JPS62262028A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPS62262028A
JPS62262028A JP10633686A JP10633686A JPS62262028A JP S62262028 A JPS62262028 A JP S62262028A JP 10633686 A JP10633686 A JP 10633686A JP 10633686 A JP10633686 A JP 10633686A JP S62262028 A JPS62262028 A JP S62262028A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
voltage
scan
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10633686A
Other languages
Japanese (ja)
Inventor
Kunihiko Yamamoto
邦彦 山本
Shuichi Kanzaki
修一 神崎
Yutaka Ishii
裕 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10633686A priority Critical patent/JPS62262028A/en
Publication of JPS62262028A publication Critical patent/JPS62262028A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an undesirable influence of a parallax exerted on a display characteristic of a liquid crystal display panel, and to obtain a uniform and good contrast characteristic, by providing a luminance correcting circuit for varying successively a selective voltage value of a scan driving waveform, by following a line sequential scan in one constitution screen. CONSTITUTION:In a liquid crystal display device which is an XY matrix type in which plural signal electrodes and plural scan electrodes are opposed to each other in a matrix shape, and provided with a multiplex driving circuit by a voltage averaging method, a luminance correcting circuit for varying successively a selective voltage value of a scan driving waveform by following a line sequential scan in one constitution screen is provided. Since the luminance correcting circuit for varying successively a scan voltage is added, unevenness and a fall of a contrast caused by a parallax in one screen are prevented, and even in case of a large-sized liquid crystal display panel, an image which is uniform and has a high quality can be obtained extending over the whole screen.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、液晶表示装置に係り、特にグラフィック、
キャラクタ表示など時分割数の大きい大型液晶表示素子
に適した液晶表示装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a liquid crystal display device, and particularly relates to a liquid crystal display device for displaying graphics,
The present invention relates to a liquid crystal display device suitable for large-sized liquid crystal display elements with a large number of time divisions, such as character display.

〈従来の技術〉 近年、液晶表示装置の分野において、表示情報量の拡大
化が要求されるようになり、マトリクス表示において、
さらに、表示情報を多様化するため、マトリクス駆動に
おけるマルチプレックスの度数N(走査電極数)を大き
くした大型ディスプレイ装置の実現が要求されている。
<Prior art> In recent years, in the field of liquid crystal display devices, there has been a demand for an increase in the amount of displayed information, and in matrix displays,
Furthermore, in order to diversify display information, it is required to realize a large display device in which the multiplex frequency N (number of scanning electrodes) in matrix drive is increased.

そして、この実現に向けて駆動方式、液晶材料及び偏光
板等の最適化について各方面で活発に検討が行なわれて
きている。この大型ディスプレイ装置においては広視野
角でコントラスト比が高く、かつ画面内で一様な表示を
いかに得るかということが最大の課題となる。
In order to realize this, optimization of driving methods, liquid crystal materials, polarizing plates, etc. has been actively studied in various fields. The biggest challenge in this large display device is how to obtain a wide viewing angle, a high contrast ratio, and a uniform display within the screen.

〈発明が解決しようとする問題点〉 ところで、XYマトリックス型液晶表示パネルを度数N
の最適電圧平均化法で駆動するとき、公知のように、走
査パルスのピーク電圧V詠信号パルスのピーク電圧V、
との間に V1=$V、(1) の関係があるとき、最大のコントラスト比が得られ、そ
のとき点灯画素における実効電圧Vonと非で表わされ
、度数Nの増加に伴い、VonとVoffとの差は減少
する。
<Problem to be solved by the invention> By the way, the XY matrix type liquid crystal display panel is
When driving with the optimum voltage averaging method, as is known, the peak voltage of the scanning pulse V, the peak voltage of the emitting signal pulse V,
When there is a relationship between V1=$V, (1), the maximum contrast ratio is obtained, and at that time, it is expressed as the effective voltage Von at the lit pixel, and as the frequency N increases, Von and The difference with Voff decreases.

