JPS62261424A - Molding of synthetic resin expandable particle and filling gun device or the same particle - Google Patents

Molding of synthetic resin expandable particle and filling gun device or the same particle

Info

Publication number
JPS62261424A
JPS62261424A JP61103878A JP10387886A JPS62261424A JP S62261424 A JPS62261424 A JP S62261424A JP 61103878 A JP61103878 A JP 61103878A JP 10387886 A JP10387886 A JP 10387886A JP S62261424 A JPS62261424 A JP S62261424A
Authority
JP
Japan
Prior art keywords
pressure
cavity
filling
particles
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61103878A
Other languages
Japanese (ja)
Other versions
JPH0356906B2 (en
Inventor
Masakazu Arai
荒居 正和
Masanori Tanaka
雅典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP61103878A priority Critical patent/JPS62261424A/en
Priority to US07/033,351 priority patent/US4818451A/en
Priority to DE19873711028 priority patent/DE3711028A1/en
Publication of JPS62261424A publication Critical patent/JPS62261424A/en
Publication of JPH0356906B2 publication Critical patent/JPH0356906B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the generating rate of faulty molded form due to the excess or shortage of filling of expandable particles by a method wherein the supply of the expandable particles into a cavity is stopped when the detecting pressure of a pressure detecting device becomes higher than the internal pressure of the cavity by a predetermined value. CONSTITUTION:When expandable particles in a hopper 1 are filled gradually into a cavity 21 in a mold through a filling gun device D, the pressure of the inlet port of the filling port 22 of the cavity becomes high gradually. When said pressure has become higher than a pressure P1 in the mold, which is generated by pressurizing gas, by 0.5kg/cm<2>, for example, the filling port 22 of the cavity is closed by the operation of a pressure switch PS and the supply of the expandable particles into the mold can be stopped perfectly. In this case, the operating pressure of the pressure switch PS is set in accordance with the kind of the expandable particles, the size and shape of an expanded molded form to be molded or the like. According to this method, the expandable particles are filled into the cavity of the mold without excess or shortage when the supply of the expandable particles is stopped. In case a filling tube is made by a double tube structure, the expandable particles, which remain in the tip end section of the filling tube, may be blown back.

Description

【発明の詳細な説明】 (&)発明の目的 本発明は合成樹脂発泡粒子の成形法及び同成形法におい
て用いられる充填ガン装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (&) OBJECTS OF THE INVENTION The present invention relates to a method for molding foamed synthetic resin particles and a filling gun device used in the molding method.

(産業上の利用分野) 本発明の成形法及び充填ガン装置は、種々の容器、断熱
材及び緩衝材等に用いられる熱可塑性合成樹脂の型物発
泡成形品を製造するのに有利に使用される。
(Industrial Application Field) The molding method and filling gun device of the present invention can be advantageously used to produce molded thermoplastic synthetic resin foam products used for various containers, heat insulating materials, cushioning materials, etc. Ru.

(従来の技術) 従来、合成樹脂発泡粒子の型物発泡成形における発泡粒
子の型内への充填は、充填すべき発泡粒子の容量を予め
計貴し、その計量した全量を充填してから充填ガンを閉
じる方法が用いられていた。
(Prior art) Conventionally, when filling foam particles into a mold in foam molding of synthetic resin foam particles, the volume of foam particles to be filled has been measured in advance, and the measured amount has been filled in the entire mold before filling. A method of closing the gun was used.

そして、その充填する発泡粒子の計量は、計量槽を用い
てパッチ式に全量を計量する方法、又はロータリ一式の
チャンバーのカウント数によυ計量する方法等が用いら
れていた。
To measure the foamed particles to be filled, a method has been used in which the total amount is measured using a patch method using a measuring tank, or a method in which υ is measured by the number of counts in a chamber of a rotary set.

しかし、かかる一定量の発泡粒子を計量してその全量を
型内に充填してから充填ガンを閉じる方法は、一般に発
泡粒子が粒子毎に密度のバラツキがあるために(すなわ
ち、通常、合成樹脂発泡粒子には10〜20%程度の密
度のバラツキがある)。
However, this method of weighing a certain amount of foamed particles, filling the entire amount into the mold, and then closing the filling gun is difficult because the density of foamed particles generally varies from particle to particle (i.e., synthetic resin Expanded particles have a density variation of about 10 to 20%).

充填が過不足になシやすく、成形品の不良品発生率が高
い。
It is easy to overfill or underfill, resulting in a high incidence of defective molded products.

すなわち、前記の従来法における型内圧力の設定は、一
般に、成形する製品の平均密度に対応して最初にセット
し、その圧力で成形が行なわれるので、たとえば平均密
度より高い密度の粒子の場合は、圧縮応力が大きいため
に圧縮される程度が少ないから、型内での圧縮下の容積
が大となり、型のキャビティ容積以上に充填された状態
で充填ガンが閉じられることになシ、充填口の部分が著
しく過充填になシ、粒子が充分に融着せず、デク口状に
割れた成形品になシやすい。また逆に、平均密度よシ低
い密度の粒子の場合には、型内での圧縮下の容積が小と
なり、型のキャビティ容積が充分に満されない状態で充
填ガンが閉じられることになり、充填口の部分が充填不
足の成形品になシやすい。
In other words, in the conventional method described above, the pressure inside the mold is generally first set in accordance with the average density of the product to be molded, and molding is performed at that pressure. Since the compressive stress is large and the degree of compression is small, the volume under compression in the mold becomes large, and the filling gun does not close when the mold is filled to more than the cavity volume. If the mouth part is severely overfilled, the particles will not be sufficiently fused, and the molded product will easily crack into a mouth shape. Conversely, if particles have a density lower than the average density, the volume under compression in the mold will be small, and the filling gun will be closed before the cavity volume of the mold is fully filled. The mouth part is prone to molded parts with insufficient filling.

(発明が解決しようとする問題点) 本発明は発泡粒子の密度にバラツキがあっても型内への
発泡粒子の充填を容易に自働的に過不良なく行なわせる
ことにより、発泡粒子の充填の過不足にもとづく成形品
の不良品発生率を少なくすることのできる合成樹脂発泡
粒子の成形法、及びその成形法において用いるに適する
充填ガン装置を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention is capable of easily and automatically filling a mold with foamed particles without defects even if the density of the foamed particles varies. The object of the present invention is to provide a method for molding foamed synthetic resin particles that can reduce the incidence of defective molded products due to excess or deficiency of molded products, and a filling gun device suitable for use in the molding method.

(b)  発明の構成 (問題点を解決するための手段) 本発明者等は、前記の問題点を解決するために種々研究
を重ねた結果、型のキャビティ充填口入口部の圧力検出
装置を設け、該圧力検出装置の検出圧力がキャビティ内
圧力よりも所定の圧力だけ高くなったときに、キャビテ
ィ内への発泡粒子の供給を停止すれば、発泡粒子の充填
を容易に自働的に過不足なく行なわせることができるこ
とを見出し17本発明に到達したのである。
(b) Structure of the Invention (Means for Solving the Problems) As a result of various studies to solve the above-mentioned problems, the present inventors have developed a pressure detection device at the inlet of the mold cavity filling port. If the supply of foamed particles into the cavity is stopped when the pressure detected by the pressure detection device becomes higher than the pressure inside the cavity by a predetermined pressure, filling of the foamed particles can be easily and automatically overfilled. They discovered that the present invention can be carried out without any shortage.

本発明の合成樹脂発泡粒子の成形法は、加圧ガスで昇圧
した型のキャビティ内に合成樹脂発泡粒子を型内圧力よ
りも高い加圧ガスを用いて圧縮しながら供給して充填し
、次いでスチーム加熱により発泡粒子を融着させて型物
発泡成形体に成形する方法において、型のキャビティ充
填口入口部の圧力検出装置を設け、該圧力検出装置の検
出圧力が前記のキャビティ内圧よりも所定の圧力だけ高
くなったときにキャビティ内への発泡粒子の供給を停止
することを特徴とする方法である。
The method for molding foamed synthetic resin particles of the present invention involves supplying and filling the foamed synthetic resin particles into the cavity of a mold whose pressure is increased with pressurized gas while compressing it using pressurized gas that is higher than the pressure inside the mold. In a method of forming a molded foamed product by fusing foamed particles by steam heating, a pressure detection device is provided at the inlet of a cavity filling port of the mold, and the detected pressure of the pressure detection device is set to a predetermined value higher than the cavity internal pressure. This method is characterized in that the supply of expanded particles into the cavity is stopped when the pressure increases by .

そして、かかる本発明の合成樹脂発泡粒子の成形法は、
種々の合成樹脂発泡粒子の充填ガン装置を使用して実施
することができるが、特に好ましいその充填ガン装置は
、型のキャビティの充填口に連通ずる主孔、合成樹脂発
泡粒子の移送導管に記のキャビティ充填口を閉鎖できる
プランジャーを有し、前記二重管構造の充填管の内管と
外管との間の間隙を前記のキャビティ充填口の入口部に
連通せしめた充填ガン装置において、前記二重管構造の
充填管の内外両管の間隙に圧力検出装置を取付けたこと
を特徴とするものでちる。
The method for molding foamed synthetic resin particles of the present invention is as follows:
Although this can be carried out using a variety of foamed synthetic resin particle filling gun devices, a particularly preferred filling gun device has a main hole communicating with the filling port of the mold cavity, a transfer conduit for the foamed synthetic resin particles. A filling gun device having a plunger capable of closing a cavity filling port, the gap between the inner pipe and the outer pipe of the filling pipe having a double pipe structure communicating with the inlet portion of the cavity filling port, The present invention is characterized in that a pressure detection device is installed in the gap between the inner and outer tubes of the filling tube having the double tube structure.

なお、型のキャビティ充填口に連通する主孔、合成樹脂
発泡粒子の移送管に連通ずる分岐孔、前記のキャビティ
充填口と前記の主孔とを連猿する二重管構造の充填管、
及び前記のキャビティ充填口を閉鎖できるプランシャー
を有し、前記二重管構造の充填管の内管と外管との間の
間隙を前記のキャビティ充填口の入口部に連通せしめた
充填ガン装置は、それ自体従来知られていたが(実公昭
51−8946号公報参照)、この公知の充填ガン装置
において充填管を二重管構造としてその間隙を充填口の
入口部に連通させた理由は、その間隙に設けた空気吹込
口よシ吹込んだ空気を充填口の入口部に噴出させること
により、充填後の充填管の先端部等に余分に残る発泡粒
子を吹戻すためである。したがって、この公知の充填ガ
ン装置には、その内外二重管構造の間隙には圧力検出装
置が取付けられていなく、この点において本発明の充填
ガン装置とは全く異なるものである。
In addition, a main hole communicating with the cavity filling port of the mold, a branch hole communicating with the synthetic resin foam particle transfer pipe, a filling pipe with a double pipe structure connecting the cavity filling port and the main hole,
and a filling gun device having a plunger capable of closing the cavity filling port, the gap between the inner pipe and the outer pipe of the filling pipe having a double pipe structure being communicated with the inlet portion of the cavity filling port. has been known in the past (see Japanese Utility Model Publication No. 51-8946), but the reason why the filling tube in this known filling gun device was made into a double pipe structure and the gap was made to communicate with the inlet of the filling port was as follows. By blowing air blown into the air inlet provided in the gap into the inlet of the filling port, excess foamed particles remaining at the tip of the filling tube after filling are blown back. Therefore, this known filling gun device does not have a pressure detection device attached to the gap between the inner and outer double pipe structure, and is completely different from the filling gun device of the present invention in this point.

本発明において内外二重管構造の充填管の間隙に取付け
るキャビティ充填口入口部の圧力検出装置及びその検出
圧力により発泡粒子の供給を停止する装置としては、種
々の装置が使用可能であるが、一般には設定圧力によっ
て作動する圧力スイッチを用いるのが望ましい。すなわ
ち、前記の間隙に所定の圧力になったら作動する圧力ス
イッチを設けておけば、該圧力スイッチが充填口入口部
の圧力を容易に検出することができるので、その検出圧
力が所定の圧力に達したなら圧力スイッチが直ちに作動
して発泡粒子の供給を停止することができる。圧力スイ
ッチの設定圧力は、型内圧力よりも0.2〜1囁偏2、
好ましくは0.4〜0.7 ktY百2高い圧力とする
のが望ましい。その設定圧力が型内圧力にあまり近すぎ
ると誤作動を起しやすいし、型内圧力よシあまシ高すぎ
ると、発泡粒子の供給を停止する時間に遅れが生じ、過
充填になシやすい。
In the present invention, various devices can be used as the pressure detection device at the entrance of the cavity filling port that is attached to the gap between the filling pipes having the inner and outer double pipe structure, and the device that stops the supply of foam particles based on the detected pressure. It is generally desirable to use a pressure switch that is activated by a set pressure. In other words, if a pressure switch is provided in the gap that is activated when a predetermined pressure is reached, the pressure switch can easily detect the pressure at the inlet of the filling port, so that the detected pressure will not reach the predetermined pressure. Once reached, a pressure switch can be activated immediately to stop the supply of foam particles. The set pressure of the pressure switch is 0.2 to 1 whisper 2,
Preferably, the pressure is 0.4 to 0.7 ktY12 higher. If the set pressure is too close to the mold internal pressure, malfunctions are likely to occur, and if it is too high compared to the mold internal pressure, there will be a delay in stopping the supply of foam particles, resulting in overfilling. .

また、本発明において検出圧力により発泡粒子の型内へ
の供給停止は、検出圧力によりプランジャーを作動させ
て型のキャビティの充填口を閉鎖すると同時に、発泡粒
子供給用の回転供給装置のモノターを停止させて粒子の
型内への移送を停止させるようにして行なうのが望まし
い。
In addition, in the present invention, to stop the supply of foamed particles into the mold by detecting pressure, the plunger is actuated by the detection pressure to close the filling port of the cavity of the mold, and at the same time, the monotor of the rotary supply device for supplying foamed particles is activated. Preferably, this is done in such a way as to stop the transfer of the particles into the mold.

本発明の合成樹脂発泡粒子の成形法は、ポリプロピレン
、ポリスチレン、ポリエチレン、エチレン・酢酸ビニル
共重合体、エチレン・(メタ)アクリル酸共重合体の金
属塩、α−メチルスチレン・スチレン・アクリロニトリ
ル共重合体、スチレングラフトポリエチレン共重合体、
スチレングラフトポリプロピレン及びこれらの架橋樹脂
等の熱可塑樹脂の発泡粒子に適用できる。また、これら
樹脂の混合物や、これら樹脂または樹脂混合物にエチレ
ン書プロピレン共重合体がムや4リイソブチレンゴムを
配合した組成物よシ得られた発泡粒子に適用してもよい
。発泡粒子は、かさ密度が10〜90 i/l、粒子径
が2〜10wwmのものがあげられる。発泡粒子は架橋
されていても、架橋されていなくてもよい。
The molding method of the synthetic resin foam particles of the present invention includes polypropylene, polystyrene, polyethylene, ethylene/vinyl acetate copolymer, metal salt of ethylene/(meth)acrylic acid copolymer, α-methylstyrene/styrene/acrylonitrile copolymer, Coalescence, styrene-grafted polyethylene copolymer,
It can be applied to foamed particles of thermoplastic resins such as styrene-grafted polypropylene and crosslinked resins thereof. The present invention may also be applied to foamed particles obtained from mixtures of these resins or compositions in which ethylene-propylene copolymer or 4-isobutylene rubber is blended with these resins or resin mixtures. Examples of the expanded particles include those having a bulk density of 10 to 90 i/l and a particle diameter of 2 to 10 wwm. The expanded particles may be crosslinked or non-crosslinked.

