度
が得られ、且つ暗電流はターゲット電圧20Vで2nA
以下、残像は3フイールド後で3%以下という良好な特
性を示し、すぐれた画質を得ることができた。
When the image pickup tube described in the first to third embodiments was operated, the sensitivity was 2 to 15 times higher than that of a conventional image pickup tube that has only an electron storage layer such as 5bzSa without a hole storage layer. is obtained, and the dark current is 2nA at a target voltage of 20V.
Hereinafter, good characteristics were exhibited, with the afterimage being 3% or less after 3 fields, and excellent image quality could be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、入射光によって生じて走査面側に走行
してきた正孔が電子蓄積層に到達する前に蓄積されるた
め、走査時に電子を光導電膜に注入させるような電界が
強くなって入射光に応じた電子の注入が起こり、正孔と
再結合せずに光導電膜に入射した分だけ信号量が増加す
る。従って、撮像管自身に増幅作用を持たせることがで
き、高い感度の撮像管を得ることができる。
According to the present invention, holes generated by incident light and traveling toward the scanning surface are accumulated before reaching the electron storage layer, so that the electric field that injects electrons into the photoconductive film becomes stronger during scanning. Electrons are injected in response to the incident light, and the signal amount increases by the amount of electrons that are incident on the photoconductive film without being recombined with holes. Therefore, the image pickup tube itself can have an amplification effect, and a highly sensitive image pickup tube can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による撮像管ターゲットの基本的構造を
示す断面図、第2図は本発明の第1の実施例による撮像
管ターゲットの断面図、第3図は本発明の第2の実施例
による撮像管ターゲットの断面図、第4図は本発明の第
3の実施例による撮像管ターゲットの断面図、第5図は
従来一般に用いられている撮像管ターゲットの断面図で
ある。 1・・・光導電膜、2・・・電子蓄積層、3・・・透光
性導電膜、4・・・正孔注入阻止層、5・・・透光性絶
縁基板。
1 is a sectional view showing the basic structure of an image pickup tube target according to the present invention, FIG. 2 is a sectional view of an image pickup tube target according to a first embodiment of the present invention, and FIG. 3 is a sectional view showing a second embodiment of the present invention. FIG. 4 is a sectional view of an image pickup tube target according to a third embodiment of the present invention, and FIG. 5 is a sectional view of a commonly used image pickup tube target. DESCRIPTION OF SYMBOLS 1... Photoconductive film, 2... Electron storage layer, 3... Transparent conductive film, 4... Hole injection blocking layer, 5... Transparent insulating substrate.

Claims (1)

【特許請求の範囲】 1、所定の透光性絶縁基板上に少なくとも透光性導電膜
と光導電膜とを備え、上記透光性絶縁基板を光入射側に
配置した光導電ターゲットを有する撮像管において、上
記光導電膜の電子ビーム走査側に、正孔蓄積層と、上記
正孔蓄積層よりも電子ビーム走査面に近い側に配置され
た電子蓄積層とを設けたことを特徴とする撮像管ターゲ
ット。 2、上記正孔蓄積層における電子の平均走行時間を平均
再結合時間よりも短くしたことを特徴とする特許請求の
範囲第1項記載の撮像管ターゲット。 3、上記正孔蓄積層と電子蓄積層の間に、正孔に対する
ポテンシャル障壁を形成する層を設けたことを特徴とす
る特許請求の範囲第1項または第2項記載の撮像管ター
ゲット。 4、上記正孔蓄積層は光導電膜と同じ母材に不純物がド
ープされた正孔捕獲層であることを特徴とする特許請求
の範囲第1項、第2項または第3項記載の撮像管ターゲ
ット。 5、上記先導電膜の主たる成分が水素を含有した非晶質
シリコンであることを特徴とする特許請求の範囲第1項
、第2項、第3項または第4項のいずれかに記載した撮
像管ターゲット。
[Claims] 1. Imaging having a photoconductive target comprising at least a light-transmitting conductive film and a photoconductive film on a predetermined light-transmitting insulating substrate, with the light-transmitting insulating substrate disposed on the light incident side. The tube is characterized in that a hole storage layer is provided on the electron beam scanning side of the photoconductive film, and an electron storage layer is provided on a side closer to the electron beam scanning surface than the hole storage layer. Image tube target. 2. The image pickup tube target according to claim 1, wherein the average transit time of electrons in the hole storage layer is shorter than the average recombination time. 3. The image pickup tube target according to claim 1 or 2, characterized in that a layer forming a potential barrier against holes is provided between the hole storage layer and the electron storage layer. 4. Imaging according to claim 1, 2 or 3, wherein the hole accumulation layer is a hole trapping layer in which the same base material as the photoconductive film is doped with impurities. tube target. 5. Claims 1, 2, 3, or 4, characterized in that the main component of the leading conductive film is amorphous silicon containing hydrogen. Image tube target.
JP61104643A 1986-05-09 1986-05-09 Image pickup tube target Pending JPS62262348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104643A JPS62262348A (en) 1986-05-09 1986-05-09 Image pickup tube target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104643A JPS62262348A (en) 1986-05-09 1986-05-09 Image pickup tube target

Publications (1)

Publication Number Publication Date
JPS62262348A true JPS62262348A (en) 1987-11-14

Family

ID=14386132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104643A Pending JPS62262348A (en) 1986-05-09 1986-05-09 Image pickup tube target

Country Status (1)

Country Link
JP (1) JPS62262348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636729A (en) * 1986-06-27 1988-01-12 Hitachi Ltd Target of image pick-up tube
US5466613A (en) * 1992-06-19 1995-11-14 Nippon Hoso Kyokai Method of manufacturing a camera device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636729A (en) * 1986-06-27 1988-01-12 Hitachi Ltd Target of image pick-up tube
US5466613A (en) * 1992-06-19 1995-11-14 Nippon Hoso Kyokai Method of manufacturing a camera device

Similar Documents

Publication Publication Date Title
Martinelli et al. The application of semiconductors with negative electron affinity surfaces to electron emission devices
EP0005543B1 (en) Photosensor
US4352834A (en) Method for fabricating a semiconductor device
US7608824B2 (en) Doped carbon nanostructure field emitter arrays for infrared imaging
US3743899A (en) Radiation-sensitive semiconductor target for a camera tube
US3983574A (en) Semiconductor devices having surface state control
GB2036426A (en) Radiation sensitive screen
JPS62262348A (en) Image pickup tube target
JPH0621427A (en) Photoelectric conversion device
EP0036779B1 (en) Photoelectric conversion device and method of producing the same
JPH065223A (en) Image pick-up device and its manufacture
JPS61144062A (en) Photoelectric conversion device
US4626885A (en) Photosensor having impurity concentration gradient
Fertin et al. Reverse epitaxial silicon diode for hybrid photomultiplier tube
US4883562A (en) Method of making a photosensor
JPH09213203A (en) Photoelectric surface and photoelectric transfer tube using photoelectric surface
US3979629A (en) Semiconductor with surface insulator having immobile charges
JPS63233574A (en) Optoelectronic transducer
JP3020563B2 (en) Solid-state imaging device
KR900000350B1 (en) Photoelectric converting apparatus
JPS63236247A (en) Photoelectric conversion device
Zavadil et al. Characterization of sputter deposited thin film scandate cathodes for miniaturized thermionic converter applications
JPH025017B2 (en)
Hong et al. Signal amplification and leakage current suppression in amorphous silicon pin diodes by field profile tailoring
JPS60247965A (en) Solid-state image pickup element