さらに、パネルの大型化においては、1つの画面上での
視差が大きくなる。すなわち、LCD(液晶表示装置)
におけろ視角θを第3図の様に定義すると、T N (
twisted nematic) −L CDの電気
光学特性の視角依存性は第4図の様に示される。
Furthermore, as the size of the panel increases, the parallax on one screen increases. That is, LCD (liquid crystal display)
If the viewing angle θ is defined as shown in Fig. 3, then T N (
The viewing angle dependence of the electro-optical characteristics of the twisted nematic)-L CD is shown in FIG.

ここで例えば、第5図の様に縦方向が150m5+の画
面を500mmの距離から見ると、縦方向に約15°の
視差が生じ、従来の電圧平均化法では、画面上のa、 
bで透過率強度が異なることになる(第4図参照)。ま
た、VonとVoffとの比αが小さくなるにつれて、
この現象はさらに一著となる。
For example, when viewing a screen measuring 150m5+ in the vertical direction from a distance of 500mm as shown in Figure 5, there will be a parallax of approximately 15° in the vertical direction.
The transmittance intensity differs at point b (see Figure 4). Also, as the ratio α between Von and Voff becomes smaller,
This phenomenon is even more important.

従来のマトリクス駆動波形においては、本質的にこの問
題が生じ、液晶表示素子の大型化を阻止する原因の1つ
となっていた。
This problem essentially occurs in conventional matrix drive waveforms, and is one of the reasons for preventing the enlargement of liquid crystal display elements.

本発明は、このような事情に鑑みてなされたもので、液
晶表示パネルの表示特性に与える視差の悪影響を軽減し
、液晶表示装置においても、均一で、良好なコントラス
ト特性を提供することを目的としている。
The present invention was made in view of the above circumstances, and aims to reduce the adverse effects of parallax on the display characteristics of a liquid crystal display panel, and to provide uniform and good contrast characteristics even in a liquid crystal display device. It is said that

く問題点を解決するための手段〉 先ず、この発明の原理について説明する。第8図はXY
ママトリクス液晶表示装置における電圧平均化法による
印加電圧の一例を示し、第8図(a)は走査電極Y1に
、同図(b)、 (c)は信号電極Xl。
Means for Solving the Problems First, the principle of the invention will be explained. Figure 8 is XY
FIG. 8(a) shows an example of the voltage applied by the voltage averaging method in a mamatrix liquid crystal display device, and FIG. 8(a) shows the voltage applied to the scanning electrode Y1, and FIG. 8(b) and FIG.

X、に、同図(d)は点灯画素に、同図(e)は非点灯
画素にそれぞれ印加される電圧波形である。また、時間
【は1つの走査電極のオン期間、時間Tはフレーム周期
、電圧■1は走査電極に印加されるピーク電圧、電圧V
!は信号電極に印加されるピーク電圧である。
In the figure, (d) is a voltage waveform applied to a lit pixel, and (e) is a voltage waveform applied to a non-lit pixel. In addition, time [ is the ON period of one scanning electrode, time T is the frame period, voltage 1 is the peak voltage applied to the scanning electrode, and voltage V
! is the peak voltage applied to the signal electrode.

ところで、前述のように電圧V、、V、が前述の(1)
式の関係にあるとき(この場合のVl及びV。
By the way, as mentioned above, the voltages V, , V, are the same as the above (1)
When the relationship is as shown in the formula (in this case, Vl and V.

をV 10pt 、 V zOptとする)、XY?ト
リクス型液晶パネルは最大のコントラスト比が得られ、
そのとき、点灯画素および非点灯画素に印加される実効
電圧の比αoptは(2)式で示される。
are V 10pt and V zOpt), XY? Trix type LCD panel provides maximum contrast ratio,
At that time, the ratio αopt of the effective voltage applied to the lit pixel and the non-lit pixel is expressed by equation (2).