かかる熱可塑性樹脂発泡粒子を製造する方法としては、
たとえば樹脂を押出機中で発泡剤と混練して押出し、押
出機のノズルを出たのち放圧して発泡させてから切断し
て発泡粒子を得る方法、或いは耐圧容器内において樹脂
粒子を水等の分散媒、発泡剤、分散剤等とともに、樹脂
粒子が軟化する温度前後の温度下で攪拌しながら加熱し
て、樹脂粒子に発泡剤を含浸させてから、容器の一端を
開放して樹脂粒子と分散媒とを容器内よりも低圧の雰囲
気中に放出して、樹脂粒子を発泡させる方法、懸濁重合
して得た発泡剤を含有する。/ +7スチレン。
As a method for producing such expanded thermoplastic resin particles,
For example, resin particles are kneaded with a foaming agent in an extruder and extruded, and after exiting the nozzle of the extruder, pressure is released to foam and then cut to obtain foamed particles, or resin particles are mixed with water etc. in a pressure container. The resin particles are impregnated with the foaming agent by heating with stirring at a temperature around the temperature at which the resin particles soften, along with the dispersion medium, foaming agent, dispersant, etc., and then one end of the container is opened and the resin particles are heated. It contains a foaming agent obtained by suspension polymerization, a method in which resin particles are foamed by discharging a dispersion medium into an atmosphere at a lower pressure than in the container. / +7 styrene.

スチレングラフトポリプロピレン、スチレングラフトI
リエチレン等の発泡性樹脂粒子をスチームで予備発泡さ
せる方法等がある。発泡粒子の形状としては、球形、円
筒形等の形状がある。
Styrene grafted polypropylene, Styrene grafted I
There is a method of pre-foaming expandable resin particles such as polyethylene with steam. The shape of the expanded particles includes a spherical shape, a cylindrical shape, and the like.

また1本発明の方法において、型の昇圧、発泡粒子の圧
縮及び充填に用いられる加圧がスとしては、空気や窒素
ガス等の無機ガスが好ましいが、その他のガス、たとえ
ばプロパン、ブタン、イソブタン、ペンタン等の脂肪族
炭化水素ガス;ジレクロジフロロメタン、ジクロロテト
ラフロロエタヘ ン、メチルクロライド等のへロダン化炭化水素ガス等も
使用することができ、さらに前記の無機がスを主体とし
、これに少量の前記の他のガスを混合したガスも使用す
ることができる。しかし、一般には圧縮空気が好適に使
用される。
Furthermore, in the method of the present invention, the pressurizing gas used for pressurizing the mold and compressing and filling the expanded particles is preferably an inorganic gas such as air or nitrogen gas, but other gases such as propane, butane, isobutane, etc. , aliphatic hydrocarbon gases such as pentane; herodanized hydrocarbon gases such as dilechlorodifluoromethane, dichlorotetrafluoroethahene, methyl chloride, etc. can also be used; It is also possible to use a mixture of a small amount of the other gas mentioned above. However, compressed air is generally preferred.

本発明における樹脂発泡粒子の加圧ガスによる圧縮の程
度、すなわち圧縮率は、型の内容積と型内に充填される
発泡粒子の大気中の容積との関係式で表わすことができ
る。そして、型の容積は、凸型と凹型とで形成される空
間の容積であり、直接に測定するのが困難であるが、実
質的にこの空間で成形される製品の容積と同一とみなし
うるから、発泡粒子の圧縮率(イ)は下記式で求めるこ
とができる(式中のW、V及びσは前記したとおシのも
のである。)。
In the present invention, the degree of compression of the foamed resin particles by the pressurized gas, that is, the compression ratio, can be expressed by a relational expression between the internal volume of the mold and the volume of the foamed beads filled in the mold in the atmosphere. The volume of the mold is the volume of the space formed by the convex and concave molds, and although it is difficult to measure directly, it can be considered to be substantially the same as the volume of the product molded in this space. Therefore, the compressibility (a) of the expanded particles can be determined by the following formula (W, V, and σ in the formula are as described above).

W/σ そして、本発明の方法においては、この圧縮率を一般的
には1〜70%の範囲内に、好ましくはぼりプロピレン
発泡粒子、発泡粒子のセルの内圧が大気圧(01v2=
−”G )の架橋ぼりエチレン発泡粒子においては40
〜65%、ポリスチレン、α−メチルスチレン・スチレ
ン舎アクリロニトリル共重合体、スチレン・メチルメタ
クリレート共重合体等のスチレン系樹脂発泡粒子におい
ては3〜25%、スチレングラフ)/リエチレン共重合
体の発泡粒子〔三菱油化パーデイツシエ社のエレンI−
ル(商品名)や積水化成品社のピオセラン(商品名)等
〕においては3〜401にする。
W/σ In the method of the present invention, the compression rate is generally within the range of 1 to 70%, preferably when the internal pressure of the cells of the foamed propylene particles is atmospheric pressure (01v2=
40 for the cross-linked ethylene foam particles of -"G)
~65%, 3 to 25% for foamed styrene resin particles such as polystyrene, α-methylstyrene/styrene acrylonitrile copolymer, styrene/methyl methacrylate copolymer, etc., foamed particles of styrene graph)/reethylene copolymer [Mitsubishi Yuka Perdice Co., Ltd.'s Ellen I-
(trade name) and Sekisui Plastics Co., Ltd.'s Piocelan (trade name)], it is set to 3 to 401.

また、ポリプロピレン発泡粒子、架橋プリエチレン発泡
粒子を加圧ガス(空気、チッソガス等)で加圧熟成処理
して発泡粒子のセルの内圧を0,5kVr112G以上
とした場合においては、圧縮率を10〜20チとする。
In addition, when polypropylene foamed particles and crosslinked polyethylene foamed particles are subjected to pressure aging treatment with pressurized gas (air, nitrogen gas, etc.) and the internal pressure of the cells of the foamed particles is 0.5kVr112G or more, the compression ratio is 10 to 10. Let's say it's 20 inches.

一般に、圧縮率があまシ小さすぎると発泡粒子の融着し
た界面に間隙が生じ、外観が悪くなる。
Generally, if the compression rate is too low, gaps will be created at the interface where the expanded particles are fused together, resulting in poor appearance.

また、圧縮率があまり高くなシすぎると、過剰圧縮にな
シ、発泡粒子間へのスチームの流れが悪くなシ、発泡粒
子の融着不良等が発生する。
On the other hand, if the compression rate is too high, excessive compression, poor flow of steam between the foamed particles, poor fusion of the foamed particles, etc. will occur.

本発明の方法においては、発泡粒子の充填前及び充填中
の型内圧を、加圧ガスにより加圧して0、1〜6.0 
暖62Gに保つようにするとよい。これは、樹脂発泡粒
子のかさ密度が10〜90 i/lであシ、かかる発泡
粒子の圧縮率を1〜70%にするには、この範囲内の加
圧が最適であるからである。すなわち、加圧ガス圧が0
.1 kVFR2G未満になると1%の圧縮率が得られ
にくくなるし、6嬌偏2Gを超えると、圧縮率が70チ
を超えるおそれがあるからである。
In the method of the present invention, the pressure inside the mold is increased to 0.1 to 6.0 by pressurized gas before and during filling of expanded particles.
It is best to keep it warm at 62G. This is because the bulk density of the foamed resin particles is 10 to 90 i/l, and in order to make the compression ratio of the foamed particles 1 to 70%, pressurization within this range is optimal. In other words, the pressurized gas pressure is 0.
.. This is because if it is less than 1 kVFR2G, it will be difficult to obtain a compression ratio of 1%, and if it exceeds 6.2G, there is a possibility that the compression ratio will exceed 70.

また、本発明の方法においては、発泡粒子を、前記の型
のキャビティ内圧力よりも0.5 kg/crpt2以
上高い加圧ガスを用いて圧縮しながら、同ガス圧により
型内に、しかも発泡粒子を複数回に分割して逐次に供給
・充填するようにするのが望ましい。
In addition, in the method of the present invention, while compressing the foamed particles using a pressurized gas that is 0.5 kg/crpt2 or more higher than the pressure inside the cavity of the mold, the foamed particles are It is desirable to divide the particles into multiple portions and supply and fill them sequentially.

型内圧力より0.5ψ−以上高い圧力のガスを用いて圧
縮しながら充填させるのは、発泡粒子の型のキャビティ
内への圧入及びキャビティでの移動を容易ならしめるた
めである。型内圧力より0.5 kg/cIn2未満の
高い圧力を用いた場合には、発泡粒子の型のキャビティ
内への圧入が充分に行なわれなくなる。また、発泡粒子
の型内への供給・充填を複数回に分割して逐次に行なわ
せるのは、複雑な形状の型の隅々にまで発泡粒子を均一
に充填させるためである。
The reason why the gas is compressed and filled using a gas having a pressure 0.5 ψ or more higher than the pressure inside the mold is to facilitate the press-fitting of the expanded particles into the cavity of the mold and the movement of the foamed particles in the cavity. If a pressure higher than the mold internal pressure by less than 0.5 kg/cIn2 is used, the foamed particles will not be sufficiently press-fitted into the mold cavity. Further, the reason why the supply and filling of the foamed particles into the mold is divided into a plurality of times and performed sequentially is to uniformly fill every corner of the complex-shaped mold with the foamed particles.

子の間隙に存在するガスを型外へ排出させるためにスチ
ームによる抜気処理をするが、その抜気処理の好ましい
方法は、発泡粒子の型内への圧縮充填後のキャビティ内
圧(0,5〜6.0◆僑2)を保持したままでスチーム
を導入して抜気処理をする方法である。キャビティ内圧
を保持したままでスチームを導入して抜気処理をすると
、圧抜き後の粒子の形状を原形に復元させてからスチー
ムを導入して抜気処理をする場合に較べて、発泡粒子の
隙間が広いので、スチームが流過しやすく、抜気効率が
よくなシ、短時間の抜気処理で容易に粒子の隙間に存在
するガスを除くことができる。
In order to discharge the gas existing in the gap outside the mold, steam is used to perform a degassing process. ~6.0◆ This is a method in which steam is introduced and air is removed while retaining 2). If you introduce steam and perform the degassing process while maintaining the cavity internal pressure, the shape of the foamed particles will be lower than if you restore the shape of the particles after pressure relief to their original shape and then introduce steam and perform the degassing process. Since the gap is wide, it is easy for steam to flow through, the air removal efficiency is good, and the gas existing in the gaps between the particles can be easily removed by a short air removal process.

特に好ましい抜気処理態様は下記の態様である。A particularly preferable degassing treatment mode is the following mode.

■ キャビティの内圧を保持したままで、抜気用スチー
ムを移動型のス゛チームチャンバーに導入し、スチーム
孔、キャビティ内、スチーム孔を経て流過させ、固定型
のスチームチャンバーから系外に抜気する。
■ While maintaining the internal pressure of the cavity, the steam for venting is introduced into the movable steam chamber, and is allowed to flow through the steam hole, inside the cavity, and through the steam hole, and then vented from the fixed steam chamber to the outside of the system. do.

■ キャビティ内圧を保持した11で、抜気用スチーム
を固定型のスチームチャンバーに導入し、スチーム孔、
キャビティ内、スチーム孔を経て流過させ、移動型のス
チームチャンバーから系外に抜気する。
■ With 11 maintaining the cavity internal pressure, venting steam is introduced into the fixed steam chamber, and the steam hole,
Air flows through the cavity and through the steam hole, and is vented out of the system from a movable steam chamber.

■ まず、前記[F]の工程で抜気処理をし、次いで■
の工程で抜気処理するか、又は前記■の工程で抜気処理
をし、次いで前記■の工程で抜気処理をする。
■ First, the air is removed in step [F] above, and then ■
Either the air removal process is carried out in the step (2), or the air removal process is carried out in the step (2) above, and then the air removal process is carried out in the step (2).

本発明においては、かかる抜気処理をしてから、さらに
圧抜きをして型のキャビティ内圧を大気圧に戻し、加圧
された発泡粒子の形状を原形に復元、膨張させ、次いで
固定型及び移動型の両方のスチに冷却してから成形品を
取出す。
In the present invention, after performing the air evacuation treatment, the pressure inside the mold cavity is returned to atmospheric pressure by further depressurization, the pressurized foam particles are restored to their original shape and expanded, and then the fixed mold and After cooling both sides of the moving mold, remove the molded product.

次に、添付図面に示す成形装置を使用して本発明を実施
する代表的な態様例について説明をする。
Next, typical embodiments for carrying out the present invention using the molding apparatus shown in the accompanying drawings will be explained.

添付図面は本発明の実施に使用される成形装置の一例を
部分縦断面図で示したものであるが、Aは発泡粒子の圧
縮及び充填用の回転供給装置であり、Bは金型装置であ
り、Cは発泡粒子の移送導管であシ、Dは発泡粒子の充
填ガン装置である。
The attached drawing is a partial vertical cross-sectional view of an example of a molding device used in carrying out the present invention, in which A is a rotary supply device for compressing and filling expanded particles, and B is a mold device. C is a transport conduit for foamed particles, and D is a filling gun device for foamed particles.

まず、金型装置Bは固定型11若しくは移動型12とフ
レーム13 、 l 3’と裏板14 、14’とによ
って形成される空間、すなわちスチームチャ/パー16
.16’を有するが、このスチームチャンバー16 、
16’内に圧力Pt  (たとえば0.1〜6、0 W
cm2G )の加圧ガス、たとえば圧縮空気を圧入して
、両スチームチャンバー内圧を前記の所定圧力に加圧し
ておく。
First, the mold apparatus B is a space formed by the fixed mold 11 or the movable mold 12, the frames 13, 13', and the back plates 14, 14', that is, the steam chamber/par 16.
.. 16', this steam chamber 16,
16' within the pressure Pt (e.g. 0.1-6,0 W
cm2G) of pressurized gas, such as compressed air, is injected to pressurize the internal pressures of both steam chambers to the above-mentioned predetermined pressure.

次に1回転供給装置Aは、図示したようにケーシング2
とロータ3とから主として構成され、ロータ3には複数
個のチャンバー4の一端がケーシング2に設けられた発
泡粒子の供給口5と一致する回転位置において、チャン
バー4の他端が減圧ライン8の吸引ロアと一致するよう
に構成されているから、ホラ・4−1内の発泡粒子はそ
の減圧力によってチャンバー4内に移送され、それを充
満せしめる。発泡粒子で充満されたチャンバー4は、両
端ともシールされた状態で回転してチャンバー4の一端
が発泡粒子排出口6に達すると、同チャンバー4の他端
が前記の圧力P1よりも、たとえば0.5 kg/cm
2以上高い圧力P8に加圧された加圧ガス吹出口9に達
するから、チャンバー4内の発泡粒子はその加圧ガス圧
力P!で圧縮されながら発泡粒子の移送導管C及び充填
ガンDを経て、前記の圧力pHに加圧された固定型11
と移動型12とによって形成される型のキャビティ21
内に充填せしめられる。そして、回転供給装置Aのロー
タ3には、前記したチャンバー4が6ケ設けられている
から、ホラノー1内の発泡粒子は、前記の操作の操返し
によって、複数回に分割されて逐次に壓のキャビティ内
に充填されることになる。
Next, the one-rotation supply device A feeds the casing 2 as shown in the figure.
and a rotor 3, in which one end of a plurality of chambers 4 in the rotor 3 coincides with a foamed particle supply port 5 provided in the casing 2, and the other end of the chamber 4 is connected to a decompression line 8. Since it is configured to coincide with the suction lower, the foamed particles in the hollow 4-1 are transferred into the chamber 4 by the reduced pressure and fill it. The chamber 4 filled with foamed particles rotates with both ends sealed, and when one end of the chamber 4 reaches the foamed particle outlet 6, the other end of the chamber 4 has a pressure lower than the pressure P1, for example 0. .5 kg/cm
Since the foamed particles in the chamber 4 reach the pressurized gas outlet 9 which is pressurized to a pressure P8 higher than 2 times, the pressurized gas pressure P! The fixed mold 11 is pressurized to the above pressure pH through the foamed particle transfer conduit C and the filling gun D while being compressed.
A mold cavity 21 formed by the movable mold 12 and the movable mold 12.
It is filled inside. Since the rotor 3 of the rotary supply device A is provided with the six chambers 4 described above, the foamed particles in the Holanow 1 are divided into multiple times and sequentially formed by repeating the above operation. will be filled into the cavity.

充填ガン装置りは、本体aにはキャビティの充填口22
に連通する主孔すと、合成樹脂発泡粒子は内管e′及び
外管e“により構成された二重管構造の充填管・によっ
てキャビティの充填口22に連通されておシ、二重管構
造の充填管のは、その内外両管e′及びe“間の間隙f
が設けられておシ、その間隙fの前方の端が充填口22
の入口部に連通されており、かつ間隙fの後端ては圧力
スイッチP、が屯付けられている。そして、前記の構造
から自明なように、間隙f内の圧力は、常に充填口22
の入口部の圧力と実質的に同圧となるから、圧力スイッ
チPsを型の内圧よりも一定値だけ、たとえば0.5 
kl、’だけ高くなったときに作動するように設定して
おけば、充填口22の入口部の圧力がその設定圧力に達
すれば圧力スイッチP、が作動することになる。
The filling gun device has a cavity filling port 22 in the main body a.
The foamed synthetic resin particles are communicated with the filling port 22 of the cavity through the filling pipe, which has a double pipe structure and is composed of an inner pipe e' and an outer pipe e''. The structure of the filling tube is that the gap f between the inner and outer tubes e' and e'' is
is provided, and the front end of the gap f is the filling port 22.
The pressure switch P is connected to the inlet of the gap f, and a pressure switch P is mounted at the rear end of the gap f. As is obvious from the above structure, the pressure within the gap f is always constant at the filling port 22.
Since the pressure is substantially the same as the pressure at the inlet of the mold, the pressure switch Ps is set to a certain value higher than the internal pressure of the mold, for example 0.5.
If the pressure switch P is set to be activated when the pressure increases by kl,', the pressure switch P will be activated when the pressure at the inlet of the filling port 22 reaches the set pressure.

したがって、前述のようにしてホッパー内の発泡粒子が
ロータ3の回転によって移送導管C1及び充填ガン装置
りを経て壓のキャビティ21内に次第にχ項されるにつ
れて、キャビティの充填口22の入口部の圧力も次第に
高くなり、その入口i高くなったときに圧力スイッチP
、琳作動させることにより、エアシリンダーhを作動さ
せ、プシンジャーdを前進させ、中ヤピティの充填口2
2を閉じると同時に、発泡粒子供給用の回転供給装置A
のモーターをも停止させて、型内への発泡粒子の供給を
完全に停止させる。そして、この場合に発泡粒子の種類
や成形せんとする発泡成形品の形状や大きさ等に応じて
、充填ロ220入ロ部の圧力が型内圧力Plよりも一定
の圧力だけ高くなりたときに作動するように圧力スイッ
チP、の作動圧力を設定しておけば、発泡粒子の供給停
止時には発泡粒子が過不足なく型のキャビティ内に充填
されている状態にすることができる。
Therefore, as the foamed particles in the hopper are gradually transferred into the cavity 21 through the transfer conduit C1 and the filling gun device by the rotation of the rotor 3 as described above, the inlet of the filling port 22 of the cavity is The pressure gradually increases, and when the inlet i rises, the pressure switch P
, by operating the air cylinder h, the pusher d is moved forward, and the filling port 2 of the middle yapiti is opened.
At the same time as closing 2, the rotary supply device A for supplying foamed particles
The motor is also stopped to completely stop the supply of foam particles into the mold. In this case, depending on the type of foam particles and the shape and size of the foam molded product to be molded, when the pressure in the filling chamber 220 is higher than the mold internal pressure Pl by a certain pressure. If the operating pressure of the pressure switch P is set so that the pressure switch P is activated, the cavity of the mold can be filled with just the right amount of foamed particles when the supply of foamed particles is stopped.

次いで、型内への発泡粒子の充填完了後に、型のキャビ
ティ内圧を保持した11で、たとえば移動W12のスチ
ームチャンバー16’内にスチーム管17’よシ抜気用
スチームを導入し、該スチームを移動型12のスチーム
孔20’ 、 20’・・・、キャビティ21内、固定
型のスチーム孔20.20・・・、固定型のスチームチ
ャンバー16を経て、圧力調整弁を備えた抜気管18よ
り系外に抜気(排出)させる。すると、キャビティ21
内に充填されている発泡粒子の隙間に存在するガス(た
とえば空気等)は、該スチーム忙随伴されて抜気される
Next, after filling the foamed particles into the mold is completed, at step 11, which maintains the internal pressure of the mold cavity, venting steam is introduced, for example, through the steam pipe 17' into the steam chamber 16' of the moving W12, and the steam is removed. Through the steam holes 20', 20'... of the movable type 12, the cavity 21, the fixed steam holes 20, 20..., the fixed steam chamber 16, and from the vent pipe 18 equipped with a pressure regulating valve. Vent (discharge) air out of the system. Then, cavity 21
Gas (for example, air) existing in the gaps between the foamed particles filled inside the container is evacuated by being entrained by the steam.

この場合に、移動型12の抜気管18′、ドレン排出管
19′、固定型11のスチーム管17、ドレイン排出管
19は、それぞれ弁(図示されていない)に□よって閉
鎖されておシ、移動型のスチーム管17′と固定型の抜
気管18の弁(図示されていない)は、それぞれ開放さ
れている。なお、抜気管18には、前述のとおシ圧力調
整弁が設けられているから、型のキャビティ内圧は所定
の内圧を保りたままで抜気処理されることになる。
In this case, the air vent pipe 18' and drain discharge pipe 19' of the movable mold 12, and the steam pipe 17 and drain discharge pipe 19 of the fixed mold 11 are each closed by a valve (not shown). The valves (not shown) of the movable steam pipe 17' and the stationary vent pipe 18 are each open. Note that since the air vent pipe 18 is provided with the above-mentioned pressure regulating valve, the air venting process is performed while the internal pressure of the mold cavity is maintained at a predetermined internal pressure.

抜気処理は、型のキャビティ内圧を保持したままで、前
記の場合とは逆に、固定型11のスチーム管17からス
チームチャンバー16に抜気用スチームを導入し、スチ
ーム孔20.20・・・、キャビティ21内、スチーム
孔20’ 、 20’・・・、スチームチャンバー16
′を経て、抜気管18′から系外(抜気する態様で行な
わせてもよい。
In the degassing process, while maintaining the mold cavity internal pressure, degassing steam is introduced from the steam pipe 17 of the fixed mold 11 into the steam chamber 16, contrary to the above case, and the steam holes 20, 20, . . .・Inside cavity 21, steam holes 20', 20'..., steam chamber 16
The air may be removed from the system through the air removal pipe 18' through the air removal pipe 18'.

さらに、抜気処理は、前記の第一態様で抜気処理をした
のち、弁の切替えを行なって前記第二の態様で引続き抜
気処理をしてもよいし、これとは逆に、前記第二の態様
で抜気処理をしたのち、第一の態様で抜気処理を行なっ
てもよい。
Further, the air removal process may be performed in the first mode, and then the valve may be switched to continue the air removal process in the second mode, or, conversely, the air removal process may be performed in the second mode. After performing the degassing process in the second aspect, the degassing process may be performed in the first aspect.

これらの抜気処理は、スチームチャンバー16゜16′
の内圧Plに抗して、スチームチャンバー内に安定にス
チームを供給する必要から、圧力plよりも0.2 k
vctn2以上高い圧力を有する抜気用スチームを導入
して行なわれる。
These degassing processes are carried out in the steam chamber 16°16'.
Because it is necessary to stably supply steam into the steam chamber against the internal pressure Pl of
This is carried out by introducing degassing steam having a pressure higher than vctn2.

次いで、かかる抜気処理後に、ドレン排出管19 、、
19’を開放すること知よシキャピティ21内の圧力を
大気圧に戻し、圧縮された発泡粒子を原形に復元、膨張
させてから、スチームチャンバー16.16’内に一所
定温度のスチームを供給して加熱し、発泡及び融着を行
なわせて鍛物発泡体に成形する。次いで、スチームチャ
ンバー16 、16’内に設けられた冷却水配管から固
定型11及び移動型12に水をスプレーして冷却し、さ
らに必要に応じて空冷及び放冷してから型を解き、成形
品を取出す。
Next, after the air evacuation process, the drain discharge pipe 19,...
19' is opened, the pressure inside the chamber 21 is returned to atmospheric pressure, the compressed foam particles are restored to their original shape and expanded, and then steam at a predetermined temperature is supplied into the steam chamber 16.16'. The material is then heated, foamed and fused to form a forged foam. Next, the stationary mold 11 and the movable mold 12 are cooled by spraying water from the cooling water pipes provided in the steam chambers 16 and 16', and are further air-cooled and left to cool as necessary, and then the molds are released and molded. Take out the item.

(実施例等) 以下随実施例及び比較例をあげてさらに詳述する。(Examples, etc.) The present invention will be described in further detail below with reference to Examples and Comparative Examples.

発泡粒子の製造例 内容積3tの耐圧力50kg//−rn2のオートクレ
ーブに、水1400部(重量部、以下同様)、エチレン
・プロピレンランダムコポリマー(三菱油化株式会社商
品名三菱ノーブレンFG3、エチレン含量3重量%)6
00部、懸濁剤として第三リン酸カルシウム15部、界
面活性剤のドデシルベンゼンスルホン酸ソーダ0.05
部、発泡剤としてブタン95部を仕込み、430 rp
mの攪拌下で、1時間かけて室温から135℃まで昇温
し、同温度に10分間保持したところ、オートクレーブ
の内圧が25 峰62Gになった。オートクレーブの底
部の吐出ノズル弁を開き、内容物を大気中に18Orp
mで攪拌しながら2秒で放出して発泡を行なわせた。
Example of producing expanded particles In an autoclave with an internal volume of 3 tons and a pressure resistance of 50 kg//-rn2, 1400 parts of water (parts by weight, the same applies hereinafter), ethylene-propylene random copolymer (Mitsubishi Oil & Chemical Co., Ltd. trade name: Mitsubishi Noblen FG3, ethylene content 3% by weight)6
00 parts, 15 parts of tribasic calcium phosphate as a suspending agent, and 0.05 parts of sodium dodecylbenzenesulfonate as a surfactant.
95 parts of butane as a blowing agent, 430 rp.
The temperature was raised from room temperature to 135° C. over 1 hour under stirring for 1 hour, and when the temperature was maintained for 10 minutes, the internal pressure of the autoclave reached 25°C and 62G. Open the discharge nozzle valve at the bottom of the autoclave and pour the contents into the atmosphere.
While stirring at m, the mixture was discharged for 2 seconds to cause foaming.

得られ念発泡粒子ばかさ密度が2817/lであった。The resulting super-foamed particles had a bulk density of 2817/l.

実施例1 添付図面に示すような成形装置を使用し、前記の発泡粒
子の製造例で得られたかさ密度が28g/lのエチレン
・プロピレンランダムフ4リマーの発泡粒子を成形した
。その場合に使用した成形機、金型、圧縮充填用の回転
供給装置、充填ガン、及び成形方法の詳細は下記のとお
りであった。
Example 1 Using a molding apparatus as shown in the attached drawings, foamed particles of the ethylene-propylene random polymer 4 reamer having a bulk density of 28 g/l obtained in the above-mentioned foamed particle manufacturing example were molded. The details of the molding machine, mold, rotary supply device for compression filling, filling gun, and molding method used in that case were as follows.

成形機: DAIYA−600LF (ダイセン工業株式会社商品
名)金型: 巾300■×長さ300a+X高さ50■の成形品が得
られる金型(内容積4.5t) 圧縮充填用回転供給装置: チャンバー数   6個 チャンバーサイズ  35■φX52m長さ内容積 5
0cc 充填ガン: DAIYA−フィーダー (ダイセン工業株式会社商品
名)、口径 30日 成形方法は、まず金型を閉じ、圧縮空気で型内圧P1を
3. s kyJaに昇圧した。次いで、前記のかさ密
度28.!9μの発泡粒子を、回転供給装置Aを使用し
、P2として5.5 kll/an2Gの圧力を有する
圧縮空気を使用して、0.1秒間隔で分割して逐次に型
内に充填した。その充填中、屋内圧Ptが3、5 i:
□2Gに保持されるように、排気管18及び18′に取
付けた圧力調整弁を作動させた。
Molding machine: DAIYA-600LF (Daisen Kogyo Co., Ltd. product name) Mold: Mold that can obtain a molded product with a width of 300 mm x length of 300 mm + x height of 50 mm (inner volume: 4.5 tons) Rotary supply device for compression filling: Number of chambers: 6 Chamber size: 35 φ x 52 m Length: 5
0cc Filling gun: DAIYA-Feeder (Daisen Industries Co., Ltd. product name), diameter 30 days The molding method first closes the mold and increases the mold internal pressure P1 to 3.0 cc with compressed air. The pressure was increased to skyJa. Next, the bulk density is 28. ! Expanded particles of 9μ were sequentially filled into the mold using rotary feeder A, using compressed air with a pressure of 5.5 kll/an2G as P2, in portions at intervals of 0.1 seconds. During the filling, the indoor pressure Pt is 3.5 i:
The pressure regulating valves attached to the exhaust pipes 18 and 18' were operated so that the pressure was maintained at □2G.

発泡粒子の型内への供給停止は、充填ガン装置りの間@
1に取付けた市販の圧力スイッチ(株式会社第一計器製
作所商品名 DU型プレッシャーグー・))を用いて行
なった。すなわち、この圧力スイッチの作動圧力’f:
 4. Okimm2Gに設定しておき、キャビティ充
填口の入口部の圧力がこの値に達したときに、直ちに充
填ガンのエアシリンダーgを作動させてプランジャーd
t−型のキャビティの充填口22の位置まで前進させ、
該充填口22を閉じると同時に、回転供給装置Aのモー
ターを停止させることKよシ、屋内への発泡粒子の供給
を停止させた。
The supply of foamed particles into the mold is stopped during the filling gun device.
The test was carried out using a commercially available pressure switch (Daiichi Keiki Seisakusho Co., Ltd., trade name: DU type Pressure Goo) attached to 1. That is, the operating pressure 'f of this pressure switch:
4. Set Okimm2G, and when the pressure at the inlet of the cavity filling port reaches this value, immediately operate the air cylinder g of the filling gun and press the plunger d.
advance to the position of the filling port 22 of the T-shaped cavity,
At the same time as the filling port 22 was closed, the motor of the rotary supply device A was stopped, thereby stopping the supply of foamed particles indoors.

発泡粒子の供給停止後、スチーム管17′を開き、3.
7ψ−2Gのスチームを5秒間、移動型のチャンバー1
6′に導入し、抜気管18に取付けられた圧力調整弁に
より型内圧力P1を3.5 kf’am2G保持しなか
ら抜気処理し、さらに弁の切替えを行なって固定型のチ
ャ/パー16内に3.7ψ62Gのスチームを10秒間
導入し、型内圧力P1を3.5ψ62Gに保持しながら
抜気管18′よシ抜気した。
After stopping the supply of foamed particles, open the steam pipe 17'; 3.
7ψ-2G steam for 5 seconds in movable chamber 1
6', the pressure inside the mold is maintained at 3.5 kf'am2G by the pressure regulating valve attached to the vent pipe 18, and then the air is vented. Steam of 3.7ψ62G was introduced into the mold 16 for 10 seconds, and air was vented through the vent pipe 18' while maintaining the pressure P1 inside the mold at 3.5ψ62G.

次いで、スチーム管17 、17’を閉じてスチームの
供給を止めた状態でドレン排出管19.19’を開放し
てチャンバー16 、16’及びキャビティ21の内圧
を瞬間的に大気圧を戻し、発泡粒子を原形に復元、膨張
させたのち、移動型及び固定型のスチームチャンバー1
6及び16′に同時に、4kllAytt2Gのスチー
ムを10秒間導入して、発泡粒子を加熱して発泡融着さ
せ九。
Next, the steam pipes 17 and 17' are closed to stop the supply of steam, and the drain discharge pipes 19 and 19' are opened to instantly return the internal pressure of the chambers 16 and 16' and the cavity 21 to atmospheric pressure, thereby causing foaming. After restoring the particles to their original shape and expanding them, a movable and fixed steam chamber 1
At the same time, 4kllAytt2G of steam was introduced into 6 and 16' for 10 seconds to heat the foamed particles and fuse them.9.

最後に、屋を50秒間水冷してから8秒間空冷し、さら
に60秒間放冷後に取出し乾燥させた発泡成形品は重さ
が27+1(かさ密度60 fi/l ’)であり、成
形時の発泡粒子の圧縮率は53%であった。
Finally, the foam molded product was water-cooled for 50 seconds, then air-cooled for 8 seconds, and then taken out and dried after cooling for another 60 seconds.The weight of the foamed product was 27+1 (bulk density 60 fi/l'), and the foaming during molding was The compressibility of the particles was 53%.

得られた成形品は、発泡粒子が隅々にまで充填されてい
て、粒子間の間隙が少なく(表面間隙2個/ 25 c
ttt2) 、融着に優れ(融着率100%)、不良品
の発生率は2チと著しく小さかつ念。その成形条件及び
成形品の不良品発生率は第1表に示すとおりであった。
The obtained molded product is filled with foamed particles to every corner, and there are few gaps between the particles (2 surface gaps/25 c
ttt2), has excellent fusion bonding (100% fusion rate), and the incidence of defective products is extremely small at 2. The molding conditions and the incidence of defective molded products were as shown in Table 1.

比較例1 オムロン f(7CNデジタルカウンター(立石電機株
式会社商品名)を用いて、型のキャビティ内への発泡粒
子の供給量がチャンバー4のカウント数で190に達し
たときに充填を停止し、そのほかは実施例1の方法に準
じて成形を行なった。その成形条件及び成形品の不良品
発生率は第1表に示すとおシであった。
Comparative Example 1 Using an OMRON f (7CN digital counter (trade name of Tateishi Electric Co., Ltd.), filling was stopped when the amount of foamed particles supplied into the cavity of the mold reached 190 in the count number of chamber 4, In other respects, molding was carried out in accordance with the method of Example 1. The molding conditions and the incidence of defective molded products were as shown in Table 1.

第  1  表 *1・・・前記式で計算した圧縮率をさす(第2表も同
様である)1゜ 実施例2〜4 比較例2〜4 発泡粒子としてそれぞれ第2表に記載され、かつ下記に
詳記された各種の発泡粒子をそれぞれ使用し、かつ成形
条件として第2表に示す条件を使用し、そのほかは実施
例1又は比較例1に準じて各種の型物発泡成形品を成形
した。その結果は第2表に示すとおシであった。
Table 1 *1: Refers to the compression ratio calculated using the above formula (Table 2 is the same) Various molded foam molded products were molded using the various foamed particles detailed below, using the conditions shown in Table 2 as the molding conditions, and otherwise following Example 1 or Comparative Example 1. did. The results are shown in Table 2.

架橋Iリエチレン発泡粒子: 粒径lO■、架橋度がrル分率で55俤、かさ密度15
.69μ スチレン改質ポリエチレン発泡粒子: 粒径5m、かさ密度31.8.!ilμ、スチレン/プ
リエチレン重量比=171の予備発泡粒子ポリスチレン
発泡粒子: 粒径311II11かさ密度209/I−の予備発泡粒
子(c)発明の効果 本発明は密度分布が均一で外観の優れた型物発泡成形品
を不良品の発生率を低くおさえて容易に成形することが
できる。
Crosslinked polyethylene foam particles: Particle size lO■, degree of crosslinking is 55 in terms of r ratio, bulk density 15
.. 69μ styrene-modified polyethylene foam particles: particle size 5m, bulk density 31.8. ! ilμ, pre-expanded particles with styrene/preethylene weight ratio = 171 Polystyrene foam particles: Pre-expanded particles with a particle size of 311II11 and a bulk density of 209/I- (c) Effects of the invention The present invention provides molds with uniform density distribution and excellent appearance. Foamed products can be easily molded with a low incidence of defective products.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施に使用される成形装置の一例を
部分縦断面図で示したものであシ、図中の各符号はそれ
ぞれ下記のものを示す。 A・・・発泡粒子の圧縮及び充填用の回転供給装置、B
・・・金車装置、C・・・発泡粒子の移送導管、D・・
・充填ガン装置、1・・・発泡粒子用ポツパー、2・・
・ケーシング、3・・・ロータ、4・・・チャンバー、
5・・・発泡粒子供給口、6・・・発泡粒子排出口、7
・・・減圧ライン吸引口、8・・・減圧ライン、9・・
・加圧ガス吹出口、10・・・加圧ガスライン、11・
・・固定型、12・・・移動型、13 、13’・・・
フレーム、14 、14’・・・裏金、16 、16’
・・・スチームチャンバー、17 、17’・・・スチ
ーム管、1 B 、 18’・・・抜気管、19 、1
9’・・・ドレン排出管、20.20’・・・スチーム
孔、21・・・金型のキャビティ、22・・・キャビテ
ィの充填口、a・・・充填ガン本体、b・・・主孔、C
・・・分岐孔、d・・・プランジャー、e・・・充填管
、f・・・間隙、g・・・エアシリンダー。
The accompanying drawings are partial longitudinal cross-sectional views of an example of a molding apparatus used in carrying out the present invention, and each reference numeral in the drawings indicates the following. A...Rotary supply device for compressing and filling expanded particles, B
... Metal wheel device, C... Foamed particle transfer conduit, D...
・Filling gun device, 1...Popper for foam particles, 2...
・Casing, 3... Rotor, 4... Chamber,
5... Foamed particle supply port, 6... Foamed particle discharge port, 7
...Decompression line suction port, 8...Decompression line, 9...
- Pressurized gas outlet, 10... Pressurized gas line, 11.
...Fixed type, 12...Movable type, 13, 13'...
Frame, 14, 14'...Backing metal, 16, 16'
... Steam chamber, 17, 17'... Steam pipe, 1 B, 18'... Ventilation pipe, 19, 1
9'...Drain discharge pipe, 20.20'...Steam hole, 21...Mold cavity, 22...Cavity filling port, a...Filling gun body, b...Main Hole, C
... Branch hole, d... Plunger, e... Filling pipe, f... Gap, g... Air cylinder.

Claims (1)

【特許請求の範囲】 1)加圧ガスで昇圧した型のキャビティ内に合成樹脂発
泡粒子を型内圧力よりも高い加圧ガスを用いて圧縮しな
がら供給して充填し、次いでスチーム加熱により発泡粒
子を融着させて型物発泡成形体に成形する方法において
、型のキャビティ充填口入口部の圧力検出装置を設け、
該圧力検出装置の検出圧力が前記のキャビティ内圧力よ
りも所定の圧力だけ高くなったときにキャビティ内への
発泡粒子の供給を停止することを特徴とする合成樹脂発
泡粒子の成形法。 2)圧力検出装置の検出圧力がキャビティ内圧力よりも
0.5〜1kg/cm^2高くなったときに発泡粒子の
供給を停止する特許請求の範囲第1項記載の成形法。 3)発泡粒子のキャビティ内への供給を複数回に分割し
て逐次に行なう特許請求の範囲第1項又は第2項記載の
方法。 4)型のキャビティの充填口に連通する主孔、合成樹脂
発泡粒子の移送導管に連通する分岐孔、前記のキャビテ
ィ充填口と前記の主孔とを連結する二重管構造の充填管
、及び前記のキャビティ充填口を閉鎖できるプランジャ
ーを有し、前記二重管構造の充填管の内管と外管との間
の間隙を前記のキャビティ充填口の入口部に連通せしめ
た充填ガン装置において、前記二重管構造の充填管の内
外両管の間隙に圧力検出装置を取付けたことを特徴とす
る合成樹脂発泡粒子用充填ガン装置。
[Claims] 1) Synthetic resin foam particles are supplied and filled into a mold cavity pressurized with pressurized gas while being compressed using pressurized gas higher than the internal pressure of the mold, and then foamed by steam heating. In a method of forming a molded foamed product by fusing particles, a pressure detection device is provided at the inlet of a cavity filling port of the mold,
A method for molding foamed synthetic resin particles, characterized in that supply of the foamed particles into the cavity is stopped when the pressure detected by the pressure detection device becomes higher than the pressure inside the cavity by a predetermined pressure. 2) The molding method according to claim 1, wherein the supply of expanded particles is stopped when the pressure detected by the pressure detection device becomes 0.5 to 1 kg/cm^2 higher than the cavity internal pressure. 3) The method according to claim 1 or 2, wherein the foamed particles are sequentially supplied into the cavity in multiple steps. 4) a main hole communicating with the filling port of the mold cavity, a branch hole communicating with the synthetic resin foam particle transfer conduit, a filling pipe with a double pipe structure connecting the cavity filling port and the main hole, and In the filling gun device, the filling gun device has a plunger capable of closing the cavity filling port, and communicates the gap between the inner tube and the outer tube of the filling tube with the double tube structure with the inlet portion of the cavity filling port. A filling gun device for synthetic resin foam particles, characterized in that a pressure detection device is installed in the gap between the inner and outer filling tubes of the filling tube having the double-tube structure.
JP61103878A 1986-04-02 1986-05-08 Molding of synthetic resin expandable particle and filling gun device or the same particle Granted JPS62261424A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61103878A JPS62261424A (en) 1986-05-08 1986-05-08 Molding of synthetic resin expandable particle and filling gun device or the same particle
US07/033,351 US4818451A (en) 1986-04-02 1987-04-02 Method of preparing a foamed molded article and blow-filling gun apparatus for use therein
DE19873711028 DE3711028A1 (en) 1986-04-02 1987-04-02 METHOD AND DEVICE FOR PRODUCING FOAMED MOLDED BODIES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103878A JPS62261424A (en) 1986-05-08 1986-05-08 Molding of synthetic resin expandable particle and filling gun device or the same particle

Publications (2)

Publication Number Publication Date
JPS62261424A true JPS62261424A (en) 1987-11-13
JPH0356906B2 JPH0356906B2 (en) 1991-08-29

Family

ID=14365690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103878A Granted JPS62261424A (en) 1986-04-02 1986-05-08 Molding of synthetic resin expandable particle and filling gun device or the same particle

Country Status (1)

Country Link
JP (1) JPS62261424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198938A (en) * 2000-01-21 2001-07-24 Daisen Kogyo:Kk Method for compression filling of foamable resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198938A (en) * 2000-01-21 2001-07-24 Daisen Kogyo:Kk Method for compression filling of foamable resin
JP4502439B2 (en) * 2000-01-21 2010-07-14 株式会社ダイセン工業 Compression filling method of foamable resin

Also Published As

Publication number Publication date
JPH0356906B2 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
US4818451A (en) Method of preparing a foamed molded article and blow-filling gun apparatus for use therein
JPH0446217B2 (en)
AU2004267408B2 (en) Process for processing expandable polymer particles and foam article thereof
US3953558A (en) Method of moulding foamed synthetic resin pellets of polyolefine
JPH0622919B2 (en) In-mold molding method for expanded polypropylene resin particles
US4830798A (en) Process for production of foamed articles in mold of polypropylene resins
US4698191A (en) Methods of producing molded products from foamed polypropylene particles
JPH0313057B2 (en)
JPS62261424A (en) Molding of synthetic resin expandable particle and filling gun device or the same particle
JP2886257B2 (en) In-mold molding method of expanded thermoplastic resin particles
JPS5912455B2 (en) Method and apparatus for producing polyolefin synthetic resin foam moldings
JPH08156000A (en) Manufacture of foaming mold with air gap
JPS62198444A (en) Method of in-mold molding thermoplastic resin expandable particle
JPS63178029A (en) Method for in-mold molding of thermoplastic resin foaming particle
JPS62212131A (en) In-mold molding of thermoplastic resin expandable particle
JPH0356905B2 (en)
JP2000044717A (en) Pre-expanded polypropylene resin particle, and production of in-mold foamed molding therefrom
JPS634940A (en) Method for molding olefinic resin foamed particles in mold
JP5470127B2 (en) Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus
JP2637201B2 (en) Processing method for expanded polypropylene resin particles
JPS6230093B2 (en)
JPH02137912A (en) Method of filling thermoplastic resin foamed particle into mold
JP2790791B2 (en) Method for producing foamed molded article in polypropylene resin mold
JP2637201C (en)
JPH0374172B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees