JPS62260329A - Surface treating method - Google Patents

Surface treating method

Info

Publication number
JPS62260329A
JPS62260329A JP10201686A JP10201686A JPS62260329A JP S62260329 A JPS62260329 A JP S62260329A JP 10201686 A JP10201686 A JP 10201686A JP 10201686 A JP10201686 A JP 10201686A JP S62260329 A JPS62260329 A JP S62260329A
Authority
JP
Japan
Prior art keywords
scattering
scattered
sample
beams
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10201686A
Other languages
Japanese (ja)
Inventor
Shinichi Taji
新一 田地
Sadayuki Okudaira
奥平 定之
Kiichiro Mukai
向 喜一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10201686A priority Critical patent/JPS62260329A/en
Publication of JPS62260329A publication Critical patent/JPS62260329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the component atoms of a solid for scattering from mixing in scattered particle beams, by varying the intensity of ion beams falling on the scattering solid on a time basis when the ion beams emitted from an ion source are made to fall on the scattering solid and scattered thereby so as to obtain the scattered particle beams incident on a sample. CONSTITUTION:In a space surrounded by a vacuum tank wall 9, ion beams 2 are led out of an ion source 1 and made to fall on a scattering body 3. Most of beams 4 of particles scattered on the scattering solid body 3 become those of particles of neutralized the incident ions and fall on a sample 5. A gas is introduced from a gas supply source 8 into a reaction chamber 10 wherein the sample 5 is set, and gas particles act on the sample irradiated with the scattered beams, thus advancing surface treatment. By varying the ion beams 2 incident on the scattering solid body 3 cooled by a cooling device 6, as shown in the figure, atoms constituting the surface of the scattering solid body 3 are not coiled by incident ions to mix in the scattered particle beams 4 even when the temperature of the scattering solid body rises above the temperature of liquefaction of the introduced gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体表面の処理技術に係り、特に、高精度の
エツチングと表面改質と表面の清浄化と表面への薄膜堆
積に好適な半導体と金属と絶縁物の表面処理方法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to solid surface treatment technology, and in particular, to a technology suitable for high-precision etching, surface modification, surface cleaning, and thin film deposition on the surface. Concerning surface treatment methods for semiconductors, metals, and insulators.

〔従来の技術〕[Conventional technology]

従来、半導体装置製造におけるエツチング処理には、プ
ラズマやイオンビームを用いていた。すなわち、処理し
ようとする試料の表面に、プラズマを用いる場合はプラ
ズマからのイオンや電子を、イオンビームを用いる場合
はイオンを、入射させる処理方法が採用されていた。こ
れら荷電粒子が試料表面に入射する現象とそれに伴う半
導体装置製造上の問題点については、ドライ プロセス
シンポジウム プロシーディング(Dry Proce
ssSymposium Proceeding) *
 (1985) t V5+132Pで論じられている
。すなわち、試料表面に荷電粒子を入射させることによ
るエツチング処理においては、試料表面への帯電がおき
、絶縁用薄膜の劣化が起きるという問題点があった。こ
の問題は、エツチング処理の場合だけでなく、荷電粒子
を用いた表面清浄化や表面への不純物注入、さらに表面
改質や薄膜堆積などの処理を行う場合においても共通に
現われていた。
Conventionally, plasma or ion beams have been used for etching processing in the manufacture of semiconductor devices. That is, a processing method has been adopted in which ions and electrons from the plasma are incident on the surface of a sample to be processed, or ions are made to enter the surface of the sample when an ion beam is used. The phenomenon of these charged particles entering the sample surface and the associated problems in semiconductor device manufacturing will be discussed in the Dry Process Symposium Proceedings.
ssSymposium Proceedings) *
(1985) t V5+132P. That is, in the etching process by injecting charged particles onto the sample surface, there is a problem in that the sample surface is charged and the insulating thin film is deteriorated. This problem commonly occurs not only in etching processes, but also in surface cleaning using charged particles, impurity injection into the surface, surface modification, thin film deposition, and other processes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来技術での上記した問題点、すなわち、荷
電粒子を試料表面に入射させると処料表面に帯電がおき
、絶縁用薄膜の劣化など、被処理物表面が破壊を受ける
という問題を解決し、イオン線を試料とは別の固体表面
に入射させて大部分が中性粒子からなる散乱粒子線を得
て、これを被処理試料の表面に入射させることで、試料
表面での帯電を少なくし、帯電による表面破壊などを防
止することのできる表面処理方法を提供することを目的
とするものである。
The present invention solves the above-mentioned problem with the conventional technology, that is, when charged particles are incident on the surface of a sample, the surface of the material to be processed is charged, causing damage to the surface of the material to be processed, such as deterioration of the insulating thin film. By injecting the ion beam into a solid surface separate from the sample to obtain a scattered particle beam consisting mostly of neutral particles, and by injecting this beam into the surface of the sample to be processed, the charge on the sample surface can be reduced. It is an object of the present invention to provide a surface treatment method that can reduce surface damage and prevent surface damage caused by charging.