また、点灯画素に印加される実効値電圧v an(ri
s)、非点灯画素に印加される実効値電圧Vofr(r
Ills)は次式で表わされる。
Moreover, the effective value voltage van(ri
s), the effective value voltage Vofr(r
Ills) is expressed by the following formula.

ただし、T=2Nt これは、Von(rms)、 Vofr(rms)が■
1及びVlによって可変であることを示しており、第2
図に、その−例としてN=120で電圧V、を一定値(
Vtopt)にし、■、を可変にしたときのV on(
rms) 、 Vorr(rms)及びαを示す。また
、図中の点線は(1)式の関係を満たず場合である。こ
れよりvlを最適駆動fa V +optより変化させ
ると、V on(rms) 、 V 。
However, T=2Nt This means that Von (rms) and Vofr (rms) are ■
1 and Vl, and the second
In the figure, as an example, when N=120, the voltage V is set to a constant value (
Vtopt) and V on(
rms), Vorr(rms) and α. Moreover, the dotted line in the figure indicates the case where the relationship of equation (1) is not satisfied. From this, when vl is changed from the optimal drive fa V +opt, V on (rms), V .

rf(rms)を同時に増紘させることができ、また多
少v1が変化してらαの値は、はとんど変化しないこと
がわかる。
It can be seen that rf (rms) can be increased at the same time, and even if v1 changes somewhat, the value of α hardly changes.

従って、前述の画面上下方向の視差によるコントラスト
比の相違はIVllを線順次走査に伴って次第に変化さ
仕、V on(rms)をLCDの各表示場所における
視角特性の最適値に調節することによって改善すること
ができる。すなわち、第5図において、まずb点におけ
る非点灯画素の透過光強度を、第6図に示すように、1
v11を調節することによって、しきい値電圧以下のV
off’に設定する。この時のIV、lを1v、b+と
する。
Therefore, the contrast ratio difference due to the above-mentioned parallax in the vertical direction of the screen can be solved by gradually changing IVll with line-sequential scanning and adjusting V on (rms) to the optimum value of the viewing angle characteristics at each display location on the LCD. It can be improved. That is, in FIG. 5, first, the transmitted light intensity of the non-lit pixel at point b is calculated as 1 as shown in FIG.
By adjusting v11, V below the threshold voltage
Set to 'off'. At this time, IV and l are assumed to be 1v and b+.

また、b点における点灯画素には、最適電圧平均化法の
駆動によりv an’に対応する透過光強度TOが得ら
れる。このような状態でa点においては、1■11を上
述のIVlblより低い電圧1V1a1に設定すること
により、点灯画素の透過光強度は、b点の透過光強度と
同じToにすることができる。
Furthermore, the transmitted light intensity TO corresponding to van' is obtained for the lit pixel at point b by driving using the optimal voltage averaging method. In this state, at point a, by setting 111 to a voltage 1V1a1 lower than the above-mentioned IVlbl, the transmitted light intensity of the lit pixel can be made to be the same To as the transmitted light intensity at point b.

また、a点の非点灯画素には、実効値電圧VolT(r
ms)が印加される。a点における透過光強度の立ち上
がりは、b点よりも鋭いこと、また、第2図に示した様
にV、を多少変化させても、動作マージンαのほとんど
変化しない(a点とb点でのα値はほぼ同じと見なせる
)ことから、Vof’4はa点に+1)けるしきい値電
圧よりも低い電圧となり、その結果、a点においてもb
点と同じコントラスト比が得られることになる。この原
理を用い、IV、lをa点よりb点に向って線順次走査
に応じて、次第に変化させることにより(IV、al 
 ≦ IV、l  ≦lv+”1)、大画面表示におい
ても視差によるコントラストむらを効果的に改善するこ
とができる。
Moreover, the effective value voltage VolT(r
ms) is applied. The rise of the transmitted light intensity at point a is sharper than that at point b, and as shown in Figure 2, even if V is slightly changed, the operating margin α hardly changes (between points a and b). can be considered to be almost the same), Vof'4 becomes a voltage lower than the threshold voltage at point a +1), and as a result, even at point a, b
The same contrast ratio as a point will be obtained. Using this principle, by gradually changing IV, l from point a to point b according to line-sequential scanning (IV, al
≦IV, l≦lv+”1), contrast unevenness due to parallax can be effectively improved even in large screen display.

