JPS62261300A - Compound piezoelectric material for ultrasonic probe - Google Patents

Compound piezoelectric material for ultrasonic probe

Info

Publication number
JPS62261300A
JPS62261300A JP61105647A JP10564786A JPS62261300A JP S62261300 A JPS62261300 A JP S62261300A JP 61105647 A JP61105647 A JP 61105647A JP 10564786 A JP10564786 A JP 10564786A JP S62261300 A JPS62261300 A JP S62261300A
Authority
JP
Japan
Prior art keywords
piezoelectric
pillar
piezoelectric material
shaped piezoelectric
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61105647A
Other languages
Japanese (ja)
Other versions
JPH07118837B2 (en
Inventor
Tadashi Kojima
正 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP61105647A priority Critical patent/JPH07118837B2/en
Publication of JPS62261300A publication Critical patent/JPS62261300A/en
Publication of JPH07118837B2 publication Critical patent/JPH07118837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To suppress an unnecessary vibration to thickness, height and vibration by making the shape of a pillar-shaped piezoelectric piece into the parallel plane to which only both main surfaces in the thickness direction face, forming it to the polygonal shape which is not orthogonal to an adjoining sude surface, filling up a linking material between respective pillar-shaped piezoelectric pieces and making it into a compound piezoelectric plate. CONSTITUTION:A compound piezoelectric material 1 arranges plural pillar- shaped piezoelectric bodies 2 composed of a PZT. The plane shape of the pillar- shaped piezoelectric bodies 2 is made into an equilateral triangle. A linking material 3 composed of an organic material at the clearance between respective pillar-shaped piezoelectric bodies 2. Actually, an electrode 4 is formed at both main surfaces of the compound piezoelectric material 1, a lead wire not shown in the figure is derived and a driving pulse is impressed. Since the distance sides (b) and (c) to for example the side (a) of a main surface comes to be successively smaller with a vertical angle point A as maximum, a resonance phenomenon is not shown in a special frequency in a transverse (length) direction. For such a reason, for the unnecessary ultrasonic wave in the horizontal direction, an energy level in the height direction is lowered.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、多数の圧電体を結合材にて連結した超音波探
触子用の複合圧電材を利用分野とし、特に、厚み方向以
外の振動を抑制した複合圧電材に関する。
Detailed Description of the Invention (Field of Application of the Invention) The field of the present invention is a composite piezoelectric material for an ultrasonic probe in which a large number of piezoelectric bodies are connected by a bonding material. This invention relates to a composite piezoelectric material that suppresses .

(発明の背景) 例えば医用等の超音波診断装置に利用されろ超音波探触
子は、超音波の送受波源として、通常、圧電材を用いて
いる。この圧電材には、例えばジルコン酸チタン酸鉛(
以下、PZTとする)、圧電セラミックス及びニオブ酸
リチウム等の無機材料からなる圧電材と、最近開発され
た有機材料からなる高分子圧電材とがある。無機圧電材
は、電気m械結合係数が比較的高く、電気−音響変換効
率に潰れる。しかし、音響インピーダンスが極めて高い
ため、この値が小さな水中や人体に対する超音波の放射
効率が悪い。一方、高分子圧電材は、可撓性を有して音
響インピーダンスが低いので、超音波の放射効率に優れ
る。しかし、電気機械結合係数が前記PZT等に比べる
とかなり低いため、電気−音響変換効率の点で劣る。こ
のため、無機圧電材と高分子圧電材との両者の特長を兼
ね併せた、即ち、電気機械結合係数が高くて音響インピ
ーダンスが低く、シかも、可撓性のある圧電材の開発が
行われている。例えば、この−例として、無機圧電材の
中でも資源が豊富で、電気機械結合係数が最も高いPZ
Tを結合材にて連結した複合圧電材がある。(参考公報
:公開特許公報、昭60−85700号「超音波探触子
とその製造方法等」) (従来技術) 第3図、第4図は、この種の複合圧電材を説明する図で
ある。なお、図(a)は平面図、図(b)は柱状圧電体
の図である。
(Background of the Invention) Ultrasonic probes used in, for example, medical ultrasonic diagnostic devices usually use a piezoelectric material as a source for transmitting and receiving ultrasonic waves. This piezoelectric material includes, for example, lead zirconate titanate (
There are piezoelectric materials made of inorganic materials such as PZT (hereinafter referred to as PZT), piezoelectric ceramics, and lithium niobate, and polymer piezoelectric materials made of recently developed organic materials. Inorganic piezoelectric materials have a relatively high electro-mechanical coupling coefficient and have a high electro-acoustic conversion efficiency. However, since the acoustic impedance is extremely high, the radiation efficiency of ultrasonic waves to water or the human body, where this value is small, is poor. On the other hand, a polymeric piezoelectric material has flexibility and low acoustic impedance, and therefore has excellent ultrasonic radiation efficiency. However, since the electromechanical coupling coefficient is considerably lower than that of PZT and the like, it is inferior in terms of electro-acoustic conversion efficiency. For this reason, efforts have been made to develop piezoelectric materials that combine the features of both inorganic piezoelectric materials and polymeric piezoelectric materials, that is, have a high electromechanical coupling coefficient, low acoustic impedance, and are flexible. ing. For example, PZ, which is rich in resources and has the highest electromechanical coupling coefficient among inorganic piezoelectric materials,
There is a composite piezoelectric material in which Ts are connected with a binding material. (Reference publication: Japanese Patent Publication No. 1985-85700 "Ultrasonic probe and its manufacturing method, etc.") (Prior art) Figures 3 and 4 are diagrams explaining this type of composite piezoelectric material. be. Note that Figure (a) is a plan view, and Figure (b) is a diagram of a columnar piezoelectric body.

この複合圧電材10は、平面形状を矩形(第3図)ある
いは円形(第4図)としたPZTからなる小さな柱状圧
電体11を複数個並べ、各柱状圧電体11間の間隙にポ
リマー、樹脂、ゴム、シリコン等の有機材料からなる結
合材12を埋めて各々の柱状圧電体を結合し、全体で一
枚の圧電板を形成している。なお、柱状圧電体11を矩
形とした場合には、例えば最初に所望の一枚の大きな図
示しない圧電板を用意し、その圧電板を適当な大きさの
四角柱状に細かく切断した後、切断溝に結合材12を充
填して形成すればよいので、この形状を円形としたもの
より実際的である。
This composite piezoelectric material 10 consists of a plurality of small columnar piezoelectric bodies 11 made of PZT with a rectangular (FIG. 3) or circular (FIG. 4) planar shape arranged in a row, and a polymer or resin in the gap between each columnar piezoelectric body 11. A bonding material 12 made of an organic material such as rubber or silicone is filled in to bond the columnar piezoelectric bodies together, forming one piezoelectric plate as a whole. Note that when the columnar piezoelectric body 11 is made into a rectangle, for example, first prepare a desired large piezoelectric plate (not shown), cut the piezoelectric plate finely into a rectangular column shape of an appropriate size, and then cut the piezoelectric plate into a rectangular column shape. This shape is more practical than a circular shape because it can be formed by filling the bonding material 12 into the shape.

このように形成された複合圧電材10の音響インピーダ
ンスは、一般に無機圧電材料自身の音響インピーンスに
比べてかなり低くできる。但し、単位体積当たり圧電材
料と結合材との比率によって異なる。そして、電気機械
結合係数も圧電材料自身の値よりも極端に小さくならな
い値に維持でき、これらの値を圧電材料と結合材との比
率により制御できろとされている。
The acoustic impedance of the composite piezoelectric material 10 formed in this manner can generally be considerably lower than the acoustic impedance of the inorganic piezoelectric material itself. However, it differs depending on the ratio of piezoelectric material and bonding material per unit volume. The electromechanical coupling coefficient can also be maintained at a value that is not extremely smaller than the value of the piezoelectric material itself, and these values can be controlled by the ratio of the piezoelectric material and the bonding material.