特に、本発明の目的は、散乱用の固体の構成原子が散乱
粒子線に混入することを防止することにある。
In particular, an object of the present invention is to prevent atoms constituting the scattering solid from being mixed into the scattered particle beam.

〔問題点を薄決するための手段〕[Means for resolving issues]

上記目的は、イオン源より発したイオン!(イオンビー
ム)を散乱固体に入射して、散乱させ試料に入射する散
乱粒子線を得る際に、散乱固体に入射させるイオンビー
ム強度を時間的に変化させることにより達成される。
The above purpose is to use ions emitted from an ion source! This is achieved by temporally changing the intensity of the ion beam incident on the scattering solid when the ion beam is incident on the scattering solid to obtain a scattered particle beam that is scattered and incident on the sample.

〔作用〕[Effect]

上記散乱固体は、冷却し、表面に導入ガスを吸着させて
いる。
The scattering solid is cooled and the introduced gas is adsorbed on its surface.

散乱固体の冷却温度が導入ガスの液化温度より低い場合
には、吸着層下の散乱固体からその構成原子が、散乱粒
子線に混入することはない。一方、導入ガスの液化温度
以上においては入射イオンの散乱固体への入射数よりも
、散乱固体表面に入射して散乱固体に吸着するガスの単
位時間あたりの散乱固体への入射数を多くし吸着層が枯
渇することを防止する必要があった。しかし、この条件
下においても、若干イオンビームによってリコイルされ
た散乱固体の構成原子の混入があった6そこで、散乱固
体に入射するイオンビームの強度を照射時間の中で、時
間的に変化させることによって、散乱固体表面からガス
吸着層が部分的にでも枯渇する状態となることを防止す
ることができ、ガス吸着層の下の散乱固体を構成する原
子が。
When the cooling temperature of the scattering solid is lower than the liquefaction temperature of the introduced gas, constituent atoms from the scattering solid under the adsorption layer will not mix into the scattered particle beam. On the other hand, at temperatures above the liquefaction temperature of the introduced gas, the number of gases that are incident on the scattering solid surface and adsorbed on the scattering solid per unit time is greater than the number of incident ions that are incident on the scattering solid. It was necessary to prevent the layer from being depleted. However, even under these conditions, some constituent atoms of the scattering solid that were recoiled by the ion beam were mixed in6.Therefore, the intensity of the ion beam incident on the scattering solid was changed over time during the irradiation time. This can prevent the gas adsorption layer from being even partially depleted from the surface of the scattering solid, and the atoms constituting the scattering solid below the gas adsorption layer.

散乱粒子線に混入することが防止できる。Contamination with the scattered particle beam can be prevented.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図および第2図により説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、イオンビームをt、x秒散乱固体に0 、4
 (m A / cxl )の電流密度で照射し、tZ
秒の間、0 、1  (m A / ryl )の電流
密度で照射し、11とtZを7回くりかえし、全処理時
間to秒で行った処理について散乱体への入射イオンの
電流密度の時間変化を示したものである。第2図は、上
記実施例を行うために用いた装置である。
Figure 1 shows that the ion beam is 0,4
(mA/cxl) and tZ
Temporal changes in the current density of incident ions on the scatterer for the treatment performed at a current density of 0, 1 (mA/ryl) for a period of seconds, and 11 and tZ were repeated 7 times, with a total processing time of to seconds. This is what is shown. FIG. 2 shows the apparatus used to carry out the above embodiment.