なお、前記の動作マージンαの走査ライン数Nに依存し
、第7図に示すように、Nの増加に伴って最適電圧平均
化法の動作マージンαoptに近づく。
Note that the operating margin α depends on the number N of scanning lines, and as shown in FIG. 7, as N increases, the operating margin α approaches the operating margin α opt of the optimal voltage averaging method.

また、この図より明らかな様にNがほぼ60以上では、
動作マージンαの低下はほとんど問題ない。
Also, as is clear from this figure, when N is approximately 60 or more,
There is almost no problem with the decrease in the operating margin α.

従って本発明に係わる駆動においてはNがほぼ60以上
のXYママトリクス液晶表示装置において、極めて顕著
な効果を発揮する。
Therefore, the driving according to the present invention exhibits a very remarkable effect in an XY matrix liquid crystal display device in which N is approximately 60 or more.

以上が本発明の原理である。なお、基本的には、他のマ
ルチプレックス駆動波形においても本発明の基本原理は
適用できる。
The above is the principle of the present invention. Note that the basic principle of the present invention can basically be applied to other multiplex drive waveforms.

上記原理に基づき、本発明は、複数の信号電極と複数の
走査電極とを互いにマトリクス状に対向させたXYマト
リクス型で、電圧平均化法によるマルチプレックス駆動
回路を備えた液晶表示装置において、走査駆動波形の選
択電圧値を一構成画面内で線順次走査に伴って、順次変
化させる輝度補正回路を設けたのである。
Based on the above principle, the present invention provides an XY matrix type liquid crystal display device in which a plurality of signal electrodes and a plurality of scanning electrodes are opposed to each other in a matrix, and is equipped with a multiplex drive circuit using a voltage averaging method. A brightness correction circuit is provided that sequentially changes the selected voltage value of the drive waveform in accordance with line-sequential scanning within one constituent screen.

〈実施例〉 第1図はこの発明の一実施例に係る液晶表示装置であり
、!はXYマトリクス型型車型液晶表示パネル2はマル
チプレックス走査側駆動回路、3はマルチプレックス信
号側駆動回路、4は輝度補正回路としての積分器41と
反転増幅器42.43とからなる走査電圧IV、l用の
電源回路、5は反転増幅器51とボルテージフォロア5
2とからなる信号電圧IV、l用の電源回路である。上
記積分器41には、積分値をリセットする電界効果トラ
ンジスタ(FET)44が設けられている。
<Embodiment> FIG. 1 shows a liquid crystal display device according to an embodiment of the present invention. The XY matrix type car-type liquid crystal display panel 2 is a multiplex scanning side drive circuit, 3 is a multiplex signal side drive circuit, 4 is a scanning voltage IV consisting of an integrator 41 and inverting amplifiers 42 and 43 as a brightness correction circuit; 5 is an inverting amplifier 51 and a voltage follower 5.
This is a power supply circuit for signal voltages IV and l consisting of 2 and 2. The integrator 41 is provided with a field effect transistor (FET) 44 that resets the integrated value.

しかして、第1図に示す電圧平均化法に基づく波形の走
査電圧V、と信号電圧V、を、それぞれ走査側駆動回路
2及び信号側駆動回路3に印加して、デユーティ比1/
120、フレーム周波数60Hzで、8インチ葉イズの
液晶パネルlを駆動させた。
The scanning voltage V and the signal voltage V having waveforms based on the voltage averaging method shown in FIG.
120, an 8-inch leaf-sized liquid crystal panel was driven at a frame frequency of 60 Hz.

ここで液晶表示パネルl全体にわたって、走査電圧IV
、l、信号電圧IV、lを一定の値(V、opt。
Here, the scanning voltage IV is applied over the entire liquid crystal display panel l.
, l, signal voltage IV, l to a constant value (V, opt.

V *opt)にすると、パネルlの上から下に向かっ
てコントラストの変化がみられ、上部が明るく、下部は
暗いといった状態になった。そこで、本実施例に記載し
た積分器41を内蔵した電源回路4を用いて、走査電圧
IV、lが第9図(ロ)の様な変化を示すように調節を
行った。この設定については、あらかじめ液晶表示パネ
ルlの電気光学特性より最適な値を算出した。また、積
分器41のF E T 44のゲートには、第9図(イ
)に示す様なパルスが印加され、液晶表示パネルlのa
点及びb点における走査側には第9図(ハ)、(ニ)に
示す駆動波形が印加されている。この様な調整の結果、
液晶表示パネルl内の輝度むらは補正され、全体的にコ
ントラストのむらのないほぼ均一な画面が得られて、コ
ントラストが修正されることが認められた。また、液晶
表示パネル内で、上下方向にセル厚のむらが発生し、電
気光学特性のしきい値工圧がばらついた場合で6本発明
を適用すれば同様の効果が期待できる。
V*opt), a change in contrast was observed from the top to the bottom of panel l, with the top being bright and the bottom being dark. Therefore, using the power supply circuit 4 incorporating the integrator 41 described in this embodiment, adjustments were made so that the scanning voltages IV and l exhibited changes as shown in FIG. 9(b). Regarding this setting, the optimum value was calculated in advance from the electro-optical characteristics of the liquid crystal display panel 1. Further, a pulse as shown in FIG. 9(a) is applied to the gate of FET 44 of the integrator 41, and a
Driving waveforms shown in FIGS. 9(c) and (d) are applied to the scanning side at point and b. As a result of such adjustment,
It was confirmed that the brightness unevenness within the liquid crystal display panel 1 was corrected, a substantially uniform screen with no contrast unevenness was obtained overall, and the contrast was corrected. Furthermore, similar effects can be expected if the present invention is applied in a case where cell thickness unevenness occurs in the vertical direction within a liquid crystal display panel and the threshold pressure of electro-optical characteristics varies.

〈発明の効果〉 この発明によれば、マルチプレックス駆動型XYマトリ
クス液晶表示装置において、走査電圧を順次変化させる
輝度補正回路を付加しているので、1つの画面での視差
によるコントラストのむらや低下か防止され、大型液晶
表示パネルにおいてら、画面全体にわたり均一で高品質
の画像を得ることができる。
<Effects of the Invention> According to the present invention, in a multiplex drive type XY matrix liquid crystal display device, a brightness correction circuit that sequentially changes the scanning voltage is added, so that unevenness or reduction in contrast due to parallax on one screen can be prevented. This makes it possible to obtain uniform, high-quality images over the entire screen on large liquid crystal display panels.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の液晶表示装置の回路図、
第2図及び第7図はこの発明の詳細な説明するグラフ、
第3図は視角特性の定義を示す説明図、第4図は印加電
圧に対する透過光強度の視角特性を説明するグラフ、第
5図は液晶表示パネル上で生じる視差を説明する図、第
6図は液晶表。 示パネル上の各点での印加電圧に対する透過光強度を説
明するグラフ、第8図はこの発明の一実施例の印加電圧
の波形を示す説明図、第9図は第1図における印加7[
圧の説明図である。 1・・液晶表示パネル、2 ・走査側駆動回路、3・・
・信号側駆動回路、4・・・走査電圧用電源回路、5・
・・信号電圧用電源回路、41・・・積分器。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士  前出 葆 外2名帽@架鋤璽 纒       J4;錦丁
FIG. 1 is a circuit diagram of a liquid crystal display device according to an embodiment of the present invention.
2 and 7 are graphs explaining the invention in detail,
Figure 3 is an explanatory diagram showing the definition of viewing angle characteristics, Figure 4 is a graph explaining viewing angle characteristics of transmitted light intensity with respect to applied voltage, Figure 5 is a diagram explaining parallax occurring on a liquid crystal display panel, and Figure 6 is a liquid crystal display. FIG. 8 is an explanatory diagram showing the waveform of the applied voltage in an embodiment of the present invention, and FIG. 9 is a graph explaining the transmitted light intensity with respect to the applied voltage at each point on the display panel.
It is an explanatory view of pressure. 1.Liquid crystal display panel, 2.Scanning side drive circuit, 3..
・Signal side drive circuit, 4...Scanning voltage power supply circuit, 5.
... Signal voltage power supply circuit, 41... Integrator. Patent applicant: Sharp Corporation Agent
Patent attorney, previously mentioned, 2 people's hats @Kasho Seten J4; Nishikicho

