JPS6226198A - Automatic rudder control system for ship - Google Patents

Automatic rudder control system for ship

Info

Publication number
JPS6226198A
JPS6226198A JP16548585A JP16548585A JPS6226198A JP S6226198 A JPS6226198 A JP S6226198A JP 16548585 A JP16548585 A JP 16548585A JP 16548585 A JP16548585 A JP 16548585A JP S6226198 A JPS6226198 A JP S6226198A
Authority
JP
Japan
Prior art keywords
rudder
control
unit
gain
course
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16548585A
Other languages
Japanese (ja)
Other versions
JPH0580396B2 (en
Inventor
Mamoru Kuwata
守 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP16548585A priority Critical patent/JPS6226198A/en
Publication of JPS6226198A publication Critical patent/JPS6226198A/en
Publication of JPH0580396B2 publication Critical patent/JPH0580396B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove control unstability in a course keeping control unit due to change in dynamic characteristics of a rudder by controlling control gain of a control arithmetic unit by a control signal from a gain control unit according to the operating condition of a plurality of rudder controllers. CONSTITUTION:An operating condition monitor unit 10 receives voltage signals from first and second rudder starters Sa, Sb and includes relays 10a, 10b to be actuated by the respective voltage signals, and in the 100% operating condition in which the first and second rudder controllers 4a, 4b are simultaneously actuated, they simultaneously receive the voltage signals and output a monitor signal gamma as the monitor result. According to the signal gamma, a gain control unit 11 transmits a control signal for controlling the control gain of a control arithmetic unit 90, and in PID operation for optimizing the course deviation value DELTAphifor ship travel, control gains from a proportional arithmetic unit 90a having a proportional value P variable by the control signal from the control unit 11 and a derivative arithmetic unit 90c having a derivative value D variable by the control signal are adjusted, and the arithmetic unit 90 calculates the rudder angles to be controlled and transmits a rudder angle instruction Qc to a comparator circuit Co in the rudder unit alpha.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は舶用自動操舵システムに係わり、特に、舵機を
駆動する複数のシリンダを駆動する複数の舵機コントロ
ーラの運転状態による操舵特性の変化を、保針制御演算
部の制御ゲインを自動的に制御することで補償し、I&
適な保針制御特性を得る構成の舶用自動操舵システムに
関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a marine automatic steering system, and in particular, changes in steering characteristics depending on the operating state of a plurality of rudder controllers that drive a plurality of cylinders that drive a rudder. is compensated for by automatically controlling the control gain of the course-keeping control calculation section, and the I&
The present invention relates to a marine automatic steering system configured to obtain suitable course-keeping control characteristics.

〈従来の技術〉 一般的な舶用自動操舵システムにおいては、舵機能力(
舵機を例えば左35°から右30’ まで転舵させるの
にかかる時間で表わす)が規定(例えば28秒/65°
)されているが、この舵機能力は舵機の型式によっては
、1台の舵機コントローラによって制御される場合の舵
機能力を例えば50%〈5G秒/65°)とし、これを
2台並列に装備して制御される場合に100%運転とな
り上記規定(28秒7′85’″−)を達成しているも
のがある。船舶が秋水道や港内等の高度な操縦性が要求
される場合に2台の舵機コントローラを並列運転(10
0%運転)し、大洋航海中は高度の操縦性を必要としな
いので1台の舵機コントローラを単独運転(50%運転
)する。
<Conventional technology> In general marine automatic steering systems, rudder function power (
The time required to turn the steering gear from, for example, 35° left to 30' right is specified (for example, 28 seconds/65°).
), but depending on the model of the rudder, this rudder function is set to 50% (5G seconds/65°) of the rudder function when controlled by one rudder controller, and this is set to 50% (5G seconds/65°) when controlled by one rudder controller. When equipped and controlled in parallel, there are some that achieve 100% operation and achieve the above regulations (28 seconds 7'85'''-).When ships are required to have high maneuverability, such as in autumn channels or in ports. When operating two rudder controllers in parallel (10
Since high maneuverability is not required during ocean voyages, one rudder controller is operated independently (50% operation).

