JPS62261939A - Sampler for powder and liquid - Google Patents
Sampler for powder and liquidInfo
- Publication number
- JPS62261939A JPS62261939A JP10389186A JP10389186A JPS62261939A JP S62261939 A JPS62261939 A JP S62261939A JP 10389186 A JP10389186 A JP 10389186A JP 10389186 A JP10389186 A JP 10389186A JP S62261939 A JPS62261939 A JP S62261939A
- Authority
- JP
- Japan
- Prior art keywords
- blades
- measured
- axial flow
- impeller
- sampler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims description 6
- 239000007788 liquid Substances 0.000 title description 8
- 239000012530 fluid Substances 0.000 claims description 4
- 238000005070 sampling Methods 0.000 abstract description 18
- 230000005494 condensation Effects 0.000 abstract 1
- 238000009833 condensation Methods 0.000 abstract 1
- 230000000704 physical effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、粉体、流体用サンプラに関し、さらに詳しく
は、大晴の粉体または波体の一部を輸送中にサンプリン
グし、全輸送物の物性を代表するサンプルを得るための
装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sampler for powders and fluids, and more specifically, it samples a part of large powder or corrugated material during transportation, and samples the entire transportation. This invention relates to an apparatus for obtaining samples representative of the physical properties of objects.
人7.;の輸送中の粉体または流体(以下被測定物と称
する)より代表サンプルを正確にサンプリングするには
、被測定物の単位時間ちりの輸送量に比例したサンプリ
ング闇を輸送量の数七分の1ないし数丁分の1の縮分比
で採取しなければならない。Person 7. In order to accurately sample a representative sample from a powder or fluid (hereinafter referred to as the object to be measured) being transported, it is necessary to set the sampling density proportional to the amount of dust transported per unit time of the object to be measured to several sevens times the amount of transported dust. It must be sampled at a reduction ratio of one to several parts of
・般的に単位時間の輸送!翳が大きければこれに比例し
てサンプリングにを多くする必要があり、これに伴い被
測定物の物性解析のための作業量が増えるため、縮分比
は大きくせざるを得ない、縮分比が大きくなる程、縮分
過程でのエラーにより、被測定物の物性とサンプリング
された物性の解析値に偏差が生ずる可ス敞性が大きくな
る。・Generally unit time transportation! If the shadow is large, it is necessary to increase sampling in proportion to this, and this increases the amount of work required to analyze the physical properties of the measured object, so the reduction ratio must be increased. The larger the value, the greater the possibility that deviations will occur between the physical properties of the object to be measured and the analytical values of the sampled physical properties due to errors in the reduction process.
また間欠採取によってサンプリング間隔をあけて断続的
に採取する従来の装置では、被測定物の物性の時間的変
動が多い場合、採取間隔が大きいと誤差が大さく、採取
間隔を小さくする程サンプリング精度がにがるが、採取
猜も比例して増加するためやはり縮分操作が多くなる。In addition, with conventional equipment that takes samples intermittently at sampling intervals, if the physical properties of the object to be measured vary greatly over time, the longer the sampling interval is, the larger the error will be, and the smaller the sampling interval is, the greater the sampling accuracy will be. However, since the number of mushrooms to be collected also increases proportionally, the number of reduction operations will increase.
被測定物の流量が時間的に変動する時はサンプリングの
騒もその変動量に比例したサンプル晴とすることが望ま
しいが、この目的を達成するためには、何らかの方法で
被測定物の流量を検出し。When the flow rate of the object to be measured fluctuates over time, it is desirable that the sampling noise be proportional to the amount of variation. Detect.
その情報によって、サンプリング場を増減できるような
高度なサンプラを備えなければならない。Sophisticated samplers must be equipped that can increase or decrease the sampling field based on that information.
例えば第8図に示す従来のサンプラは、被測定物の輸送
経路25からサンプルをすくい取る回転パケット23を
回転駆動型2222によって回転させてサンプリングす
るもので、通過する大量の被測定物の単位時間8り通過
量(Δ0/T)を流量計21で検出し、その情報を電流
、電圧等の信号に変換し、回転駆動装置22の回転数を
制御することによって、中位時間当りの通過量に見合っ
たサンプラ24の回転数が得られるため、サンプリング
される試料26も被測定物の流量に比例する。For example, the conventional sampler shown in FIG. 8 samples a sample by rotating a rotary packet 23 that scoops up a sample from a transport path 25 of the object to be measured using a rotary drive type 2222. By detecting the amount of passage (Δ0/T) with the flowmeter 21, converting the information into signals such as current and voltage, and controlling the rotation speed of the rotary drive device 22, the amount of passage per medium time can be calculated. Since the rotation speed of the sampler 24 can be obtained in accordance with the flow rate of the sample 26, the sample 26 to be sampled is also proportional to the flow rate of the object to be measured.
このようなシステムは、精度を上げるため更に高度な制
御回路を用いることもできるが構造、a構が複雑となる
。−・般に使用されているサンプリングシステムはシン
プルなものが多、く、被測定物の中位時間当りの11t
!+?:検出装置や回転数制御機構をもたず1回転が一
定のものが多く用いられている実状にある。In such a system, a more advanced control circuit can be used to improve accuracy, but the structure and structure become complicated. - Most of the commonly used sampling systems are simple, and the average time of the measured object is 11 tons per hour.
! +? :The current situation is that many machines are used that do not have a detection device or a rotation speed control mechanism and have a constant rotation speed.
本発明は流76、測定装置やこれと結合された回転数制
御装置など複雑な装置を備えることなく、被測定物の流
路から直接連続的に被測定物の流量に応じて合理的に縮
分されたサンプルを採取することができる。簡易で高性
能のサンプラを提供することをrI的とする。The present invention is capable of rationally contracting the flow 76 directly and continuously from the flow path of the object to be measured in accordance with the flow rate of the object to be measured, without having a complicated device such as a measuring device or a rotation speed control device coupled thereto. A separate sample can be taken. Our goal is to provide a simple and high-performance sampler.
本発明は次の手段を技術・L段とする。 The present invention uses the following means as technology/L stage.
(1)回転自在な軸のまわりに軸線に対して一方向のピ
ッチ角を有する多数の軸流羽根を¥径方向に取り付けた
羽根車を形成する。(1) An impeller is formed in which a large number of axial flow blades having a pitch angle in one direction with respect to the axis are attached in the radial direction around a freely rotatable shaft.
(2)この羽根車の羽根部の1部を被測定物が軸方向に
通過する通路を設ける。(2) A passage is provided through which the object to be measured passes in the axial direction through a portion of the blade portion of the impeller.
(3)前記羽根中の1部の羽根は他の羽根と異方向に傾
斜させ、この羽根がサンプルを採取する。(3) One part of the blades is tilted in a direction different from the other blades, and this blade collects the sample.
その傾斜の先方にサンプル採取用の別途の出口を設ける
。A separate outlet for sample collection is provided at the end of the slope.
以上の構成によるサンプラを直列に配設することにより
、大きな縮分比のサンプルを得ることができる。By arranging samplers having the above configuration in series, samples with a large reduction ratio can be obtained.
本発明の装置は被測定物の流れによって回転(自転)す
るので、流星が変化したときなどの慣性による回転精度
の補償のために1回転軸に回転数調整装置を付設するこ
とが好ましい。Since the device of the present invention rotates (rotates) due to the flow of the object to be measured, it is preferable to attach a rotation speed adjustment device to the rotation axis in order to compensate for rotation accuracy due to inertia when the meteor changes.
本発明のサンプラlの主要部の斜視図を第1図に示した
。また第2図にそのモ面図を、第3図に立面断面図を示
した。A perspective view of the main parts of the sampler I of the present invention is shown in FIG. Further, FIG. 2 shows a top view of the same, and FIG. 3 shows an elevation sectional view.
回転軸2のまわりに多数の軸流羽根3が取り付けられて
羽根車4を形成する。その羽根Ilj 4の1部を軸方
向に被測定物5が通過するように被測定物流路6を形成
する。軸流羽根3は軸線に対して一定のピッチ角を付墜
しであるので、羽根車4は被測定物が羽根2に当り、そ
の表面を滑走することにより羽根車4に回転力をtえ、
羽根車4は自転する。A large number of axial flow blades 3 are attached around the rotating shaft 2 to form an impeller 4. A flow path 6 to be measured is formed such that the object 5 to be measured passes through a portion of the blade Ilj 4 in the axial direction. Since the axial flow blade 3 has a fixed pitch angle with respect to the axis, the object to be measured hits the blade 2 and slides on the surface of the blade 2, thereby imparting rotational force to the impeller 4. ,
The impeller 4 rotates.
軸流羽根3のうち1部1例えば軸流羽根総数が6〜8枚
に対して1〜2枚をサンプル採取羽根7とし、このサン
プル採取羽根7は軸流羽根3と傾斜方向を異にし、その
羽根7の傾斜の先方は被測定物流路6とは異なるサンプ
ル採取流路8に開口した出目を有している。For example, for a total number of 6 to 8 axial flow blades, 1 to 2 of the axial flow blades 3 are used as sample collection blades 7, and the sample collection blades 7 have a different inclination direction from the axial flow blades 3, The tip of the slope of the blade 7 has an opening opening into a sample collection flow path 8 different from the flow path 6 to be measured.
第1図(a)は、被測定物5が軸流羽根3に衝突して被
測定物流路内を流下し、羽根車4を自転させている状態
を示している。第1図(b)は、羽根車4の自転によっ
て、被測定物5がサンプル採取羽根7の部位を流下し、
サンプル採取羽根7の傾斜方向に流Fしてサンプル採取
流路8を泣ドする状態を示している。このとき流f物は
サンプル9となる。FIG. 1(a) shows a state in which the object to be measured 5 collides with the axial flow impeller 3 and flows down inside the flow path to be measured, causing the impeller 4 to rotate. FIG. 1(b) shows that due to the rotation of the impeller 4, the object to be measured 5 flows down the sample collection blade 7.
A state in which the flow F flows in the direction of inclination of the sample collection blade 7 and flows through the sample collection channel 8 is shown. At this time, the flow object becomes sample 9.
以t−の本発明の構成によって、本発明のサンプラは次
の作用をなす。With the configuration of the present invention described below, the sampler of the present invention has the following effects.
■ 被測定物の流星に応じて羽根ニド4の回転数が決ま
る。■ The rotation speed of the blade nid 4 is determined depending on the meteor of the object to be measured.
(2)軸流羽根2の総数をNとし、サンプル羽根7の数
をmとすれば縮分率m/Nのサンプル9を得る。(2) If the total number of axial flow blades 2 is N and the number of sample blades 7 is m, a sample 9 with a reduction ratio m/N is obtained.
■ サンプル9が被測定物5から間欠連続的にサンプリ
ングされ、被測定物を代表するサンプルとして信頼性が
高い。(2) Sample 9 is sampled intermittently and continuously from the object to be measured 5, and is highly reliable as a representative sample of the object to be measured.
(4)本発明のサンプラを第4図に示すように直列に結
合すれば、高い縮分比の正確なサンプルを得ることがで
きる。(4) If the samplers of the present invention are connected in series as shown in FIG. 4, accurate samples with high reduction ratios can be obtained.
■ 被測定物の流量が変動したとき、羽根車4の回転数
が直ちに流量に比例して変化することがサンプルの精度
向丘の点で好ましく、回転軸に自動回転数調整装置を付
設して慣性による回転数の変化の遅れを補償する。■ When the flow rate of the object to be measured changes, it is preferable in terms of sample accuracy that the rotation speed of the impeller 4 immediately changes in proportion to the flow rate. Compensates for the delay in the change in rotational speed due to
第1図〜第7図は本発明の実施例のサンプラを示す。 1 to 7 show samplers according to embodiments of the present invention.
本発明のサンプラは回転軸2を支持部14で支えられた
特殊な構造をもつ回転羽根車4とこの回転羽根車4で採
取されたサンプルを取り出すホッパ部8よりなり、使用
の場合は回転車4の円周方向6〜8分;11(図示は8
分割の例)の−・部に被測定物5が屯直に落ドするよう
な経路6をセットする。The sampler of the present invention consists of a rotary impeller 4 having a special structure in which a rotating shaft 2 is supported by a support part 14, and a hopper part 8 for taking out the sample collected by the rotary impeller 4. 6 to 8 minutes in the circumferential direction of 4; 11 (8 in the illustration)
Example of division) A path 6 is set in the - section so that the object to be measured 5 falls straight down.
回転羽根ル4は円周方向に6〜8分割されて、各分;1
1部毎に6直角0=15〜45度の傾斜をもつ軸流羽根
3がとりつけられ、そのうち6分の1(6分割の場合)
または8分の1の分割部の羽根は羽根+l(中心向、!
!の傾斜を付して、サンプリング羽根7を形成しており
、このサンプリング羽根7の部分に落ドした被測定物の
みがサンプル採取流路8に誘導されサンプル9となる。The rotary vane 4 is divided into 6 to 8 parts in the circumferential direction, and each part is divided into 1
Each section is equipped with axial flow blades 3 having an inclination of 6 right angles = 15 to 45 degrees, one-sixth of which (in the case of 6 divisions).
Or the blade of the 1/8th division part is blade + l (toward the center,!
! A sampling blade 7 is formed with an inclination of , and only the object to be measured that falls onto the sampling blade 7 is guided to the sample collection channel 8 and becomes a sample 9.
回転羽根車4は支持部14で水モに支持され。The rotary impeller 4 is supported by the water moat at the support part 14.
できるだけ抵抗が少なく、自由に回転できるようにセッ
トされてあり、第1図(a)に示すように被測定物5が
軸流羽根3の部分に落ドすると、被測定物5が軸流羽根
3の傾斜部分に衝突し、第2図の矢印11の方向に流れ
るので、その落)°エネルギーは軸流羽根に反力を生じ
その水モ分力によって回転羽根ル4は矢印12の方向に
回転する。この原理はいわば、本市や風車と同様である
。It is set so that it can rotate freely with as little resistance as possible, and when the measured object 5 falls onto the axial flow blade 3 as shown in FIG. 3 and flows in the direction of arrow 11 in Fig. 2, the falling energy causes a reaction force on the axial flow blade, and the water component force causes the rotating blade 4 to move in the direction of arrow 12. Rotate. This principle is, so to speak, the same as that of the city and windmills.
実験例では被測定物5の垂直落下速度V=3〜5 m
/ s テ落’FIQ=50 t7hとした場合、軸流
羽根3の傾斜部(0=45°)に被測定物5が落下した
時、傾斜部に垂直な力
F=−XVXs i n0=3〜5kg・・・(1)た
だし、
V=3〜5m/5
Q=50t/h
である、また、回転力Pは、
P=Fs i n45°=2.12〜3.5kg・・・
(2)
となり羽根IFを回転させるに充分な回転力を生じた。In the experimental example, the vertical falling speed of the object to be measured 5 is V = 3 to 5 m.
/ s Te drop 'FIQ=50 When t7h is set, when the measured object 5 falls on the inclined part (0=45°) of the axial flow vane 3, the force perpendicular to the inclined part F=-XVXs i n0=3 ~5kg...(1) However, V=3~5m/5 Q=50t/h, and the rotational force P is P=Fs in45°=2.12~3.5kg...
(2) Sufficient rotational force was generated to rotate the blade IF.
この回転力は(1)式からIJIらかなように被測定物
の落丁量Qに比例するので落ド借が変動すると、回転数
も変化する。This rotational force is proportional to the amount of missing pieces Q of the object to be measured, as shown by IJI from equation (1), so when the missing pieces change, the rotational speed also changes.
従って、被測定物の中位時間当りの搬送賃が変化すると
、サンプルもそれに対応したサンプリング!、:、とな
る。Therefore, if the medium hourly transport fee of the object to be measured changes, the sample will also be sampled accordingly! , :, becomes.
また、サンプリングr−は回転羽根車が1回転する毎に
176分割または1/8分割分のサンプルがサンプリン
グされるが、必要に応じて2/6分割分または2/8分
;I3分のようにサンプリングされる分割個所を変える
ことができ、また軸流羽根3の傾斜の設定角度を適当に
セットすることで被測定物の落ドI、!:に対して、回
転力も変化し、サンプリングされる時間間隔も変化する
。In addition, for sampling r-, a sample of 176 divisions or 1/8 division is sampled every time the rotary impeller rotates once, but if necessary, samples can be divided into 2/6 division, 2/8 division, I3 division, etc. By changing the divided locations sampled, and by appropriately setting the angle of inclination of the axial flow vane 3, the object to be measured can fall. : The rotational force also changes, and the sampling time interval also changes.
従って、サンプラとしての必要条件である被測定物の通
iM Faに応じた比例性と縮分操作を一括して行うこ
とができる。また、特別な駆動装置も不要なので設置条
件ヒの制約も少ない。Therefore, proportionality and reduction operations according to the iM Fa of the object to be measured, which are necessary conditions for a sampler, can be performed at once. Furthermore, since no special drive device is required, there are fewer restrictions on installation conditions.
またこの装置を第4図に示すように何Mlかの組合せで
設置することで更に縮分比をLげることができる。Moreover, by installing this device in combination with several Ml as shown in FIG. 4, the reduction ratio can be further increased.
第4図において、サンプラのサイズはサンプラlaが最
も大型で、サンプラ1b、1cとなるに従って、装置サ
イズも略1/6〜l/8と次第に小型化する。176分
割のサンプラを3台直列結合すると最終サンプリングF
Mは、被測定物の流量の約1/216となり、1/8分
割のサンプラ3台では11512に縮分されて取り出さ
れる。In FIG. 4, the sampler la is the largest in size, and as the samplers 1b and 1c increase, the device size gradually decreases to approximately 1/6 to 1/8. When three samplers with 176 divisions are connected in series, the final sampling F
M is about 1/216 of the flow rate of the object to be measured, and with three 1/8-dividing samplers, it is reduced to 11512 and extracted.
次に1本発明のサンプラは駆動装こがなく、被測定物の
落下の慣性で回転する構造であるので。Secondly, the sampler of the present invention does not have a driving mechanism and has a structure in which it rotates by the inertia of the falling object.
特に被測定物が急激に減少時、慣性のため回転体の回転
数の追従が遅れる可能性があるため、必要に応じて第5
図〜第7図に示すような回転数調整装置14を軸1に付
設する。Particularly when the number of objects to be measured rapidly decreases, there may be a delay in tracking the rotational speed of the rotating body due to inertia.
A rotation speed adjusting device 14 as shown in FIGS. 7 to 7 is attached to the shaft 1.
実施例の装置14の構造は二重のシリンダ構造で、内筒
のシリンダ15にはF部の円周りに開口17が設けられ
、内筒15の外壁及び外1316の内壁にはフィン状の
羽根18が設けられている。The structure of the device 14 of the embodiment is a double cylinder structure, and the inner cylinder 15 is provided with an opening 17 around the circle of the F section, and the outer wall of the inner cylinder 15 and the inner wall of the outer 1316 are provided with fin-shaped blades. 18 are provided.
また外筒16は円筒15と縁が切ってあり、フレーム1
9に固定されている。内015のフィン状の羽根18の
取付部より下部にある程度の粘性を持った液体20(例
えば鍼油など)が充填されており、内筒15は回転羽根
の回転軸2に連結されている。In addition, the outer cylinder 16 has a cut edge with the cylinder 15, and the frame 1
It is fixed at 9. A liquid 20 having a certain degree of viscosity (for example, acupuncture oil) is filled below the attachment part of the fin-shaped blade 18 in the inner cylinder 15, and the inner cylinder 15 is connected to the rotating shaft 2 of the rotating blade.
連結された回転軸2が静止の状態の時は第5図のように
液体20のレベルが内、外筒とも同じレベルであるが、
回転軸2が回転し、内筒15もそれにつれて回転を始め
れば液体20に遠心力が生じ、第7図に示すように内筒
15内の液体20は開[117より外筒16内に溢れ出
て、外筒16内の液面レベルがL昇する。When the connected rotating shaft 2 is in a stationary state, the level of the liquid 20 is the same in both the inner and outer cylinders as shown in FIG.
When the rotating shaft 2 rotates and the inner cylinder 15 also begins to rotate, a centrifugal force is generated in the liquid 20, and as shown in FIG. The liquid level in the outer cylinder 16 rises by L.
外筒内の液面レベルは、内筒の回転がさらに上ると大き
な遠心力を受けてさらに」二Hし、ついには内、外筒の
フィン18の取付位置まで達するため、液体20を介し
ての内筒の回転力に抵抗を生ずる。フィンの形状は、液
面が上る程、抵抗力が比例して大きくなるように形成さ
れている。As the rotation of the inner cylinder increases, the liquid level inside the outer cylinder further increases due to the large centrifugal force, and finally reaches the mounting position of the fins 18 on the inner and outer cylinders. This creates resistance to the rotational force of the inner cylinder. The shape of the fins is such that as the liquid level rises, the resistance force increases proportionally.
これによって、内筒の回転力は回転数がある程度高い点
では制動トルクが働くので、この回転数調整装置を前述
のサンプラに取付けた場合、被測定物が急激に減少する
と回転羽根車の回転も慣性による持続力が少ないため対
応して減速する。As a result, braking torque acts on the rotational force of the inner cylinder at a point where the rotational speed is high to a certain extent, so when this rotational speed adjustment device is installed on the sampler mentioned above, if the object to be measured suddenly decreases, the rotation of the rotary impeller will also stop. Since the sustaining force due to inertia is small, the speed will be reduced accordingly.
第5図〜第7図の例では液体による回転数調整装置の例
をあげたが、渦電流を利用する電磁装置や、重錘の遠心
力をfll用する装置などを用いることももちろん11
俺である。In the examples shown in Figures 5 to 7, we have given an example of a rotation speed adjustment device using a liquid, but it is also possible to use an electromagnetic device that uses eddy current, a device that uses the centrifugal force of a weight, etc.
It's me.
本発明のサンプラによれば、複雑な装置を用いることな
く、自動的に精度の高いサンプリングを行うことができ
る。According to the sampler of the present invention, highly accurate sampling can be automatically performed without using a complicated device.
第1図は本発明の実施例のサンプラの主要部の斜視図、
第2図はそのモ面図、第3図は第2図のA−A矢視断面
図、第4図は実施例の直列結合の1g様を示す模式図、
第5図は実施例の回転数調整装置の縦断面図、第6図は
そのモ面断面図、第7図は作用を示す縦断面図、第8図
は従来のサンプラの模式図である。
1・・・サンプラ
2・・・回転軸
3・・・軸流羽根
4・・・羽根11(
5・・・被み一定物
6・・・被測定物流路
7・・・サンプル採取羽根
訃・・サンプル採取流路(ホッパ部)
9・・・サンプル
11.12.13・・・矢印
14・・・回転数調整装置
15・・・内筒
16・・・外筒FIG. 1 is a perspective view of the main parts of a sampler according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view of the same, FIG. 3 is a sectional view taken along the line A-A in FIG.
FIG. 5 is a longitudinal sectional view of the rotation speed adjusting device of the embodiment, FIG. 6 is a cross-sectional view thereof, FIG. 7 is a longitudinal sectional view showing the operation, and FIG. 8 is a schematic diagram of a conventional sampler. 1... Sampler 2... Rotating shaft 3... Axial flow vane 4... Vane 11 (5... Covered constant object 6... Measuring flow channel 7... Sample collection vane death)・Sample collection channel (hopper part) 9...Sample 11.12.13...Arrow 14...Rotation speed adjustment device 15...Inner cylinder 16...Outer cylinder
Claims (1)
羽根を回転自在な軸のまわりに半径方向に取り付けて羽
根車を形成し、被測定物が該羽根車の1部を軸方向に通
過する通路を設けると共に、前記羽根中の1部の羽根は
他の羽根と異方向に傾斜させ、その傾斜の先方に前記通
路とは別途の出口を設けたことを特徴とする粉体、流体
用サンプラ。 2 回転軸に回転数調整装置を付設した特許請求の範囲
第1項記載の粉体、流体用サンプ ラ。[Claims] 1. An impeller is formed by attaching a large number of axial flow impellers having a pitch angle in one direction with respect to the axis in a radial direction around a rotatable shaft, and the object to be measured is attached to the impeller. A passage passing through one part in the axial direction is provided, one part of the blades is inclined in a different direction from the other blades, and an outlet separate from the passage is provided beyond the slope. Sampler for powders and fluids. 2. The sampler for powder and fluid according to claim 1, wherein a rotation speed adjusting device is attached to the rotating shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10389186A JPS62261939A (en) | 1986-05-08 | 1986-05-08 | Sampler for powder and liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10389186A JPS62261939A (en) | 1986-05-08 | 1986-05-08 | Sampler for powder and liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62261939A true JPS62261939A (en) | 1987-11-14 |
JPH054018B2 JPH054018B2 (en) | 1993-01-19 |
Family
ID=14366046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10389186A Granted JPS62261939A (en) | 1986-05-08 | 1986-05-08 | Sampler for powder and liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62261939A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01274031A (en) * | 1988-03-08 | 1989-11-01 | Noranda Inc | Specimen sampler for various material |
JP2010217034A (en) * | 2009-03-17 | 2010-09-30 | Ueno Engineering Ltd | Condensation apparatus |
JP2010217033A (en) * | 2009-03-17 | 2010-09-30 | Ueno Engineering Ltd | Condensation apparatus |
-
1986
- 1986-05-08 JP JP10389186A patent/JPS62261939A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01274031A (en) * | 1988-03-08 | 1989-11-01 | Noranda Inc | Specimen sampler for various material |
JP2010217034A (en) * | 2009-03-17 | 2010-09-30 | Ueno Engineering Ltd | Condensation apparatus |
JP2010217033A (en) * | 2009-03-17 | 2010-09-30 | Ueno Engineering Ltd | Condensation apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH054018B2 (en) | 1993-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Porter et al. | A study of the cross flow fan | |
US4170900A (en) | Rotary sampler for particulate matter | |
US3867840A (en) | Axial outlet flow transducer | |
US4644806A (en) | Airstream eductor | |
JPS62261939A (en) | Sampler for powder and liquid | |
EP1288494B1 (en) | Apparatus for determining the windvector | |
EP0032910B1 (en) | Turbine flowmeters | |
SE430370B (en) | SET AND DEVICE FOR DISTRIBUTION AND DISTRIBUTION OF A PARTICULATED SOLID OR LIQUID MATERIAL | |
JPS6328246B2 (en) | ||
JPS60502228A (en) | Device for measuring the liquid part of a two-phase flow of gas and liquid | |
EP0029509A1 (en) | Measuring apparatus | |
US3142179A (en) | Apparatus responsive to fluid flow | |
FI86773C (en) | Method for measuring and controlling the concentration of a fiber suspension and apparatus for carrying out the method | |
US4314483A (en) | Mass rate of flow meter with improved temperature characteristics | |
JP2805752B2 (en) | Granule sorting device | |
US4450726A (en) | Flow-operated measuring apparatus | |
SU450983A1 (en) | Method for determining droplet diameter | |
RU60205U1 (en) | TURBINE FLOW METER | |
US3345869A (en) | Fluid flow meter | |
US3117452A (en) | Grain sampler | |
EP0777110B1 (en) | Measuring rotor for mass flow meters | |
RU2360218C1 (en) | Turbine flow transducer | |
Koyama et al. | Vortex street and turbulent wakes behind a circular cylinder placed in a rotating rectangular channel | |
CLARK et al. | Wake and boundary layer effects in helicopter rotor aerodynamics | |
SU1406152A1 (en) | Spore trap |