真空槽壁9に囲まれた空間において、イオン源1からイ
オンビーtz 2を引き出し、散乱体3に入射させる。
In a space surrounded by a vacuum chamber wall 9, ion beads tz 2 are extracted from an ion source 1 and made to enter a scatterer 3.

散乱固体3で散乱した散乱粒子、[4は大部分入射イオ
ンが中性化した粒子からなり、若干発散しながら試料5
に入射する。試料5の置かれている反応室10に、ガス
供給源8からガス導入し、散乱ビー11が照射された試
料にガス粒子が作用し、表面処理がすすむ。散乱体3は
、冷却装置6により冷却することができ、ガス供給源7
からの導入ガスが冷却された散乱体表面に吸着する。
The scattering particles scattered by the scattering solid 3, [4, are mostly composed of particles in which the incident ions have been neutralized, and the particles scattered by the sample 5 with some divergence.
incident on . Gas is introduced from the gas supply source 8 into the reaction chamber 10 in which the sample 5 is placed, and gas particles act on the sample irradiated with the scattering bees 11, thereby proceeding with surface treatment. The scatterer 3 can be cooled by a cooling device 6 and a gas supply source 7
The introduced gas is adsorbed on the cooled scatterer surface.

冷却された散乱固体3に入射するイオンビーム、3を第
1図に示すように変化させると散乱固体温度が導入ガス
の液化温度以上になる場合においても散乱固体表面構成
原子3が入射イオンによりコイルされ散乱粒子線、4に
混入することがないことがわかった。すなわち、入射イ
オンビーム強度を変化させることにより、試料表面に入
射する散乱粒子線に1孜乱固体構成原子を混入させない
効果があったsttとtZは、入射イオン電流密度と散
乱固体3の基板材料と導入ガスと散乱固体温度の組み合
せによって変化する。処理速度向上のために効果的であ
る。一方、tl、/lzの値を小さくした場合、散乱固
体温度が比較的高くなっても、散乱固体表面にガス吸着
層が形成保持されるという利点がある。
If the ion beam 3 incident on the cooled scattering solid 3 is changed as shown in FIG. It was found that there was no contamination with the scattered particle beam, 4. In other words, by changing the intensity of the incident ion beam, stt and tZ, which had the effect of not mixing one random solid constituent atom into the scattered particle beam incident on the sample surface, depend on the incident ion current density and the substrate material of the scattering solid 3. and varies depending on the combination of introduced gas and scattering solid temperature. Effective for improving processing speed. On the other hand, when the values of tl and /lz are made small, there is an advantage that a gas adsorption layer is formed and maintained on the surface of the scattering solid even if the temperature of the scattering solid becomes relatively high.

又、イオンビーム強度を制御可能な最短の時間の2倍も
tL+t2とした場合でも処理が可能であり、散乱固体
構成原子の散乱粒子線への混入防止に効果があった。
Furthermore, processing was possible even when the ion beam intensity was set to tL+t2 twice the shortest controllable time, and it was effective in preventing the atoms constituting the scattered solid from being mixed into the scattered particle beam.

イオンビー11強度を変化させる手段としては、エネル
ギーを変える方法とイオン源1に導入するガス圧を変化
させる方法、さらにイオン源内のプラズマ維持電力を変
化させる方法がある。
As means for changing the intensity of the ion bee 11, there are a method of changing the energy, a method of changing the gas pressure introduced into the ion source 1, and a method of changing the plasma maintenance power in the ion source.

イオンビームをパルス化した場合、上記実施例の効果が
より大きくなる。この場合、さらに、処理の終了の制御
がより容易になる。
When the ion beam is pulsed, the effect of the above embodiment becomes even greater. In this case, it is further easier to control the end of the process.