以下にこのような従来の舶用自動操舵システムの一例を
、第4図の舶用自動操舵システムのブロツク線図を用い
て説明する。
An example of such a conventional marine automatic steering system will be explained below using the block diagram of the marine automatic steering system shown in FIG.

第4図において、αは例えば2つの舵機コントローラを
有する舵機部である。この舵機部αは、舵機1を駆動す
る例えば第1シンダ2a、第2シリンダ2b、第3シリ
ンダ2c、第4シリンダ2dから成る凌数のシリンダ2
を油圧配管3を介して駆動する例えば第1舵機コントロ
ーラ4a、第2舵薇コントローラ4bとから成る複数の
舵機コントローラ4を具備する。舵(幾コントローラ4
a。
In FIG. 4, α is a rudder section having, for example, two rudder controllers. The rudder unit α includes a plurality of cylinders 2, for example, a first cinder 2a, a second cylinder 2b, a third cylinder 2c, and a fourth cylinder 2d, which drive the rudder 1.
A plurality of rudder controllers 4 are provided, for example, a first rudder controller 4a and a second rudder controller 4b, which are driven via hydraulic piping 3. Rudder (Iku controller 4
a.

4bには、夫々第1油圧PA5a、第2油圧源5bが接
続されている。第1油圧源5aの構成は、油圧ポンプP
1とこの油圧ポンプP1を駆illするモータ(例えば
34[交流モータ〉MとこのモータMに船内の3相電源
Eを供給するためオンオフ制御を11なう第1舵磯スタ
ータSaが接続されている(尚、第2油圧源5bも同様
の構造から成るので説明は省略する)。ところで第1油
圧源aのみがオンとなり(50%運転)、舵機1が矢印
方向に動作する場合を例にとると、第1舵機スタータS
aがオンとされることでモータMが動き油圧ポンプPが
駆動され、第1舵槻コントローラ4aで油圧の方向と流
量が制御され第1シリンダ2aが動作すると共にバルブ
Aがオンとなっていて、第4シリングが同時に動作する
。舵機1が矢印とは逆の方向に動作する場合は、第1舵
機コントローラ4aで油圧の方向と流量が制御され第2
シリンダ2bが動作すると共にバルブCがオンとなって
いて第3シリンダが動作する。第2舵機コントローラ4
bのみが動作する場合はこの逆となる。第1゜2舵機コ
ントローラ4 a、 4 bが同時に動作づる場合(1
00%運転)は、すべてのバルブA〜Dがオフとなり、
第1,4シリンダ2 a、 2 d又は第2.3シリン
ダ2b、2cが第1,2舵傭コントローラ4a、4bで
夫々駆動される。C0は命令舵角θと実舵角μどの比較
をして偏差舵角(0−μ)を例えば第1.2舵機コント
ローラ4a、  4bに出力する比較回路である。
4b are connected to a first hydraulic pressure source PA5a and a second hydraulic pressure source 5b, respectively. The configuration of the first hydraulic power source 5a is a hydraulic pump P
1, a motor (for example, 34 [AC motor] M) that drives this hydraulic pump P1, and a first rudder starter Sa that performs on/off control in order to supply the three-phase power E in the ship to this motor M are connected. (Note that the second hydraulic power source 5b has a similar structure, so its explanation will be omitted.) By the way, the following example is a case where only the first hydraulic power source a is turned on (50% operation) and the steering gear 1 moves in the direction of the arrow. In this case, the first rudder starter S
When a is turned on, the motor M moves and the hydraulic pump P is driven, and the first rudder controller 4a controls the direction and flow rate of the hydraulic pressure, the first cylinder 2a operates, and the valve A is turned on. , the fourth shilling operate simultaneously. When the rudder 1 moves in the opposite direction to the arrow, the first rudder controller 4a controls the direction and flow rate of the hydraulic pressure, and the second
While the cylinder 2b operates, the valve C is turned on and the third cylinder operates. 2nd rudder controller 4
The opposite is true if only b operates. When the 1st and 2nd rudder controllers 4a and 4b operate simultaneously (1
00% operation), all valves A to D are turned off,
The first and fourth cylinders 2a and 2d or the second and third cylinders 2b and 2c are driven by the first and second rudder controllers 4a and 4b, respectively. C0 is a comparison circuit that compares the commanded rudder angle θ and the actual rudder angle μ and outputs a deviation rudder angle (0−μ) to, for example, the 1.2 rudder controllers 4a and 4b.

βは保針制御I演算部である。この保針制御演算部βは
、例えば針路設定器6からの側路設定埴ψSとジャイロ
コンパス7で測定した船舶の船首方位置ψiとを入力し
針路偏差値Δψを出力する引算回路8と、この引算回路
8からの針路偏差値Δψを入力して船舶の像側運航が最
適になるようにP■D演算を施して命令舵角θを舵機部
αの比較回路Coに出力する比例演算部(P)9 a、
積分演算部([9b及び微分演算部(D)9Cとこれ笠
各部で′e4it、た埴を加算する加算回路9dとから
成る制御演算部9どで構成される。
β is a course-keeping control I calculation section. The course-keeping control calculation unit β includes, for example, a subtraction circuit 8 which inputs the side course setting value ψS from the course setting device 6 and the ship's bow position ψi measured by the gyro compass 7 and outputs the course deviation value Δψ. , inputs the course deviation value Δψ from this subtraction circuit 8, performs P■D calculation so that the image side navigation of the ship is optimized, and outputs the command rudder angle θ to the comparison circuit Co of the rudder unit α. Proportional calculation section (P) 9 a,
It is composed of a control calculation unit 9, which includes an integral calculation unit ([9b), a differential calculation unit (D) 9C, and an addition circuit 9d that adds 'e4it and tahani in each part of this cap.

ところで、このような構成の舶用自動操舵システムにお
いて、ラプラス演算子をSとした時、舵機部αの特性(
伝達関数)は(Ks/(1+TsS))で示1−次遅れ
要素からなり、船体の特性〈伝jヱ関数)は(+<H/
 (1+THS) )で示す一次遅れ要素からなり、ジ
ャイロコンパスの特性(伝達関数)は(1,・′S)で
あるから、保針制御演算部βから見た伝達関数は、 KS K)I 、’S (1+Ts s>  (1+T
u S) −(1)で表わすことができる。但し、1〈
5は舵はゲイン。
By the way, in a marine automatic steering system with such a configuration, when the Laplace operator is S, the characteristic of the rudder section α (
The transfer function) is represented by (Ks/(1+TsS)) and consists of a first-order lag element, and the hull characteristics (transfer function) are (+<H/
(1+THS) ), and the characteristics (transfer function) of the gyro compass are (1,·'S), so the transfer function seen from the course-keeping control calculation unit β is KS K)I , 'S (1+Ts s> (1+T
u S ) −(1). However, 1
5 is the rudder gain.

VSは舵機時定数、に+は旋回性指数、T4.は追従性
指数である。
VS is the rudder time constant, + is the turning index, and T4. is the followability index.

〈発明が解決しようとする問題点ン ところでこのような伝達関数で表わされる舶用自動操舵
システムにおいては以下のような問題がある。
<Problems to be Solved by the Invention> However, the marine automatic steering system represented by such a transfer function has the following problems.

舵機1の運転状況が50%、100%と変化するとTs
の1直が変化しく1)式の1直(制御対像の動特性)が
変動することとなる。制御ゲイン(PIDの各ゲイン)
を舵機が100%運転の所で調整されていると、50%
運転時には制σ0対象の遅れ要素が大きくなり、場合に
よっては大きなヨーイングを発生させることがある。こ
のような不具合は、命令舵角と回頭角速度の関係が所定
の不感帯(ヒステリシス)を有するような特性にある場
合に、この不感帯を越えて命令舵角θを発令しないと制
御できないような不安定ループの特性を有りる別路不安
宝船といわれる操舵しにくい性格を有する船舶に著しく
現われる。そしてこのことは省燃費性の点からいっても
好ましい現象ではない。
When the operating status of rudder 1 changes from 50% to 100%, Ts
1) changes, and the 1-direction (dynamic characteristics of control vs. image) in equation 1) changes. Control gain (each gain of PID)
If the rudder gear is adjusted at 100% operation, 50%
During operation, the delay element to be controlled by σ0 becomes large, and in some cases, large yawing may occur. Such a problem occurs when the relationship between the commanded rudder angle and the turning angular velocity has a characteristic that there is a predetermined dead zone (hysteresis), and if the commanded rudder angle θ is not issued beyond this dead zone, control is not possible due to instability. This problem is most noticeable in vessels that are difficult to steer and are known as treasury ships with loop characteristics. This is not a desirable phenomenon from the point of view of fuel efficiency.

本発明は上述した従来の技術に鑑みて成されたものであ
り、舵機の時間的特性(応答性)を補償するために、複
数の舵機コントローラの運転状態を自動的に監視し、こ
の監視結果に基づいて保釧制御3TI演算部の制御演咋
部の制御ゲインを自ah的に制御し、前記舵1alコン
トローラの使用台数に応じて常に最適な像側操舵が行な
えること、即ち、舵機の勤特慴変化による保針制御演算
部の制御不安定(ヨーイングの増加)を無くすよ′うに
したことを特徴とηる舶用自動操舵システムを提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned conventional technology, and in order to compensate for the temporal characteristics (responsiveness) of the rudder, the operating states of a plurality of rudder controllers are automatically monitored and Based on the monitoring result, the control gain of the control input section of the holding control 3TI calculation section is self-controlled, so that optimal image side steering can always be performed according to the number of the rudder 1al controllers used, that is, An object of the present invention is to provide a marine automatic steering system characterized by eliminating control instability (increase in yawing) of a course-keeping control calculation unit due to changes in steering gear performance.

く問題点を解決するための手段〉 この目的を達成するための本発明の舶用自・動操舵シス
テムは、舵閾を駆vJする複数のシリンダを複数の舵機
コントローラで制御して成る舵機部のfl&記舵機コン
トローラに、釧路設定値と船首方位値との差である針路
a差値に船舶の保針運航に最適なぁリリIゲインを演算
して胞す制御演算部を有して成る床釦制w演算部からの
命令舵角を出力し、前記少数の舵機コントローラの運転
状態を監視し、この監視結果に基づいて前記制御演算部
の制御ゲインをゲイン制御部からの制御信号で制御する
ようにしたことを特徴とする構成とした。
Means for Solving the Problems〉 To achieve this object, the marine automatic/dynamic steering system of the present invention uses a rudder machine in which a plurality of cylinders that drive a rudder threshold are controlled by a plurality of rudder controllers. The fl & steering controller of the section has a control calculation section that calculates the optimum gain for course keeping of the ship based on the course a difference value, which is the difference between the Kushiro setting value and the heading value. The commanded rudder angle is output from the floor button system w calculation unit, the operating status of the small number of rudder controllers is monitored, and the control gain of the control calculation unit is adjusted based on the monitoring result by a control signal from the gain control unit. The configuration is characterized in that it is controlled by.

〈実施例〉 以下、本発明の実施例を図面を用いて説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

尚、以下の図面において、第4図と重複する部分は同一
番号をつ(プてその説明を省略する。
In the following drawings, parts that overlap with those in FIG.

第1図は、本発明の具体的な実施例を示した舶用自動操
舵システムのブロック線図である。
FIG. 1 is a block diagram of a marine automatic steering system showing a specific embodiment of the present invention.

第1図において、10は舵機部αの・例えば第1゜2舵
橢コントローラ4 a、 4 bの運転状態を監視し監
視結果を出力する運転状態監視部である。この運転状態
監視部10は、この実施例では第1舵機スタータSaと
第2舵機スタータSbからの例えば電圧信号(例えばモ
ータMが両方同時に回転しているか或はどららか一方の
みが回転しているかの状態を検出して出力される検出信
号)を取出して、この電圧信号で各々動作する例えばメ
ーク接点が直列接続された2周のリレ10a、10bか
ら成る。即ち、この実施例では、第1舵礪コントローラ
4aと第2舵機コントローラ4bとが同時に動作した時
(100%運転)に同時に電圧信号を受(プ(モータN
4が回転している時にリレー10a、10bが励磁され
)運転状態監視部10から監視結果である゛″接″監護
(言号γが出力される(50%運転時の接点はパ間′°
の形)。尚、舵機スタータからの信号を接点信号で受け
るようにしても同様な系で(育成できる。
In FIG. 1, reference numeral 10 denotes an operating state monitoring unit that monitors the operating states of the rudder unit α, for example, the first and second steering controllers 4a and 4b, and outputs the monitoring results. In this embodiment, the operating state monitoring unit 10 receives, for example, voltage signals from the first rudder starter Sa and the second rudder starter Sb (for example, whether both motors M are rotating at the same time or only one of them is rotating). It consists of two circuit relays 10a and 10b each having, for example, a make contact connected in series, each of which is operated by the voltage signal (a detection signal outputted by detecting the state of the voltage). That is, in this embodiment, when the first rudder controller 4a and the second rudder controller 4b operate at the same time (100% operation), they simultaneously receive the voltage signal.
4 is rotating, the relays 10a and 10b are energized, and the operation status monitoring unit 10 outputs the monitoring result "contact" supervision (word γ) (the contact at 50% operation is between the
Form of). Incidentally, even if the signal from the rudder starter is received as a contact signal, a similar system can be developed.

βaは検層11制御演算部である。この保針制御演算部
βaは、この実施例では釦l1Ba差値Δψを出力する
引算回路8と、運転状態監視部10からの監視信号γに
基づいて下記に記述する制御演算部90の制thpゲ、
インをill fit する制M ti号を出力するゲ
イン制御部11と、釦路漏差圃ΔΦを船舶の運航に最適
な状態になるようにPID演障する時においてゲインi
ti+制御部11の制御信号で比例値(P)が可変可能
な比例演亦部90aや微分値(D>が可変可能な微分演
算部90C(制御ゲインN)も可変できるがここでは固
定として表わす)の各制御ゲインが調整(制御)される
構成の制御演算部90とから構成され、この制御演算部
90で操作舵角量が演算され舵機部αの比較回路C8に
命令舵角Qcが出力される。即ち、保針制御演算部βう
の制御演算部のP、Dの制御ゲインは舵機運転状態によ
って自動的に調整され、保針制御演算部β8から見た舵
機−船体系の運動特性変化を補償する。
βa is a well logging 11 control calculation section. In this embodiment, the course-keeping control calculation section βa controls a subtraction circuit 8 that outputs the button l1Ba difference value Δψ, and a control calculation section 90 described below based on a monitoring signal γ from the driving state monitoring section 10. thpge,
A gain control unit 11 outputs a control signal Mti to ill fit the input, and a gain i is used when performing PID control so that the buttonhole leakage field ΔΦ is in the optimal state for ship operation.
The proportional calculation section 90a whose proportional value (P) can be varied by the control signal of the ti+ control section 11 and the differential calculation section 90C (control gain N) whose differential value (D> can be varied) can also be varied, but here they are expressed as fixed. ) is configured to adjust (control) each control gain, and the control calculation unit 90 calculates the operation steering angle amount, and the command steering angle Qc is sent to the comparison circuit C8 of the rudder unit α. Output. That is, the control gains of P and D of the control calculation unit of the course-keeping control calculation unit β8 are automatically adjusted according to the operating state of the rudder, and the changes in the motion characteristics of the rudder-ship system as seen from the course-keeping control calculation unit β8 are adjusted automatically. Compensate for.

第2図は保針制御演算部βdをマイクロプロセッサを用
いて構成した場合のハードウェアのブロック線図である
FIG. 2 is a hardware block diagram when the course-keeping control calculation section βd is constructed using a microprocessor.

第2図において、12は演算機能(CPU)、13はリ
ードオンリメモリ(ROM)、14はランダムアクセス
メモリ(RAM)、15はε1路設定値ψSを入力する
針路設定入力インターフェイス、16は命令舵角θCを
出力する出力インターフェイス、17は船首方位置ψi
を入力する船首方位入力インターフェイス、18は監視
信号γを入力する監視信号入力インターフェイスである
In FIG. 2, 12 is an arithmetic function (CPU), 13 is a read-only memory (ROM), 14 is a random access memory (RAM), 15 is a course setting input interface for inputting the ε1 course setting value ψS, and 16 is a command rudder. Output interface that outputs the angle θC, 17 is the bow position ψi
18 is a supervisory signal input interface that inputs a supervisory signal γ.

第3図は上記した内容の本発明の舶用自動操舵システム
のフローシートである。
FIG. 3 is a flow sheet of the marine automatic steering system of the present invention as described above.

く他の実施例〉 本発明は第1図に限定されるものではない。Other examples The present invention is not limited to FIG.

例えば、舵機コントローラの運転台数を2台として説明
したが、船舶の大きさや舵機型式等によっては3台以上
の組合わけもある。この時には運転台数の夫々を検出で
きるように運転状態監視部を構成し、これによって制御
演算部の制御ゲインを制御するように構成すればよい。
For example, although the explanation has been given assuming that the number of operating rudder controllers is two, there may be combinations of three or more controllers depending on the size of the ship, the type of rudder, etc. At this time, the operating state monitoring section may be configured to be able to detect the number of operating vehicles, and the control gain of the control calculation section may be controlled accordingly.

又、本発明の運転状態監視部10の構成を、例えば舵機
スタータ内部からモータMの発/停によって開閉する接
点信号が出力されるような場合は、この接点13号のみ
を並列又は直列に接続する回路構成としてゲイン制御部
11に出力するようにしてもよい。第1図との設計的な
相違は、舵澱スタータ内にリレを有するか否かのことで
あり、この場合は運転状態監視部の癲能を個別に分離し
て舵機スクータ内に内臓した場合に相当する設計的事項
にあるものである。加えて、運転状態監視部とゲイン制
御部の機能を一体に構成するようにしてもよいことも又
いうまでもない。
Furthermore, in the case where the configuration of the operating state monitoring unit 10 of the present invention is such that a contact signal that opens and closes depending on the start/stop of the motor M is output from inside the rudder starter, for example, only this contact No. 13 can be connected in parallel or in series. The connected circuit configuration may be such that the signal is output to the gain control section 11. The difference in design from Fig. 1 is whether or not there is a relay in the rudder starter. In this case, the function of the operating status monitoring section is separated and built into the rudder scooter. This is a matter of design that corresponds to the case. In addition, it goes without saying that the functions of the operating state monitoring section and the gain control section may be integrated.

更に又、ゲイン制御部11は保針制御演算部βdの外部
に設置してもよいことはい〕までもない。
Furthermore, it goes without saying that the gain control section 11 may be installed outside the course-keeping control calculation section βd.

更に又、第2図においては保別制O1!演算部をマイク
ロプロセッサで構成した場合を示したがこれに限定され
るものではなく、従来のようにアナログ方式の回路構成
を用いるようにしてもよいことはいうまでもない。
Furthermore, in Figure 2, the maintenance system O1! Although the case where the arithmetic unit is configured with a microprocessor is shown, the present invention is not limited to this, and it goes without saying that a conventional analog circuit configuration may be used.

〈本発明の効果〉 以上具体的な実施例を用いて本発明について詳細に述べ
たように、複数の舵機コントローラに針路偏差値に船舶
の運航に最適な制御ゲインを演算して施す制御演算部を
有して成る保針制御演算部からの命令舵角を出力し、前
記複数の舵機コントローラの運転状態を監視し、この監
視結果に基づいて前記制御演算部の制御ゲインをゲイン
制御部からの制御信号で制御するようにした本発明の舶
用自動操舵システムは、簡単な構成で安価に、舵機の運
転状態によって変化する保針制御3II演算部から見た
舵機−船体系の運動特性変化を、舵機の運動状態を検出
することによって知り、この情報によってP、Dの制御
ゲインを自動的に調整できるので、常に制御対象(複数
の舵機コントローラの使用台数)に関係無く絶えずR適
な制御ゲインを選択でき、従って!IJ御性能を最適に
保持できる。
<Effects of the Present Invention> As described above in detail with reference to specific embodiments, the present invention is based on a control calculation that calculates and applies a control gain optimal for ship operation to a plurality of rudder controllers based on course deviation values. A gain control unit outputs a command rudder angle from a course-keeping control calculation unit comprising a course control calculation unit, monitors the operating states of the plurality of rudder controllers, and adjusts the control gain of the control calculation unit based on the monitoring results. The marine automatic steering system of the present invention has a simple configuration and is inexpensive, and can control the motion of the rudder-ship system as seen from the course-keeping control 3II calculation unit, which changes depending on the operating state of the rudder. Characteristic changes can be known by detecting the motion state of the rudder gear, and the control gains of P and D can be automatically adjusted based on this information, so it is possible to constantly adjust the P and D control gains regardless of the control target (the number of multiple rudder controllers in use). R suitable control gain can be selected, therefore! IJ control performance can be maintained optimally.

結果として、舵機が50%運転時に系の遅れ要素が原因
で発生づる船舶のヨーイングの増加や、舵機の50%運
転で制御ゲインを調整すると舵機100%時のυノ御ゲ
インが高ずぎて発生するケースがある操舵頻度増加等の
不具合を防止できるので、高(i頼性を確保することが
できるという効果がある。
As a result, when the rudder is operating at 50%, the ship's yaw increases due to delay elements in the system, and when the control gain is adjusted when the rudder is operating at 50%, the υ control gain increases when the rudder is at 100%. Since it is possible to prevent problems such as an increase in steering frequency, which sometimes occurs over and over again, there is an effect that high reliability can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的な実施例を示した舶用自動操舵
システムのブロック線図、第2図は保針制御演算部βa
をマイクロプロセッサを用いて構成した場合のハードウ
ェアのブロック線図、第3図は第1図のフローシート、
第4図は従来の舶用自動操舵システムのブロック線図で
ある。 α・・・舵機部、1・・・舵機、2・・・シリンダ、4
・・・舵機コントローラ、5・・・油圧源、6・・・針
路設定器、7・・・ジャイロコンパス、β、βa・・・
保針制御演算部、9.90・・・制御演算部、10・・
・運転状態監視部、第2図 πJ図
FIG. 1 is a block diagram of a marine automatic steering system showing a specific embodiment of the present invention, and FIG. 2 is a course-keeping control calculation unit βa.
A block diagram of the hardware when configured using a microprocessor, Figure 3 is the flow sheet of Figure 1,
FIG. 4 is a block diagram of a conventional marine automatic steering system. α... Rudder unit, 1... Rudder gear, 2... Cylinder, 4
... Rudder controller, 5... Hydraulic power source, 6... Course setting device, 7... Gyro compass, β, βa...
Course keeping control calculation unit, 9.90... Control calculation unit, 10...
・Operating status monitoring unit, Figure 2 πJ diagram

Claims (1)

【特許請求の範囲】[Claims] 舵機を駆動する複数のシリンダを制御する複数の舵機コ
ントローラを具備する舵機部と、針路設定値と船首方位
値との差である針路偏差値に船舶の保針運航に最適な制
御ゲインを演算して施す制御演算部を有して前記舵機部
の舵機コントローラに命令舵角を出力する保針制御演算
部とを具備して成る舶用自動操舵システムにおいて、前
記複数の舵機コントローラの運転状態を監視し、この監
視結果に基づいて前記制御演算部の制御ゲインをゲイン
制御部の制御信号で制御することを特徴とする舶用自動
操舵システム。
The rudder unit includes multiple rudder controllers that control multiple cylinders that drive the rudder, and a control gain that is optimal for keeping the ship's course is based on the course deviation value, which is the difference between the course setting value and the heading value. and a course-keeping control calculation section that outputs a commanded rudder angle to a rudder controller of the rudder section, wherein the plurality of rudder controllers What is claimed is: 1. A marine automatic steering system, characterized in that the operating state of the vessel is monitored, and the control gain of the control calculation unit is controlled by a control signal of the gain control unit based on the monitoring result.
JP16548585A 1985-07-26 1985-07-26 Automatic rudder control system for ship Granted JPS6226198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16548585A JPS6226198A (en) 1985-07-26 1985-07-26 Automatic rudder control system for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16548585A JPS6226198A (en) 1985-07-26 1985-07-26 Automatic rudder control system for ship

Publications (2)

Publication Number Publication Date
JPS6226198A true JPS6226198A (en) 1987-02-04
JPH0580396B2 JPH0580396B2 (en) 1993-11-08

Family

ID=15813297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16548585A Granted JPS6226198A (en) 1985-07-26 1985-07-26 Automatic rudder control system for ship

Country Status (1)

Country Link
JP (1) JPS6226198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295648A (en) * 2006-04-21 2007-11-08 Meidensha Corp Variable speed control device of motor
JP2012035678A (en) * 2010-08-04 2012-02-23 Yokogawa Denshikiki Co Ltd Automatic steering device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914598A (en) * 1982-07-14 1984-01-25 Yokogawa Hokushin Electric Corp Steering gear for ship

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914598A (en) * 1982-07-14 1984-01-25 Yokogawa Hokushin Electric Corp Steering gear for ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295648A (en) * 2006-04-21 2007-11-08 Meidensha Corp Variable speed control device of motor
JP2012035678A (en) * 2010-08-04 2012-02-23 Yokogawa Denshikiki Co Ltd Automatic steering device and method

Also Published As

Publication number Publication date
JPH0580396B2 (en) 1993-11-08

Similar Documents

Publication Publication Date Title
EP1937550B1 (en) Steering system for a marine vessel
CN115113524B (en) ASV multiport event trigger path tracking control method based on intervention LVS guidance
US10782692B2 (en) Ship handling device
JPS6226198A (en) Automatic rudder control system for ship
JP4314601B2 (en) Ship steering system
US9771137B1 (en) Methods and systems for controlling steering loads on a marine propulsion system
JP6704206B2 (en) Steering machine, ship equipped with the same, and control method for steering machine
JPS6154396A (en) Rudder control device of 2-rudder system high speed ship
US9598163B1 (en) System and method of steering a marine vessel having at least two marine drives
JPH0330557B2 (en)
JPH0631076B2 (en) Automatic marine steering system
JPH0325094A (en) Alongside-pier method of marine vessel
US11685498B2 (en) Ship maneuvering system
Stefanowski Reduction of ship steering gear load at high sea states by decreasing rudder angular velocity
JPS6211719B2 (en)
JP2000009101A (en) Control system for hydraulic actuator
JPH01289796A (en) Steering device
JPH0443840B2 (en)
JPS61148513A (en) Maneuvering control device of submarine boat
SU767369A1 (en) Control system of ship steam power plant
JPS5816998A (en) Automatic ship location control system
JPH01289797A (en) Steering device
JP2004249879A (en) Ship anti-rolling device
JPH0471755B2 (en)
SU1634569A1 (en) Propeller control system