(従来技術の欠点) ところで、複合圧電板を形成する個々の圧電片を平面形
状が矩形の四角柱としたとき、この四角柱圧電体には、
第5図に示すように、高さ61幅w1長さ1方向の寸法
で決定される厚み振動を内在する。これら各方向の厚み
振動の共振周波数は、大略すると、いずれも、超音波の
音速Vを各方向における2倍の厚みLで除算したv/2
tとなる。そして、各寸法り、w、lがそれぞれ近接し
た・h = w = 1の状態になると、高さ方向の主
面にのみ電極を形成して厚み方向に振動を励起しても、
実際には幅及び長さ方向にも同一周波数の超音波が放射
されろ。そして、幅及び長さ方向の超音波は、必要とす
る高さ方向の主振動に対して悪影を与え、例えば検出精
度を低下させる。このため、従来では、例えば高さhに
対して幅W及び長さlとの比h/w及びh/lを0.6
以下にし、高さ方向の厚み振動Ftに対する幅及び長さ
方向の振動の影響が少なくなるようにしていた。
(Disadvantages of the Prior Art) By the way, when each piezoelectric piece forming a composite piezoelectric plate is a square prism with a rectangular planar shape, this square prism piezoelectric body has the following:
As shown in FIG. 5, there is inherent thickness vibration determined by the dimensions of height 61 width w1 length in one direction. Roughly speaking, the resonant frequency of the thickness vibration in each direction is v/2, which is obtained by dividing the sound speed V of the ultrasonic wave by twice the thickness L in each direction.
It becomes t. Then, when each dimension is in a state where w and l are close to each other and h = w = 1, even if electrodes are formed only on the main surface in the height direction and vibration is excited in the thickness direction,
In reality, ultrasonic waves of the same frequency are emitted in both the width and length directions. The ultrasonic waves in the width and length directions have a negative impact on the required main vibration in the height direction, for example, reducing detection accuracy. For this reason, in the past, for example, the ratios h/w and h/l of width W and length l to height h were set to 0.6.
The influence of vibrations in the width and length directions on the thickness vibration Ft in the height direction was made as follows.

しかし、近年では、高周波数の超音波を使用し解像度や
情報密度を高める傾向にある。従って、圧電体の高さ寸
法は小さくなるため、前述した辺比h/w及びh71は
1に近接し、前述したように厚み高さ振動に対して幅及
び長さ方向の振動が悪影響を及ぼす問題があった。
However, in recent years, there has been a trend toward using high-frequency ultrasound to increase resolution and information density. Therefore, since the height dimension of the piezoelectric body becomes smaller, the above-mentioned side ratio h/w and h71 approach 1, and as mentioned above, the width and length direction vibrations have a negative effect on the thickness height vibration. There was a problem.

(発明の目的) 本発明は、高さ方向の厚み振動に対し、特に水平方向の
不要振動を抑制した複合圧電板を提供することを目的と
する。
(Objective of the Invention) An object of the present invention is to provide a composite piezoelectric plate that suppresses unnecessary vibration in the horizontal direction, especially in relation to the thickness vibration in the height direction.

(発明の解決手段) 本発明は、柱状圧電片の形状を厚み方向の両主面のみが
対向する平行平面とし、隣合う側面を直交しない多角形
状に形成し、各柱状圧電片の間に結合材を充填して複合
圧電板を形成したことを解決手段とする。
(Means for Solving the Invention) The present invention has the shape of the columnar piezoelectric pieces as parallel planes in which only both main surfaces in the thickness direction face each other, the adjacent side surfaces are formed in a polygonal shape that is not orthogonal, and the piezoelectric pieces are bonded between each columnar piezoelectric piece. The solution is to form a composite piezoelectric plate by filling the piezoelectric material with a material.

(発明の作用) 複合圧電板を形成する複数の柱状圧電片を、厚み方向の
みが対向する平行平面とし、隣合う側面を直交しない多
角形状としたので、厚み方向以外の側面から放射される
超音波の周波数が分散し、高さ方向に対する超音波のエ
ネルギーレベルを低下せせる作用がある。以下、本発明
の詳細な説明する。
(Function of the invention) Since the plurality of columnar piezoelectric pieces forming the composite piezoelectric plate are parallel planes facing each other only in the thickness direction, and the adjacent side surfaces are polygonal shapes that do not intersect at right angles, the ultrasonic radiation emitted from the sides other than the thickness direction is This has the effect of dispersing the frequency of the sound waves and lowering the energy level of the ultrasonic waves in the height direction. The present invention will be explained in detail below.