イオン源のプラズマ維持電力とイオン引き出し電圧を正
弦波により制御することもできる。これは、パルスイオ
ンビームと矩形波イオンビームより1M切なイオンビー
ムをより発生させやすい利点がある。
It is also possible to control the plasma sustaining power and ion extraction voltage of the ion source using a sine wave. This has the advantage that it is easier to generate an ion beam below 1M than a pulsed ion beam or a rectangular wave ion beam.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、中性粒子からなる散乱粒子線によって
試料の表面処理できるので、試料表面でのG′電が少な
く、帯電による表面破壊などを防止することができ、散
乱固体の構成原子が散乱粒子線に混入することを防止で
きるので、高精度な表面処理が可能となる。
According to the present invention, since the surface of a sample can be treated with a scattering particle beam consisting of neutral particles, G' charges on the sample surface are small, surface destruction due to charging can be prevented, and constituent atoms of the scattering solid are Since mixing with the scattered particle beam can be prevented, highly accurate surface treatment is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例のイオンビーム電流密度の
時間変化を示す図、第2図は、本発明の一実施例で使用
した装置の概略図である。 1・・・イオン源、2・・−イオンビーム、3・:・散
乱固体、4・・・散乱粒子線、5・・・試料、6・・・
冷却装置、7・・・ガス供給源、8・・・ガス供給源、
9・・・真空槽壁、10・・・反応室。 第 1 図 7飄 茶 2 図
FIG. 1 is a diagram showing a temporal change in ion beam current density in an embodiment of the present invention, and FIG. 2 is a schematic diagram of an apparatus used in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Ion source, 2...-ion beam, 3...Scattered solid, 4...Scattered particle beam, 5...Sample, 6...
Cooling device, 7... gas supply source, 8... gas supply source,
9... Vacuum chamber wall, 10... Reaction chamber. Figure 1 Figure 7 Takucha Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、イオン線を散乱固体へ照射して散乱させ、得られた
散乱粒子線を処理すべき試料へ入射させ、該散乱固体に
入射する該イオン線の強度を時間的に変化させることを
特徴とする表面処理方法。
1. A scattering solid is irradiated with an ion beam to cause scattering, the resulting scattered particle beam is incident on a sample to be processed, and the intensity of the ion beam incident on the scattering solid is varied over time. surface treatment method.
JP10201686A 1986-05-06 1986-05-06 Surface treating method Pending JPS62260329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10201686A JPS62260329A (en) 1986-05-06 1986-05-06 Surface treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10201686A JPS62260329A (en) 1986-05-06 1986-05-06 Surface treating method

Publications (1)

Publication Number Publication Date
JPS62260329A true JPS62260329A (en) 1987-11-12

Family

ID=14315957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10201686A Pending JPS62260329A (en) 1986-05-06 1986-05-06 Surface treating method

Country Status (1)

Country Link
JP (1) JPS62260329A (en)

Similar Documents

Publication Publication Date Title
KR960009822A (en) Antistatic method and antistatic ion beam device
DE69312544T2 (en) Plasma generating method and plasma generating device using this method
EP0516480A2 (en) Method for surface treatment with extra-low-speed ion beam
KR910016054A (en) Surface Treatment Apparatus and Method for Microelectronic Devices
KR102097308B1 (en) Substrate processing system, ion implantation system, and beamline ion implantation system
KR970005035B1 (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
KR19990088280A (en) Sputtering apparatus
JPH04253328A (en) Surface treatment device
JP3932181B2 (en) Substrate surface treatment method and apparatus
TWI659493B (en) Substrate processing apparatus, substrate processing system and substrate processing method
JPS62260329A (en) Surface treating method
EA009514B1 (en) Method of ion treatment of dielectric surface and device for implementing thereof
JPS62133721A (en) Substrate holder
JPH01207930A (en) Surface modification
JPH0335825B2 (en)
KR910003765A (en) Surface treatment method and device
JPH0573051B2 (en)
JP2001508502A (en) Rotary apparatus for plasma immersion assisted processing of substrates
Beklemyshev et al. Photodesorption of metal ions in a semiconductor-water system
JPS6350854B2 (en)
JPH05279844A (en) Laser abrasion device
WO2014164441A1 (en) Method of improving ion beam quality in an implant system
JPS63110733A (en) Surface treatment device
JPS62259444A (en) Surface treating method
JPS5885538A (en) Manufacture of semiconductor device