Claims (1)

【特許請求の範囲】[Claims] (1)複数の信号電極と複数の走査電極とを互いにマト
リクス状に対向させたXYマトリクス型で、電圧平均化
法によるマルチプレックス駆動回路を備えた液晶表示装
置において、 走査駆動波形の選択電圧値を一構成画面内で線順次走査
に伴って、順次変化させる輝度補正回路を備えているこ
とを特徴とする液晶表示装置。
(1) In a liquid crystal display device of an XY matrix type in which a plurality of signal electrodes and a plurality of scan electrodes are opposed to each other in a matrix, and is equipped with a multiplex drive circuit using a voltage averaging method, the selection voltage value of the scan drive waveform is determined. 1. A liquid crystal display device comprising a brightness correction circuit that sequentially changes brightness in line-sequential scanning within one constituent screen.
JP10633686A 1986-05-08 1986-05-08 Liquid crystal display device Pending JPS62262028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10633686A JPS62262028A (en) 1986-05-08 1986-05-08 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10633686A JPS62262028A (en) 1986-05-08 1986-05-08 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS62262028A true JPS62262028A (en) 1987-11-14

Family

ID=14431018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10633686A Pending JPS62262028A (en) 1986-05-08 1986-05-08 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS62262028A (en)

Similar Documents

Publication Publication Date Title
US8305316B2 (en) Color liquid crystal display device and gamma correction method for the same
US8279364B2 (en) Liquid crystal display device
US9691331B2 (en) Backlight liquid crystal display device supplied with varying gradation voltages at frequencies corresponding to the video signal frequency
JP3799307B2 (en) Liquid crystal display device and driving method thereof
US7248314B2 (en) Liquid crystal display with the red, green, blue, and yellow sub-pixels surrounding the white sub-pixel
KR100700647B1 (en) Liquid Crystal Display Device
US20060119557A1 (en) System and method for driving an LCD
KR100433064B1 (en) Liquid crystal display and driving control method therefore
CN109785803B (en) Display method, display unit and display
CN101432794B (en) Liquid crystal display apparatus and method for driving the same
KR20040085495A (en) The Dot Inversion Driving Method Of LCD
KR100366933B1 (en) Liquid crystal display device, and method for driving the same
US10770012B2 (en) Display panel and display device
US20060132422A1 (en) Method of driving liquid crystal display and liquid crystal display
JP2950949B2 (en) Driving method of liquid crystal display device
KR20010107715A (en) Method of driving liquid crystal display
JPS62262028A (en) Liquid crystal display device
JP2005107527A (en) Liquid crystal display device of field sequential driving system
KR100670143B1 (en) Driving method of liquid crystal display
KR100879214B1 (en) Liquid crystal display device
JPH0289091A (en) Driving method for active matrix type liquid crystal display device
KR20030056526A (en) method for driving of liquid crystal display
KR20080024888A (en) Liquid crystal display and method for driving thereof
KR20080073421A (en) Liquid crystal display and driving method thereof
KR20060001701A (en) Method for driving liquid crystal display device