(実施例) 第1図は本発明の複合圧電材を説明する図である。なお
、図(a)は複合圧電材の平面図、同図(b)柱状圧電
体の図、同図(c)は同図(a)に電極を付したx−x
 ’断面図である。
(Example) FIG. 1 is a diagram illustrating a composite piezoelectric material of the present invention. Note that Figure (a) is a plan view of the composite piezoelectric material, Figure (b) is a diagram of a columnar piezoelectric material, and Figure (c) is an x-x diagram of Figure (a) with electrodes attached.
'This is a cross-sectional view.

即ち、この複合圧電材1は、PZTからなる柱状圧電体
2を複数個並べる。柱状圧電体2の平面形状を正三角形
としている。例えば、単一圧電板を保持台上にニカワ等
の接着剤により固着し、溝を設けて所定面積の正三角形
に分割切断される。
That is, in this composite piezoelectric material 1, a plurality of columnar piezoelectric bodies 2 made of PZT are arranged. The planar shape of the columnar piezoelectric body 2 is an equilateral triangle. For example, a single piezoelectric plate is fixed on a holding table with an adhesive such as glue, grooves are provided, and the plate is cut into equilateral triangles having a predetermined area.

そして、前述同様に、各柱状圧電体2間の間隙に有機材
料からなる結合材3を充填している。そして、実際には
、複合圧電材1の両生面に電極4を形成し、図示しない
リード線を導出して駆動パルスが印加される。
Then, as described above, the gap between each columnar piezoelectric body 2 is filled with a binding material 3 made of an organic material. In reality, electrodes 4 are formed on the bidirectional surfaces of the composite piezoelectric material 1, lead wires (not shown) are led out, and driving pulses are applied.

従って、この複合圧電材1は高さhに基づく周波数で、
超音波を板面に対し垂直方向に送出する。そして、各柱
状圧電体2はその平面形状が正三角形なので、水平方向
に特定の周波数で超音波が送出されない。即ち、主面の
例えば辺aに対する辺す、cとの間の距離が頂角点Aを
最大として順次小ざくなるので、幅(長さ)方向に特定
の周波数において共振現象を呈さない。このため、水平
方向の不要超音波は、そのエネルギーが各周波数領域に
分散するので、高さ方向に対するエネルギーシ・ベルが
低下する。従って、各柱状圧電体2の高さhを小さくし
て各辺a、b、cと近接しても、不要超音波の影響を防
止できる。
Therefore, this composite piezoelectric material 1 has a frequency based on the height h,
Ultrasonic waves are sent in a direction perpendicular to the plate surface. Since each columnar piezoelectric body 2 has an equilateral triangular planar shape, ultrasonic waves are not transmitted at a specific frequency in the horizontal direction. That is, since the distance between, for example, the side A of the main surface and the sides A and C gradually decreases from the maximum at the vertex point A, a resonance phenomenon does not occur at a specific frequency in the width (length) direction. For this reason, the energy of horizontal unnecessary ultrasonic waves is dispersed in each frequency range, so that the energy Sibels in the height direction decreases. Therefore, even if the height h of each columnar piezoelectric body 2 is reduced to be close to each side a, b, and c, the influence of unnecessary ultrasonic waves can be prevented.

(他の実施例) 第2図は、本発明の他の実施例を示す図で、同図(a)
は平面図、同図(b)は柱状圧電体の図である。
(Other Embodiments) FIG. 2 is a diagram showing another embodiment of the present invention, and FIG.
is a plan view, and FIG. 3(b) is a diagram of a columnar piezoelectric body.

即ち、この実施例では、複合圧電材5を構成する各柱状
圧電体6の形状を一定にすることなく、三各形6a、四
角形6b、五角形6c、六角形等の多角形にしてランダ
ムにしている。即ち、いずれの多角形でも、その平面形
状を隣合う辺が直交しないようにしている。そして、前
述同様に、各柱状圧電体6の間に結合材7を充填し、図
示しない電極を形成して複合圧電材5を形成している。
That is, in this embodiment, the shape of each columnar piezoelectric body 6 constituting the composite piezoelectric material 5 is not fixed, but is randomly formed into polygons such as three shapes 6a, a square 6b, a pentagon 6c, and a hexagon. There is. That is, the planar shape of any polygon is such that adjacent sides are not perpendicular to each other. Then, in the same manner as described above, a bonding material 7 is filled between each columnar piezoelectric body 6, and electrodes (not shown) are formed to form a composite piezoelectric material 5.

従って、この複合圧電材5でも前述同様に、各柱状圧電
体6から高さ方向に所定の周波数で超音波金送出し、水
平方向には周波数的に分散されるので、超音波の高さ方
向のエネルギーレベルを高めることができる。そして、
この実施例では、各柱状圧電体6の平皿形状をランダム
にして構成しているので、周波数の分散度を更に高める
Therefore, in this composite piezoelectric material 5, as described above, ultrasonic waves are transmitted from each columnar piezoelectric body 6 at a predetermined frequency in the height direction, and are dispersed in frequency in the horizontal direction, so that the ultrasonic waves are transmitted in the height direction. can increase your energy level. and,
In this embodiment, since the flat plate shape of each columnar piezoelectric body 6 is randomly configured, the degree of frequency dispersion is further increased.

(発明の効果) 本発明は、柱状圧電片の形状を厚み方向の両生面のみが
対向する平行平面とし、隣合う側面を直交しない多角形
状に形成し、各柱状圧電片の間に結合材を充填して複合
圧電板としたので、厚み高さ振動に対し、不要振動を抑
制した複合圧電板を提供できろ、。
(Effects of the Invention) The present invention has the shape of the columnar piezoelectric pieces as parallel planes in which only the bidirectional surfaces in the thickness direction face each other, the adjacent side surfaces are formed in a polygonal shape that is not perpendicular to each other, and a bonding material is placed between each columnar piezoelectric piece. By filling the composite piezoelectric plate, we hope to be able to provide a composite piezoelectric plate that suppresses unnecessary vibrations due to thickness and height vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複合圧電板を説明する図で、同図(a
)は複合圧電材の平面図、同図(b)は柱状圧電体の図
、同図(C)は同図(n)のx −X′断面図である。 第2図は本発明の他の実施例を説明する複合圧電板の図
で、同図(a)は複合圧電材の平面図、同図(b)は柱
状圧電体の図である。 第3図及び第4図(a)(b)は従来の複合圧電板を説
明する図で、図(a)は複合圧電材の平面図、同図(b
)は柱状圧電体の図である。 1.5 複合圧電材、2.6 柱状圧電体、3.7 結
合材。 第1図
FIG. 1 is a diagram for explaining the composite piezoelectric plate of the present invention.
) is a plan view of the composite piezoelectric material, (b) is a diagram of a columnar piezoelectric body, and (C) is a cross-sectional view taken along line x-X' in (n) of the same figure. FIG. 2 is a diagram of a composite piezoelectric plate illustrating another embodiment of the present invention; FIG. 2(a) is a plan view of the composite piezoelectric material, and FIG. 2(b) is a diagram of a columnar piezoelectric material. Figures 3 and 4 (a) and (b) are diagrams for explaining conventional composite piezoelectric plates, in which figure (a) is a plan view of the composite piezoelectric material, and figure (b)
) is a diagram of a columnar piezoelectric body. 1.5 Composite piezoelectric material, 2.6 Column piezoelectric material, 3.7 Binding material. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)多数の柱状圧電体の間に結合材を充填して形成し
た超音波探触子用複合圧電材において、前記柱状電体の
形状を厚み方向の両主面のみが対向する平行平面であっ
て隣合う側板面が直交しない多角柱状体に形成したこと
を特徴とする超音波探触子用複合圧電材。
(1) In a composite piezoelectric material for an ultrasonic probe formed by filling a binder between a large number of columnar piezoelectric bodies, the shape of the columnar electric bodies is a parallel plane in which only both main surfaces in the thickness direction face each other. A composite piezoelectric material for an ultrasonic probe, characterized in that it is formed into a polygonal columnar body in which adjacent side plate surfaces are not perpendicular to each other.
(2)第1項記載の特許請求の範囲において、前記圧電
体を三角柱状体としたことを特徴とする超音波探触子用
の複合圧電材。
(2) A composite piezoelectric material for an ultrasound probe according to claim 1, characterized in that the piezoelectric body is a triangular prism-shaped body.
JP61105647A 1986-05-07 1986-05-07 Composite piezoelectric material for ultrasonic probe Expired - Fee Related JPH07118837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61105647A JPH07118837B2 (en) 1986-05-07 1986-05-07 Composite piezoelectric material for ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61105647A JPH07118837B2 (en) 1986-05-07 1986-05-07 Composite piezoelectric material for ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS62261300A true JPS62261300A (en) 1987-11-13
JPH07118837B2 JPH07118837B2 (en) 1995-12-18

Family

ID=14413246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61105647A Expired - Fee Related JPH07118837B2 (en) 1986-05-07 1986-05-07 Composite piezoelectric material for ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH07118837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232995A (en) * 2001-02-06 2002-08-16 Matsushita Electric Ind Co Ltd Ultrasonic wave probe and its manufacturing method
US20110273059A1 (en) * 2007-10-29 2011-11-10 Jeremy Brown High frequency piezocomposite and methods for manufacturing same
JP2016507273A (en) * 2012-12-21 2016-03-10 ヴォルカノ コーポレイションVolcano Corporation Focused rotation IVUS transducer using single crystal composite material
JP2021021897A (en) * 2019-07-30 2021-02-18 株式会社ジェイテックコーポレーション Shape variable mirror

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232995A (en) * 2001-02-06 2002-08-16 Matsushita Electric Ind Co Ltd Ultrasonic wave probe and its manufacturing method
US20110273059A1 (en) * 2007-10-29 2011-11-10 Jeremy Brown High frequency piezocomposite and methods for manufacturing same
US8310133B2 (en) * 2007-10-29 2012-11-13 Visualsonics Inc. High frequency piezocomposite with triangular cross-sectional shaped pillars
US8823246B2 (en) 2007-10-29 2014-09-02 Fujifilm Visualsonics, Inc. High frequency piezocomposite transducer pillars
US9997696B2 (en) 2007-10-29 2018-06-12 Fujifilm Sonosite, Inc. Methods of manufacturing high frequency piezocomposite ultrasound transducers
JP2016507273A (en) * 2012-12-21 2016-03-10 ヴォルカノ コーポレイションVolcano Corporation Focused rotation IVUS transducer using single crystal composite material
US11141134B2 (en) 2012-12-21 2021-10-12 Volcano Corporation Focused rotational IVUS transducer using single crystal composite material
US11998389B2 (en) 2012-12-21 2024-06-04 Philips Image Guided Therapy Corporation Focused rotational IVUS transducer using single crystal composite material
JP2021021897A (en) * 2019-07-30 2021-02-18 株式会社ジェイテックコーポレーション Shape variable mirror

Also Published As

Publication number Publication date
JPH07118837B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
JP2651498B2 (en) Double-sided phased array transducer
US6225728B1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
US6104126A (en) Composite transducer with connective backing block
US5706820A (en) Ultrasonic transducer with reduced elevation sidelobes and method for the manufacture thereof
US6868594B2 (en) Method for making a transducer
US8823246B2 (en) High frequency piezocomposite transducer pillars
JPS60100950A (en) Ultrasonic probe
US20030085635A1 (en) Multidimensional ultrasonic transducer arrays
US6984922B1 (en) Composite piezoelectric transducer and method of fabricating the same
JPH09238399A (en) Ultrasonic wave probe and its manufacture
US4348904A (en) Acoustic impedance matching device
JP2009082612A (en) Ultrasonic probe and piezoelectric transducer
JPS5920240B2 (en) Ultrasonic probe and method for manufacturing the ultrasonic probe
EP0763232A1 (en) Piezo-electric ultrasound transducer
JPS62261300A (en) Compound piezoelectric material for ultrasonic probe
JPH03133300A (en) Composite piezoelectric ultrasonic wave probe
JPS6052823B2 (en) Probe for ultrasound diagnostic equipment
JP2000253496A (en) Array type ultrasonic transducer and its manufacture
US6333590B1 (en) Ultrasonic transducer having laminate structure, ultrasonic probe and production method thereof
JPS6031437B2 (en) Annular probe and its manufacturing method
JPS61253999A (en) Ultrasonic oscillator
JP2001045596A (en) Ultrasonic wave vibrator
JP3181949B2 (en) Ultrasonic vibrator and method of manufacturing ultrasonic vibrator
JPS61179700A (en) Ultrasonic wave probe
JPH0462516B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees