JPS622618B2 - - Google Patents
Info
- Publication number
- JPS622618B2 JPS622618B2 JP58005222A JP522283A JPS622618B2 JP S622618 B2 JPS622618 B2 JP S622618B2 JP 58005222 A JP58005222 A JP 58005222A JP 522283 A JP522283 A JP 522283A JP S622618 B2 JPS622618 B2 JP S622618B2
- Authority
- JP
- Japan
- Prior art keywords
- machining
- wire
- discharge machining
- alloy
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003754 machining Methods 0.000 claims description 45
- 239000007772 electrode material Substances 0.000 claims description 20
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 17
- 229910052725 zinc Inorganic materials 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 238000009763 wire-cut EDM Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 description 25
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- 229910052746 lanthanum Inorganic materials 0.000 description 12
- 229910001092 metal group alloy Inorganic materials 0.000 description 12
- 229910000858 La alloy Inorganic materials 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 7
- 238000009760 electrical discharge machining Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910001369 Brass Inorganic materials 0.000 description 4
- 239000010951 brass Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910008897 Sn—La Inorganic materials 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 102220259718 rs34120878 Human genes 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
本発明はワイヤカツト放電加工装置の線電極材
料として好適な金属材料に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal material suitable as a wire electrode material for a wire-cut electrical discharge machining device.
ワイヤカツト放電加工装置は、ワイヤ電極と被
加工体との間で放電現象を起させ、上記放電によ
り生ずる熱及び衝撃で被加工体を切断加工するも
ので、複雑な形状を有するプレス金型のような工
作物の加工に適している。 Wire cut electric discharge machining equipment causes an electrical discharge phenomenon between a wire electrode and a workpiece, and cuts the workpiece using the heat and impact generated by the discharge. Suitable for machining large workpieces.
一般にワイヤカツト放電加工においては、工作
物の表面の仕上げ状態および寸法精度が良好なこ
と、加工所要時間が短いこと等が要求されている
が、これら等を満足させるためには、ワイヤ電極
と被加工体との間で起る放電による加工効率を向
上させる必要がある。一方、放電加工装置の電源
形式と被加工体の材質、表面の仕上り状態、寸法
精度等が指定されると、放電加工時間等は使用す
るワイヤ電極の材質及び線径等によつて左右され
ることになる。 In general, wire cut electric discharge machining is required to have a good surface finish and dimensional accuracy of the workpiece, and to shorten the machining time. It is necessary to improve the machining efficiency due to the electric discharge that occurs between the material and the body. On the other hand, once the power supply type of the electrical discharge machining device, material of the workpiece, surface finish, dimensional accuracy, etc. are specified, the electrical discharge machining time etc. will depend on the material and wire diameter of the wire electrode used. It turns out.
而して、ワイヤ電極材料としては線引加工が容
易であること、導電性が良好なこと、電極として
使用した時、加工速度が大で、且つ、好ましくは
消耗比が小さいこと、耐熱性が良好で特に高温時
に抗張力が劣化せず使用中に切断し難いこと、ま
た、加工硬化及び短絡がしにくく、且つ、2次元
加工、3次元加工更には線電極を巻き若しくは曲
げた箇所での加工が可能であること、更には放電
加工時のワイヤ電極のたわみ量(所謂タイコ量
μ)が小さく、親水性がよいこと等々の性質が要
求される。 Therefore, the wire electrode material should be easy to draw, have good conductivity, have a high processing speed when used as an electrode, preferably have a small consumption ratio, and have good heat resistance. Good, especially at high temperatures, without deterioration in tensile strength and difficult to cut during use, difficult to work harden and short circuit, and suitable for two-dimensional processing, three-dimensional processing, and processing at locations where wire electrodes are wound or bent. Further, the wire electrode is required to have properties such as a small amount of deflection (so-called flexure μ) during electrical discharge machining, and good hydrophilicity.
このため、電極材料としては、一般的には純
銅、若しくは黄銅等の銅合金が用いられており、
また、亜酸化銅を添加した銅合金も提案されてい
る。 For this reason, pure copper or copper alloys such as brass are generally used as electrode materials.
Copper alloys to which cuprous oxide is added have also been proposed.
銅電極は導電率の点では良好な値を有するが、
消耗比が60%前後である上、抗張力等の機械的強
度、耐熱性の点でも不充分であり、また黄銅線は
抗張力等の機械的強度および加工速度の点におい
ては銅線より優れているが、導電性及び消耗比の
点においては幾分劣つている。そして黄銅線は硬
銅を上回る抗張力及び硬度、即ち、ばね性を有し
ているため、くせが残存しており、ガイド間にお
いて充分大きな張力で張つて移動させるようにし
ないと、充分な直線性が出にくく、加工精度とワ
イヤ断線の問題が相矛盾していた。 Although copper electrodes have good values in terms of conductivity,
The wear ratio is around 60%, and it is also insufficient in terms of mechanical strength such as tensile strength and heat resistance, and brass wire is superior to copper wire in terms of mechanical strength such as tensile strength and processing speed. However, it is somewhat inferior in terms of conductivity and consumption ratio. Brass wire has a tensile strength and hardness that exceeds that of hard copper, that is, it has spring properties, so it has some curls, and unless it is moved with a sufficiently large tension between the guides, it cannot be moved in a sufficient straight line. The problems of machining accuracy and wire breakage were contradictory.
一方、純銅に亜酸化銅Cu2Oを1―5%配合し
た合金線は、導電性が純銅と大差なく、消耗比も
20〜30%前後であり、加工速度も優れているが、
難切断性についてはなお問題がある。 On the other hand, an alloy wire made of pure copper mixed with 1-5% cuprous oxide Cu 2 O has a conductivity that is not much different from that of pure copper and a low wear rate.
The processing speed is around 20-30%, and the processing speed is also excellent.
There is still a problem with difficulty in cutting.
他方タングステンやモリブデンまたはその合金
を約0.1mm2φ前後、またそれ以下に線引したワイ
ヤ電極もあるが、高価なため、もつぱら特殊な用
途に使用されていたにすぎなかつた。 On the other hand, there are wire electrodes made of tungsten, molybdenum, or their alloys drawn to a diameter of about 0.1 mm 2 or less, but these were expensive and were only used for special purposes.
また、ワイヤカツト放電加工装置は、ワイヤ電
極を一般的には一方のリールから他方のリールへ
移動せしめ、加工液を供給しつつパルス放電を行
なわせて放電加工することにより所望の形状を加
工するものであるので、この間のワイヤ電極はブ
レーキローラとピンチローラ間、キヤプスタンと
ピンチローラ間、案内ローラおよび案内ガイド
等々を通過する度にねじりや曲げが加えられ、こ
れによつてワイヤ電極は加工硬化を生じ、このた
め直線性が損なわれたり、また、逆にワイヤ電極
を強く曲げた部分で加工を行おうとする場合には
小さな曲げ半径を得ることが不可能となり、従つ
て、被加工体のオーバハングした部分、例えば、
押し出しダイのホロー部分、トリムダイの切刃部
分等の輪郭形状の加工が行えないという問題点が
あつた。 In addition, a wire cut electric discharge machining device generally moves a wire electrode from one reel to the other reel, and processes a desired shape by performing electric discharge machining by performing pulse discharge while supplying machining fluid. Therefore, the wire electrode is twisted and bent every time it passes between the brake roller and the pinch roller, between the capstan and the pinch roller, between the guide roller and the guide guide, etc., and as a result, the wire electrode undergoes work hardening. This may result in loss of linearity, or conversely, if processing is attempted at a strongly bent portion of the wire electrode, it may be impossible to obtain a small bending radius, resulting in overhang of the workpiece. For example,
There was a problem in that it was not possible to process the contours of the hollow part of the extrusion die, the cutting edge part of the trim die, etc.
本発明は叙上の観点にたつてなされたものであ
つて、その目的とするところは、良好な導電率お
よび耐熱性を有し、抗張力が高く、難断性で加工
速度が大で、且つ、線引加工を容易に行うことが
できると共に、タイコ量が小さく、短絡を防止す
ることができるワイヤカツト放電加工用電極材を
提供することにある。 The present invention has been made based on the above-mentioned viewpoints, and its objects are to have good electrical conductivity and heat resistance, high tensile strength, break resistance, high processing speed, and Another object of the present invention is to provide a wire-cut electrical discharge machining electrode material that can be easily drawn, has a small amount of tension, and can prevent short circuits.
而して、本発明の要旨とするところは、重量百
分率で20〜50%のZnと、1〜5%のSn、Ta、
Zr、Co、FeおよびTiからなる群から選んだ少な
くとも一種の元素と0.05〜1%の希土類元素と、
残部が不純物とCuとから成る合金に存するもの
である。 Therefore, the gist of the present invention is that 20 to 50% Zn and 1 to 5% Sn, Ta,
At least one element selected from the group consisting of Zr, Co, Fe and Ti and 0.05 to 1% of rare earth elements;
The remainder is present in the alloy consisting of impurities and Cu.
而して、ワイヤカツト放電加工用電極材として
希土類元素を含有するものは公知である。 Electrode materials for wire cut electrical discharge machining containing rare earth elements are well known.
例えば、特開昭53−49397号公報には、Cu又は
Cu+Cu2O合金に重量百分率で0.1〜5%の希土類
元素を1種または2種以上含有せしめた電極材
が、また、特開昭56−90943号公報には1〜40%
のZnと、Mn、Mg、希土類元素のいずれか1種ま
たは2種以上を合計0.1〜3%を含み、残部Cuか
らなるワイヤカツト放電加工電極用合金が記載さ
れているが如くである。 For example, in Japanese Patent Application Laid-Open No. 53-49397, Cu or
JP-A-56-90943 discloses an electrode material containing one or more rare earth elements of 0.1 to 5% by weight in a Cu+Cu 2 O alloy;
An alloy for a wire-cut electric discharge machining electrode is described, which contains Zn and one or more of Mn, Mg, and rare earth elements in a total of 0.1 to 3%, with the balance being Cu.
然しながら、これら公知のCuやCu―Zn等の各
種黄銅等Cu系合金から成る電極材に於ける希土
類元素の添加含有は、抗張力及び難断性を向上さ
せると共に、放電加工の性能、特に、希土類元素
の放電発生等に対する寄与の結果と思われる加工
速度の増大には有効であるが、放電加工時にワイ
ヤ電極のたわみ量(所謂タイコ量μ)が大きく、
しかも短絡を防止することができないという問題
点があつた。 However, the addition of rare earth elements in electrode materials made of Cu-based alloys such as various brass such as Cu and Cu-Zn improves the tensile strength and break resistance, and improves electrical discharge machining performance, especially rare earth elements. Although it is effective in increasing the machining speed, which is thought to be a result of the contribution of elements to the generation of electrical discharge, etc., the amount of deflection of the wire electrode (so-called flexure amount μ) during electrical discharge machining is large;
Moreover, there was a problem that short circuits could not be prevented.
本発明者の種々なる試験研究によれば、重量百
分率で20〜50%のZnと、1〜5%のSn、Ta、
Zr、Co、FeおよびTiからなる群から選んだ少な
くとも一種の元素と、La、ミツシユメタル、
Ce、SmおよびY等の希土類元素を0.05〜1%望
ましくは0.1〜1%と残部が不純物とCuからなる
合金とすることにより、抗張力及び難断性を向上
させることができ、且つ、放電加工の性能及び加
工速度を増大するという所謂従来の希土類元素を
含有したワイヤカツト放電加工用電極材の長所を
大幅に向上させることができと共に、また、その
短所であつた所謂タイコ量が増大すると共に、短
絡を防止することができないという問題点を解決
することが可能となる。 According to various test studies conducted by the present inventor, 20 to 50% Zn and 1 to 5% Sn, Ta,
At least one element selected from the group consisting of Zr, Co, Fe and Ti, La, Mitsushi metal,
By forming an alloy containing 0.05 to 1% of rare earth elements such as Ce, Sm, and Y, preferably 0.1 to 1%, and the balance consisting of impurities and Cu, tensile strength and break resistance can be improved, and electrical discharge machining is possible. The advantages of the so-called conventional wire-cut electric discharge machining electrode material containing rare earth elements, such as increasing the performance and machining speed, can be greatly improved, and the so-called deformation amount, which was the disadvantage thereof, has been increased. This makes it possible to solve the problem of not being able to prevent short circuits.
特に、
(1) Cu―Zn―Sn―La合金の場合には、
Znを40%、Snを3%、Laを0.3%
(2) Cu―Zn―Sn―ミツシユメタル合金の場合に
は、
Znを40%、Snを3%、ミツシユメタルを0.6
%
(3) Cu―Zn―Ta―La合金の場合には、
Znを40%、Taを3%、Laを0.6%
(4) Cu―Zn―Ta―ミツシユメタル合金の場合に
は、
Znを40%、Taを3%、ミツシユメタルを0.7
%
(5) Cu―Zn―Zr―La合金の場合には、
Znを35%、Zrを4%、Laを1%
(6) Cu―Zn―Zr―ミツシユメタル合金の場合に
は、
Znを35%、Zrを4%、ミツシユメタルを0.6
%
(7) Cu―Zn―Co―La合金の場合には、
Znを35%、Coを3%、Laを0.4%
(8) Cu―Zn―Co―ミツシユメタル合金の場合に
は、
Znを35%、Coを3%、ミツシユメタルを0.8
%
(9) Cu―Zn―Fe―La合金の場合には、
Znを40%、Feを4%、Laを0.5%
(10) Cu―Zn―Fe―ミツシユメタル合金の場合に
は、
Znを40%、Feを4%、ミツシユメタルを0.7
%
(11) Cu―Zn―Ti―La合金の場合には、
Znを35%、Tiを5%、Laを0.5%
(12) Cu―Zn―Ti―ミツシユメタル合金の場合に
は、
Znを35%、Tiを5%、ミツシユメタルを0.6
%
とすることが推奨される。 In particular, (1) In the case of Cu-Zn-Sn-La alloy, Zn is 40%, Sn is 3%, and La is 0.3%. (2) In the case of Cu-Zn-Sn-Mitsushi metal alloy, Zn is 40%, Sn 3%, Mitsushi Metal 0.6
% (3) In the case of Cu-Zn-Ta-La alloy, Zn is 40%, Ta is 3%, La is 0.6% (4) In the case of Cu-Zn-Ta-Mitsushi metal alloy, Zn is 40% %, Ta 3%, Mitsushi Metal 0.7
% (5) In the case of Cu-Zn-Zr-La alloy, Zn is 35%, Zr is 4%, La is 1% (6) In the case of Cu-Zn-Zr-Mitsushi metal alloy, Zn is 35% %, Zr 4%, Mitsushi Metal 0.6
% (7) In the case of Cu-Zn-Co-La alloy, Zn is 35%, Co is 3%, La is 0.4% (8) In the case of Cu-Zn-Co-Mitsushi metal alloy, Zn is 35% %, Co 3%, Mitsushi Metal 0.8
% (9) In the case of Cu-Zn-Fe-La alloy, Zn is 40%, Fe is 4%, La is 0.5% (10) In the case of Cu-Zn-Fe-Mitsushi metal alloy, Zn is 40% %, Fe 4%, Mitsushi Metal 0.7
% (11) In the case of Cu-Zn-Ti-La alloy, Zn is 35%, Ti is 5%, La is 0.5% (12) In the case of Cu-Zn-Ti-Mitsushi metal alloy, Zn is 35% %, Ti 5%, Mitsushi Metal 0.6
% is recommended.
上記合金を使用用して放電加工を行つたところ
従来のワイヤカツト放電加工用電極材と比べ大幅
に加工速度が増大したと共に、タイコ量が減少
し、短絡も防止することができた。 When electric discharge machining was performed using the above alloy, the machining speed was significantly increased compared to the conventional wire-cut electrode material for electric discharge machining, the amount of coil was reduced, and short circuits could be prevented.
而して、本発明にかかるワイヤカツト放電加工
用電極材を使用し、下記の加工条件下に設定して
加工を行つた。 Using the electrode material for wire-cut electric discharge machining according to the present invention, machining was performed under the following machining conditions.
以下、その実施例を従来公知の電極材を用いた
加工例と対比して示す。 Examples will be shown below in comparison with processing examples using conventionally known electrode materials.
<加工条件>
Ip(最大電流振幅) 16A
τON 3μs
τOFF 7μs
IM(平均加工電流) 5A
加工液 比抵抗×103Ωcmの純水
加工液上ノズル吐出圧力 0.6Kg/cm2
加工液下ノズル吐出圧力 1Kg/cm2
ワイヤ電極送りスピード 1m/min
ワイヤ電極径 0.2mmφ
被加工体の厚さ及び材質 25mm、S55C材
実施例 1
(1) Cu―Zn―Sn―La合金
Cu 56.7%
Zn 40.0%
Sn 3.0%
La 0.3%
(2) Cu―Zn―Sn―ミツシユメタル合金
Cu 56.4%
Zn 40.0%
Sn 3.0%
ミツシユメタル .6%
の本発明にかかるワイヤカツト放電加工用電極材
から成るワイヤ電極を使用して放電加工を行つ
た。なお、印加電圧パルスの正逆極性の比率は
1:0、3:1、1:1とした。また、平均加工
電流を、加工送りのサーボ調整により、前記の如
く約5A強に設定して加工を行なつたもので、以
後の実施例(2)乃至(6)の各合金線使用によるワイヤ
カツト放電加工実験の場合も同様とした。<Machining conditions> Ip (maximum current amplitude) 16A τ ON 3μs τ OFF 7μs I M (average machining current) 5A Machining fluid Specific resistance × 10 3 Ωcm pure water machining fluid top Nozzle discharge pressure 0.6Kg/cm 2 machining fluid bottom Nozzle discharge pressure 1Kg/cm 2 -wire electrode feeding speed 1m/min Wire electrode diameter 0.2mmφ Workpiece thickness and material 25mm, S55C material example 1 (1) Cu-Zn-Sn-La alloy Cu 56.7% Zn 40.0 % Sn 3.0% La 0.3% (2) Cu-Zn-Sn-Mitshu Metal Alloy Cu 56.4% Zn 40.0% Sn 3.0% Mitsushi Metal . Electric discharge machining was carried out using a wire electrode made of the wire-cut electric discharge machining electrode material according to the present invention. Note that the ratio of the positive and negative polarities of the applied voltage pulses was 1:0, 3:1, and 1:1. In addition, the average machining current was set to approximately 5 A or more by servo adjustment of the machining feed as described above. The same applies to the electrical discharge machining experiment.
正逆極性パルスの比率と加工速度
1:0 47.0mm2/min
3:1 40.6mm2/min
1:1 43.1mm2/min
正逆極性パルスの比率が夫々の1:0の時
47.0mm2/min、の3:1の時40.6mm2/min、の
1:1の時43.1mm2/minの加工速度で(1)および(2)
の合金とも加工を行うことができた。Ratio of forward and reverse polarity pulses and processing speed 1:0 47.0mm 2 /min 3:1 40.6mm 2 /min 1:1 43.1mm 2 /min When the ratio of forward and reverse polarity pulses is 1:0.
(1) and (2) at machining speeds of 47.0mm 2 /min, 40.6mm 2 /min when 3:1, and 43.1mm 2 /min when 1:1.
It was possible to process both alloys.
これに対して、
ワイヤ電極の合成組織
Zn 33%
Cu 67%
の従来公知のワイヤカツト放電加工用電極材から
成るワイヤ電極を使用して放電加工を行つた。 On the other hand, electric discharge machining was performed using a wire electrode made of a conventionally known wire-cut electric discharge machining electrode material having a wire electrode synthetic structure of 33% Zn and 67% Cu.
印加電圧パルスの正逆極性の比率は1:0、
3:1、1:1とした。 The ratio of positive and negative polarities of the applied voltage pulse is 1:0,
The ratio was 3:1 and 1:1.
正逆極性パルスの比率と加工速度
1:0 34.0mm2/min
3:1 23.0mm2/min
1:1 17.0mm2/min
正逆極性パルスの比率が夫々の1:0の時
34.0mm2/min、の3:1の時23.0mm2/min、の
1:1の時17.0mm2/minの加工速度で加工を行う
ことができた。Ratio of forward and reverse polarity pulses and processing speed 1:0 34.0mm 2 /min 3:1 23.0mm 2 /min 1:1 17.0mm 2 /min When the ratio of forward and reverse polarity pulses is 1:0.
Machining was possible at a machining speed of 34.0 mm 2 /min, 23.0 mm 2 /min when the ratio was 3:1, and 17.0 mm 2 /min when the ratio was 1:1.
実施例 2
(3) Cu―Zn―Ta―La合金
Cu 56.4%
Zn 40.0%
Ta 3.0%
La 0.6%
(4) Cu―Zn―Ta―ミツシユメタル合金
Cu 56.3%
Zn 40.0%
Ta 3.0%
ミツシユメタル 0.7%
正逆極性パルスの比率と加工速度
1:0 32.6mm2/min
3:1 36.2mm2/min
1:1 39.6mm2/min
正逆極性パルスの比率が夫々の1:0の時
32.6mm2/min、の3:1の時36.2mm2/min、の
1:1の時39.6mm2/minの加工速度で(3)および(4)
の合金とも加工を行うことができた。Example 2 (3) Cu-Zn-Ta-La alloy Cu 56.4% Zn 40.0% Ta 3.0% La 0.6% (4) Cu-Zn-Ta-Mitshu Metal alloy Cu 56.3% Zn 40.0% Ta 3.0% Mitsushi Metal 0.7% Positive Ratio of reverse polarity pulses and processing speed 1:0 32.6mm 2 /min 3:1 36.2mm 2 /min 1:1 39.6mm 2 /min When the ratio of forward and reverse polarity pulses is 1:0.
(3) and (4) at machining speeds of 32.6mm 2 /min, 36.2mm 2 /min when 3:1, and 39.6mm 2 /min when 1:1.
It was possible to process both alloys.
実施例 3
(5) Cu―Zn―Zr―La合金
Cu 60.0%
Zn 35.0%
Zr 4.0%
La 1.0%
(6) Cu―Zn―Zr―ミツシユメタル合金
Cu 60.4%
Zn 35.0%
Zr 4.0%
ミツシユメタル 0.6%
正逆極性パルスの比率と加工速度
1:0 37.2mm2/min
3:1 38.6mm2/min
1:1 39.6mm2/min
正逆極性パルスの比率が夫々の1:0の時
37.2mm2/min、の3:1の時38.6mm2/min、の
1:1の時39.6mm2/minの加工速度で(5)および(6)
の合金とも加工を行うことができた。Example 3 (5) Cu-Zn-Zr-La alloy Cu 60.0% Zn 35.0% Zr 4.0% La 1.0% (6) Cu-Zn-Zr-Mitshu Metal alloy Cu 60.4% Zn 35.0% Zr 4.0% Mitsushi Metal 0.6% Positive Ratio of reverse polarity pulses and processing speed 1:0 37.2mm 2 /min 3:1 38.6mm 2 /min 1:1 39.6mm 2 /min When the ratio of forward and reverse polarity pulses is 1:0.
(5) and (6) at machining speeds of 37.2mm 2 /min, 38.6mm 2 /min when 3:1, and 39.6mm 2 /min when 1:1.
It was possible to process both alloys.
実施例 4
(7) Cu―Zn―Co―La合金
Cu 61.6%
Zn 35.0%
Co 3.0%
La 0.4%
(8) Cu―Zn―Co―ミツシユメタル合金
Cu 61.2%
Zn 35.0%
Co 3.0%
ミツシユメタル 0.8%
正逆極性パルスの比率と加工速度
1:0 43.6mm2/min
3:1 43.6mm2/min
1:1 40.3mm2/min
正逆極性パルスの比率が夫々の1:0の時
43.6mm2/min、の3:1の時43.6mm2/min、の
1:1の時40.3mm2/minの加工速度で(7)および(8)
の合金とも加工を行うことができた。Example 4 (7) Cu-Zn-Co-La alloy Cu 61.6% Zn 35.0% Co 3.0% La 0.4% (8) Cu-Zn-Co-Mitshu Metal alloy Cu 61.2% Zn 35.0% Co 3.0% Mitsushi Metal 0.8% Positive Ratio of reverse polarity pulses and processing speed 1:0 43.6mm 2 /min 3:1 43.6mm 2 /min 1:1 40.3mm 2 /min When the ratio of forward and reverse polarity pulses is 1:0.
(7) and (8) at machining speeds of 43.6mm 2 /min, 43.6mm 2 /min when 3:1, and 40.3mm 2 /min when 1:1.
It was possible to process both alloys.
実施例 5
(9) Cu―Zn―Fe―La合金
Cu 55.5%
Zn 40.0%
Fe 4.0%
La 0.5%
(10) Cu―Zn―Fe―ミツシユメタル合金
Cu 55.3%
Zn 40.0%
Fe 4.0%
ミツシユメタル 0.7%
正逆極性パルスの比率と加工速度
1:0 42.2mm2/min
3:1 43.6mm2/min
1:1 44.5mm2/min
正逆極性パルスの比率が夫々の1:0の時
42.2mm2/min、の3:1の時43.6mm2/min、の
1:1の時44.5mm2/minの加工速度(9)および(10)の
合金とも加工を行うことができた。Example 5 (9) Cu-Zn-Fe-La alloy Cu 55.5% Zn 40.0% Fe 4.0% La 0.5% (10) Cu-Zn-Fe-Mitshu Metal alloy Cu 55.3% Zn 40.0% Fe 4.0% Mitsushi Metal 0.7% Positive Ratio of reverse polarity pulses and processing speed 1:0 42.2mm 2 /min 3:1 43.6mm 2 /min 1:1 44.5mm 2 /min When the ratio of forward and reverse polarity pulses is 1:0.
It was also possible to machine alloys (9) and (10) at a machining speed of 42.2 mm 2 /min, 43.6 mm 2 /min when the ratio was 3:1, and 44.5 mm 2 /min when the ratio was 1:1.
実施例 6
(11) Cu―Zn―Ti―La合金
Cu 55.5%
Zn 35.0%
Ti 5.0%
La 0.5%
(12) Cu―Zn―Ti―ミツシユメタル合金
Cu 55.4%
Zn 40.0%
Ti 4.0%
ミツシユメタル 0.6%
正逆極性パルスの比率と加工速度
1:0 37.4mm2/min
3:1 38.4mm2/min
1:1 42.2mm2/min
正逆極性パルスの比率が夫々の1:0の時
37.4mm2/min、の3:1の時38.8mm2/min、の
1:1の時42.2mm2/minの加工速度で(11)および(12)
の合金とも加工を行うことができた。Example 6 (11) Cu-Zn-Ti-La alloy Cu 55.5% Zn 35.0% Ti 5.0% La 0.5% (12) Cu-Zn-Ti-Mitshu Metal alloy Cu 55.4% Zn 40.0% Ti 4.0% Mitsushi Metal 0.6% Positive Ratio of reverse polarity pulses and processing speed 1:0 37.4mm 2 /min 3:1 38.4mm 2 /min 1:1 42.2mm 2 /min When the ratio of forward and reverse polarity pulses is 1:0.
(11) and (12) at machining speeds of 37.4mm 2 /min, 38.8mm 2 /min when 3:1, and 42.2mm 2 /min when 1:1.
It was possible to process both alloys.
本発明は叙上の如く構成されるので、本発明の
ワイヤカツト放電加工用電極材によるときには、
線引加工を容易に行うことができると共に、良好
な導電率及び耐熱性を有し、しかも抗張力が高い
ので、ワイヤ電極に癖がつきにくい上、消耗比が
低く、且つ、使用中にほとんど断線することが無
く、しかも高い電流密度で加工することができ、
加工速度を向上させることができると共に、短絡
を防止することができるので、作業の能率を大幅
に上げることができるのである。 Since the present invention is constructed as described above, when using the electrode material for wire cut electric discharge machining of the present invention,
It can be easily drawn, has good conductivity and heat resistance, and has high tensile strength, so the wire electrode is hard to get bent, has a low wear rate, and almost never breaks during use. It can be processed at high current density without any
Since machining speed can be increased and short circuits can be prevented, work efficiency can be greatly increased.
なお、本実施例においては希土類元素として
Laおよびミツシユメタルを用いたが、Y、Ceお
よびSm等の希土類元素を使用してもよく、ま
た、その他公知の希土類元素をも使用できるもの
であり、本発明はそれらの総てを包摂するもので
ある。 In addition, in this example, as a rare earth element
Although La and Mitsushi metal are used, rare earth elements such as Y, Ce, and Sm may also be used, and other known rare earth elements can also be used, and the present invention encompasses all of them. It is.
Claims (1)
と、1〜5%のSn、Ta、Zr、Co、FeおよびTiか
ら成る群から選んだ少なくとも一種の元素と、
0.05〜1%の希土類元素と、残部不純物とCuと
から成ることを特徴とするワイヤカツト放電加工
用電極材。 2 上記希土類元素がLaである特許請求の範囲
第1項記載のワイヤカツト放電加工用電極材。 3 上記希土類元素がミツシユメタルである特許
請求の範囲第1項記載のワイヤカツト放電加工用
電極材。 4 上記希土類元素がCeである特許請求の範囲
第1項記載のワイヤカツト放電加工用電極材。 5 上記希土類元素がSmである特許請求の範囲
第1項記載のワイヤカツト放電加工用電極材。 6 上記希土類元素がYである特許請求の範囲第
1項記載のワイヤカツト放電加工用電極材。[Claims] 1. 20 to 50% Zn by weight percentage (the same applies hereinafter)
and 1 to 5% of at least one element selected from the group consisting of Sn, Ta, Zr, Co, Fe and Ti,
An electrode material for wire cut electric discharge machining characterized by comprising 0.05 to 1% of a rare earth element, the balance being impurities and Cu. 2. The electrode material for wire cut electrical discharge machining according to claim 1, wherein the rare earth element is La. 3. The electrode material for wire cut electric discharge machining according to claim 1, wherein the rare earth element is Mitsushi metal. 4. The electrode material for wire cut electric discharge machining according to claim 1, wherein the rare earth element is Ce. 5. The electrode material for wire cut electric discharge machining according to claim 1, wherein the rare earth element is Sm. 6. The electrode material for wire cut electric discharge machining according to claim 1, wherein the rare earth element is Y.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP522283A JPS59129744A (en) | 1983-01-18 | 1983-01-18 | Electrode material for wire cut electric discharge machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP522283A JPS59129744A (en) | 1983-01-18 | 1983-01-18 | Electrode material for wire cut electric discharge machining |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59129744A JPS59129744A (en) | 1984-07-26 |
JPS622618B2 true JPS622618B2 (en) | 1987-01-21 |
Family
ID=11605163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP522283A Granted JPS59129744A (en) | 1983-01-18 | 1983-01-18 | Electrode material for wire cut electric discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59129744A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59222546A (en) * | 1983-05-30 | 1984-12-14 | Sumitomo Electric Ind Ltd | Electrode wire for wire-cut electric spark machining |
US5206480A (en) * | 1989-05-31 | 1993-04-27 | Sumitomo Electric Industries, Ltd. | Wire electrode for electro-discharge machining |
JP3303296B2 (en) * | 1989-05-31 | 2002-07-15 | 住友電気工業株式会社 | Electrode wire for wire electric discharge machining |
DE69907477T2 (en) * | 1999-12-09 | 2004-04-08 | Charmilles Technologies S.A. | Wire electrode for spark erosion and method of manufacture |
KR100370436B1 (en) * | 2000-07-25 | 2003-01-30 | 한도에어텍 주식회사 | Cu-Zn-Ce, La, Nd, Pr alloys for EDM(Energy Discharge Machine) wire |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5690943A (en) * | 1979-12-24 | 1981-07-23 | Furukawa Kinzoku Kogyo Kk | Alloy for wire cut electrospark machining electrode |
-
1983
- 1983-01-18 JP JP522283A patent/JPS59129744A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5690943A (en) * | 1979-12-24 | 1981-07-23 | Furukawa Kinzoku Kogyo Kk | Alloy for wire cut electrospark machining electrode |
Also Published As
Publication number | Publication date |
---|---|
JPS59129744A (en) | 1984-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2541638B2 (en) | Manufacturing method of electric discharge machining electrode | |
KR101711040B1 (en) | Electrode wire for wire electric discharge machining, and method for producting same | |
JP4390581B2 (en) | Electrode wire for wire electrical discharge machining | |
JPS5924170B2 (en) | Alloy for wire electrodes for electrical discharge machining | |
JPS622618B2 (en) | ||
US4673790A (en) | Copper based wire electrode for wire electro-discharge machining | |
JP3303296B2 (en) | Electrode wire for wire electric discharge machining | |
JPS59205441A (en) | Electrode material for wire cut discharge processing | |
JPS6143418B2 (en) | ||
JPH036973B2 (en) | ||
JPS59118849A (en) | Electrode material for wire-cut electric spark machining | |
JPS634619B2 (en) | ||
JPS59205443A (en) | Electrode material for wire cut discharge processing | |
JPS59129745A (en) | Electrode material for wire cut electric discharge machining | |
JPS59118850A (en) | Electrode material for wire-cut electric discharge machining | |
JPH0428780B2 (en) | ||
JPS59129741A (en) | Electrode material for wire cut electric discharge machining | |
JPS59116355A (en) | Electrode material for wire-cut electric spark machining | |
JPS58197242A (en) | Alloy wire for electrode wire for wire-cut electric spark machining | |
JPS6336889B2 (en) | ||
JPS59129743A (en) | Electrode material for wire cut electric discharge machining | |
JPS61109623A (en) | Electrode wire for wire electric spark spark machining and its manufacturing method | |
JPS58197244A (en) | Alloy wire for electrode wire for wire-cut electric spark machining | |
JPS6322930B2 (en) | ||
JP4020003B2 (en) | Electrode wire for wire electric discharge machining and electric discharge machining method using the same |