JPS6225969B2 - - Google Patents

Info

Publication number
JPS6225969B2
JPS6225969B2 JP2375881A JP2375881A JPS6225969B2 JP S6225969 B2 JPS6225969 B2 JP S6225969B2 JP 2375881 A JP2375881 A JP 2375881A JP 2375881 A JP2375881 A JP 2375881A JP S6225969 B2 JPS6225969 B2 JP S6225969B2
Authority
JP
Japan
Prior art keywords
magnetic
scale
detection
hole
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2375881A
Other languages
Japanese (ja)
Other versions
JPS57137812A (en
Inventor
Akira Himuro
Takamoto Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Magnescale Inc
Original Assignee
Sony Magnescale Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Magnescale Inc filed Critical Sony Magnescale Inc
Priority to JP2375881A priority Critical patent/JPS57137812A/en
Publication of JPS57137812A publication Critical patent/JPS57137812A/en
Publication of JPS6225969B2 publication Critical patent/JPS6225969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明は同軸型磁気スケールに磁気記録された
磁気格子による基準目盛を読取る磁束応答型マル
チギヤツプヘツドに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic flux-responsive multi-gap head for reading a reference scale based on a magnetic grating magnetically recorded on a coaxial magnetic scale.

従来より、磁気格子を利用して測長を行なう場
合は、磁気格子の形成された磁気スケールと検出
ヘツドとの相対速度が一定でなく、静止状態の読
取りも必要であることから、磁気応答型ヘツドを
用いて磁気格子による基準目盛を読取つている。
この場合、上記磁気格子の記録波長が一定である
ので、この記録波長に対して一定の関係をもつた
ギヤツプ間隔で複数のギヤツプを並設するように
した磁束応答型マルチギヤツプヘツドを用いるこ
とによつて、読取り性能を向上することができ
る。
Conventionally, when measuring length using a magnetic grating, the relative speed between the magnetic scale on which the magnetic grating is formed and the detection head is not constant, and reading in a stationary state is also necessary, so a magnetic response type is used. A head is used to read the reference scale made of a magnetic grid.
In this case, since the recording wavelength of the magnetic grating is constant, a magnetic flux responsive multi-gap head is used in which a plurality of gaps are arranged in parallel at gap intervals that have a constant relationship with the recording wavelength. By this, reading performance can be improved.

上記磁束応答型マルチギヤツプヘツドで帯状の
磁気スケールの磁気格子を読取るようにした測尺
装置の原理的な構成例を第1図に示してある。す
なわち、第1図において磁束応答型マルチギヤツ
プヘツド10は、パーマロイ等の磁性材料から成
る多数の薄板コア1a,1b,…1o間にベリリウ
ム銅等の非磁性材料から成るスペーサ板2a,2
b,…2nを介在せしめて多数の磁気空隙ga,g
b,…gnを並設して成る磁気ヨーク1の各磁脚部
2,3に検出コイル4を巻装するとともに、上記
各磁脚部2,3間に枠体形状の可飽和磁気コア6
が挿入され、この可飽和磁気コア6に励磁コイル
7を巻装するようにした構成を有する。上記検出
コイル4はフイルタ回路11を介して同期検波回
路12に接続されている。また上記励磁コイル7
は、搬送波発振器13に接続されている。このよ
うな構成の磁束応答型マルチギヤツプヘツド10
は、一定波長の矩形波あるいは正弦波を帯状の磁
性媒体に記録して形成された磁気格子を基準目盛
として備える磁気スケール5に対して相対位移自
在に配設され測尺装置を構成している。
FIG. 1 shows an example of the basic configuration of a length measuring device that uses the magnetic flux responsive multi-gap head to read the magnetic grating of a band-shaped magnetic scale. That is, in FIG. 1, the magnetic flux responsive multi-gap head 10 has a spacer plate made of a non-magnetic material such as beryllium copper between a large number of thin plate cores 1 a , 1 b , . . . 1 o made of a magnetic material such as permalloy. 2 a , 2
A large number of magnetic gaps g a , g with intervening b , ...2 n
A detection coil 4 is wound around each of the magnetic legs 2 and 3 of the magnetic yoke 1 which is made up of magnetic yoke 1 arranged in parallel with each other, and a frame-shaped saturable magnetic core is installed between each of the magnetic legs 2 and 3. 6
is inserted, and an excitation coil 7 is wound around this saturable magnetic core 6. The detection coil 4 is connected to a synchronous detection circuit 12 via a filter circuit 11. In addition, the excitation coil 7
is connected to the carrier wave oscillator 13. Magnetic flux responsive multi-gear head 10 with such a configuration
is arranged so as to be movable relative to a magnetic scale 5, which has a magnetic grating formed by recording a rectangular wave or a sine wave of a constant wavelength on a band-shaped magnetic medium as a reference scale, and constitutes a measuring device. .

上記磁束応答型マルチギヤツプヘツド10は、
搬送波発振器31から励磁コイル6に供給される
5KHz〜10KHz程度の搬送波によつて励磁され、
磁気スケール5から各磁気空隙ga,gb,…gn
に与えられる信号磁界に応じて上記搬送波を磁気
変調することにより該磁気ヘツド10と磁気スケ
ール5との相対位置によつて定まる第2図に示す
ような平衡変調波の検出出力信号を検出コイル4
から出力する。上記検出出力信号は、励磁コイル
7に供給されている搬送波について、磁気スケー
ル5に設けてある磁気格子による信号磁界で平衡
変調した平衡変調波である。上記検出出力信号
は、帯域通過特性を有するフイルタ回路11を介
して所定の周波数成分のみが同期検波回路12に
供給される。この同期検波回路12は、上記搬送
波発生器13からの搬送波周波数を逓倍回路14
で2逓倍した同期信号により、上記検出出力信号
を同期検波して、上記磁気スケール5に設けられ
ている磁気格子の波長に応じた周波数の正弦波検
出出力信号を信号出力端子18から出力する。
The magnetic flux responsive multi-gap head 10 has the following features:
Supplied from the carrier wave oscillator 31 to the excitation coil 6
Excited by a carrier wave of about 5KHz to 10KHz,
From the magnetic scale 5, each magnetic gap g a , g b ,... g n
By magnetically modulating the carrier wave according to the signal magnetic field applied to the magnetic head 10, a detection output signal of a balanced modulated wave as shown in FIG.
Output from. The detection output signal is a balanced modulated wave obtained by balanced modulating the carrier wave supplied to the excitation coil 7 with a signal magnetic field generated by a magnetic grating provided on the magnetic scale 5. Only a predetermined frequency component of the detection output signal is supplied to a synchronous detection circuit 12 via a filter circuit 11 having bandpass characteristics. This synchronous detection circuit 12 converts the carrier wave frequency from the carrier wave generator 13 into a multiplication circuit 14.
The detection output signal is synchronously detected using the synchronization signal multiplied by , and a sine wave detection output signal having a frequency corresponding to the wavelength of the magnetic grating provided on the magnetic scale 5 is output from the signal output terminal 18.

上述の如き磁束応答型マルチギヤツプヘツド1
0を用いた測尺装置では、該磁気ヘツド10の各
磁気空隙ga,gb,…gnが所定間隔で配列され
ていることにより波長選択性が得られるので、磁
気スケールに正弦波でない磁気格子が形成されて
いるときでも、正弦波の検出出力信号を高感度に
得ることができる。
Magnetic flux responsive multi-gear head 1 as described above
In the measuring device using 0, wavelength selectivity is obtained by arranging the magnetic gaps g a , g b , ... g n of the magnetic head 10 at predetermined intervals, so that the magnetic scale has a non-sinusoidal wave. Even when a magnetic grating is formed, a sinusoidal detection output signal can be obtained with high sensitivity.

また、丸棒形状の磁気記録媒体に磁気格子を形
成した同軸型磁気スケールによる基準目盛を読取
る場合には、磁気ヨークに上記同軸型磁気スケー
ルが挿通される貫通孔を設け、この貫通孔の内周
壁部分に並設された磁気空隙を介して上記磁気ス
ケールからの信号磁界の検出を行うようにした構
造の磁束応答型マルチギヤツプヘツドが用いられ
る。
In addition, when reading a reference scale using a coaxial magnetic scale in which a magnetic grating is formed on a round bar-shaped magnetic recording medium, a through hole is provided in the magnetic yoke through which the coaxial magnetic scale is inserted. A magnetic flux-responsive multi-gap head is used, which has a structure in which the signal magnetic field from the magnetic scale is detected through magnetic gaps arranged in parallel on the peripheral wall.

第3図は、同軸型磁気スケール用の磁束応答型
マルチギヤツプヘツド20の原理的な構造を示す
模式図である。すなわち、第3図において、非磁
性スペーサ板と薄板コアとを積層して成る磁気ヨ
ーク21には、同軸型磁気スケール25の挿通さ
れる貫通孔28が形成されているとともに、励磁
コイル27を巻装した枠体形状の可飽和磁気コア
26が磁脚部22,23間に装着され、さらに検
出コイル24が磁脚部23に巻装されている。そ
して、この磁束応答型マルチギヤツプヘツド20
では、励磁コイル27に供給される搬送波発振器
13からの搬送波によつて上記可飽和磁気コア2
6の部分が励磁され、磁気ヨーク21に設けた貫
通孔28の内周壁部分の磁気空隙に与えられる同
軸型磁気スケール25からの信号磁界で上記搬送
波を磁気変調した検出出力信号を上記検出コイル
24から出力する。なお、第3図に示した破線の
矢印は励磁用の磁束の流れを示し、また実線の矢
印は信号磁界による磁束の流れを示している。
FIG. 3 is a schematic diagram showing the basic structure of a magnetic flux responsive multi-gap head 20 for a coaxial magnetic scale. That is, in FIG. 3, a magnetic yoke 21 formed by laminating a non-magnetic spacer plate and a thin plate core has a through hole 28 through which a coaxial magnetic scale 25 is inserted, and an excitation coil 27 is wound around the magnetic yoke 21. A frame-shaped saturable magnetic core 26 is mounted between the magnetic leg parts 22 and 23, and a detection coil 24 is further wound around the magnetic leg part 23. And this magnetic flux responsive multi-gear head 20
In this case, the saturable magnetic core 2 is
6 is excited, and the detection output signal obtained by magnetically modulating the carrier wave with the signal magnetic field from the coaxial magnetic scale 25 applied to the magnetic gap in the inner circumferential wall of the through hole 28 provided in the magnetic yoke 21 is sent to the detection coil 24. Output from. Note that the broken line arrows shown in FIG. 3 indicate the flow of magnetic flux for excitation, and the solid line arrows indicate the flow of magnetic flux due to the signal magnetic field.

ところで、上述の如き構造の同軸型磁気スケー
ル用の磁束応答型マルチギヤツプヘツド20で
は、磁気ヨーク21に設けた貫通孔28の内周壁
部分の磁気空隙に与えられる同軸型磁気スケール
25からの信号磁界による磁束が、上記磁気ヨー
ク21および可飽和磁気コア26による磁気回路
を流れるのに、第3図中に一点鎖線の矢印にて示
すように、上記貫通孔28の内周壁の可飽和磁気
コア26側と反対側とで異なる長さの磁路を流れ
ることになるので、磁路長の短かい上記可飽和磁
気コア26側の内周壁部分の磁気空隙に与えられ
る信号磁界に対する検出感度が高くなつてしま
う。一般に、同軸型磁気スケール25は、その使
用時に上記磁気ヨーク21に設けた貫通孔28に
挿通して、磁束応答型マルチギヤツプヘツド20
に対して相対移動されるのであるが、その取付け
誤差等によつて、軸心を完全に一致させることが
できないので、貫通孔28の内周壁と磁気スケー
ル25の外周面との間隔が局部的に近接あるいは
摺接された状態となる。従つて、上記同軸型磁気
スケール25の基本目盛を磁束応答型マルチギヤ
ツプヘツド20にて読取る場合、その相対位置に
応じて検出感度が変化するという問題点がある。
By the way, in the magnetic flux responsive multi-gap head 20 for a coaxial magnetic scale having the above-described structure, the magnetic flux from the coaxial magnetic scale 25 given to the magnetic gap in the inner circumferential wall portion of the through hole 28 provided in the magnetic yoke 21 is Although the magnetic flux caused by the signal magnetic field flows through the magnetic circuit made up of the magnetic yoke 21 and the saturable magnetic core 26, the saturable magnetic flux of the inner circumferential wall of the through hole 28 flows as indicated by the dashed line arrow in FIG. Since the magnetic path flows through different lengths on the core 26 side and the opposite side, the detection sensitivity to the signal magnetic field applied to the magnetic gap in the inner circumferential wall portion on the saturable magnetic core 26 side, where the magnetic path length is short, is reduced. It gets expensive. In general, when the coaxial magnetic scale 25 is used, it is inserted into the through hole 28 provided in the magnetic yoke 21 to form the magnetic flux responsive multi-gap head 20.
However, due to installation errors, etc., the axes cannot be perfectly aligned, so the distance between the inner circumferential wall of the through hole 28 and the outer circumferential surface of the magnetic scale 25 may vary locally. It will be in a state where it is close to or in sliding contact with. Therefore, when reading the basic scale of the coaxial magnetic scale 25 using the magnetic flux responsive multi-gap head 20, there is a problem in that the detection sensitivity changes depending on the relative position thereof.

また、上述の如き原理的な構造の磁束応答型マ
ルチギヤツプヘツド20は、第4図および第5図
に示すように具体的に組立てられ、従来より使用
されている。すなわち、励磁コイル27を巻装し
た可飽和磁気コア26に検出コイル24に嵌装
し、この可飽和磁気コア26を磁気ヨーク21に
押えバネ29によつて取付け固定することにより
組立てていた。
Further, the magnetic flux responsive multi-geap head 20 having the above-mentioned principle structure has been specifically assembled as shown in FIGS. 4 and 5 and has been used in the past. That is, the detection coil 24 is fitted onto the saturable magnetic core 26 around which the excitation coil 27 is wound, and the saturable magnetic core 26 is attached and fixed to the magnetic yoke 21 by a presser spring 29, thereby assembling.

しかし、上述の如き従来の磁束応答型マルチギ
ヤツプヘツド20では、従来、第5図に示すよう
に枠体形状の可飽和磁気コア26に励磁コイル2
7を巻装していたため、その巻装作業性が悪いば
かりでなく、コイルの巻装量をあまり多くするこ
とができないでいた。
However, in the conventional magnetic flux responsive multi-gear head 20 as described above, as shown in FIG.
7, the winding workability was not only poor, but also the amount of winding of the coil could not be increased very much.

そこで、本発明は、上述の如き従来の同軸型磁
気スケール用の磁束応答型マルチギヤツプヘツド
における問題点すなわち検出感度の不均一性や励
磁コイルの巻装作業性の悪さ等を改善した新規な
構造の磁束応答型マルチギヤツプヘツドを提供す
るものである。
SUMMARY OF THE INVENTION Therefore, the present invention is a novel system that improves the problems of the conventional magnetic flux responsive multi-gap head for coaxial magnetic scales, such as non-uniformity of detection sensitivity and poor winding workability of excitation coils. The present invention provides a magnetic flux responsive multi-gear head with a unique structure.

以下、本発明について、一実施例を示す図面に
従い詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing one embodiment.

第6図は本発明に係る磁束応答型マルチギヤツ
プヘツドの原理的な構造を示す模式図である。
FIG. 6 is a schematic diagram showing the basic structure of the magnetic flux responsive multi-gap head according to the present invention.

すなわち、本発明に係る磁束応答型マルチギヤ
ツプヘツド40は、第6図に示す如く、第1およ
び第2の磁脚片41o,42oの各一側縁中央部分
に形成した各突片43o,44oに同軸型磁気スケ
ール45の挿通される孔46oを設け、各突片4
o,44oの孔46oが連通するように上記第1
および第2の磁脚片41o,42oを各突片43
o,44o部分で積層し、中心位置に上記孔にて形
成される貫通孔46の内周壁部分に複数の磁気空
隙を並設して成る略H形ブロツク形状の磁気ヨー
ク47と、励磁コイル48A,48Bの巻装され
た一対の磁気コア49A,49Bとを備え、上記
第1の磁脚片41oにより形成される磁脚部およ
び第2の磁脚片42oにて形成される磁脚部4
1,42の一端間に一方の磁気コア49Aを架設
し他端間に他方の磁気コア49Bを架設して、上
記励磁コイル48A,48Bに供給される搬送波
による励磁用の磁束の流れる閉磁路を形成し、該
閉磁路の一部に検出コイル50A,50Bを巻装
して成る。
That is, as shown in FIG. 6, the magnetic flux responsive multi-geap head 40 according to the present invention has protrusions formed at the center of each side edge of the first and second magnetic leg pieces 41 o and 42 o . A hole 46 o into which the coaxial magnetic scale 45 is inserted is provided in the pieces 43 o and 44 o , and each protruding piece 4
3 o and 44 o so that the holes 46 o communicate with each other.
and the second magnetic leg pieces 41 o and 42 o to each protruding piece 43
A magnetic yoke 47 having a substantially H-shaped block shape and having a plurality of magnetic gaps arranged in parallel on the inner circumferential wall portion of a through hole 46 formed by the above-mentioned hole in the center position, and an excitation coil A pair of magnetic cores 49A and 49B wound with magnetic cores 48A and 48B are provided, and a magnetic leg portion formed by the first magnetic leg piece 41o and a magnetic leg part formed by the second magnetic leg piece 42o . Legs 4
One magnetic core 49A is installed between one end of 1 and 42, and the other magnetic core 49B is installed between the other ends to create a closed magnetic path through which magnetic flux for excitation by carrier waves supplied to the excitation coils 48A and 48B flows. The detection coils 50A and 50B are wound around a part of the closed magnetic path.

上述の如き磁束応答型マルチギヤツプヘツド4
0では、搬送波発振器51から励磁コイル48
A,48Bに供給される搬送波による励磁用の磁
束が6図中に破線の矢印にて示すように、磁気ヨ
ーク47の各磁脚部41,42と各磁気コア49
A,49Bとで形成される閉磁路を流れ、磁気ヨ
ーク47の中心位置に形成された貫通孔46に挿
通される同軸型磁気スケール45による信号磁界
の磁束が第6図中に実線の矢印にて示すように各
磁気コア49A,49Bを通る二つの磁路に2分
割して流れ、上記閉磁路を形成している一方の磁
脚部42に2分割して巻装された検出コイル50
A,50Bから磁気変調の原理により上記搬送波
を信号磁界で平衡変調した検出出力信号を得るこ
とができる。上記信号磁界による磁束は、磁気ヨ
ーク47の磁脚部41,42を挾んで対向配置さ
れた各磁気コア49A,49Bを通る対称的な磁
路を通じて流れ、しかも、上記信号磁界が各磁路
の共通部分である上記磁気ヨーク47の中心位置
に設けた貫通孔46の内周壁部分の磁気空隙を介
して与えられる。従つて、このような構造の磁束
応答型マルチギヤツプヘツド40では、上記磁気
ヨーク47の貫通孔46に挿通される同軸型磁気
スケール45からの信号磁界を、上記貫通孔46
の内周部分の磁気空隙で均一に検出することがで
きる。
Magnetic flux-responsive multi-gear head 4 as described above
0, the excitation coil 48 from the carrier wave oscillator 51
The magnetic flux for excitation by the carrier waves supplied to A and 48B is applied to each magnetic leg portion 41 and 42 of the magnetic yoke 47 and each magnetic core 49, as shown by the broken line arrow in FIG.
The magnetic flux of the signal magnetic field generated by the coaxial magnetic scale 45 flowing through the closed magnetic path formed by A and 49B and inserted into the through hole 46 formed at the center of the magnetic yoke 47 is indicated by the solid arrow in FIG. As shown, a detection coil 50 is divided into two parts and flows through two magnetic paths passing through each magnetic core 49A, 49B, and is wound in two parts on one of the magnetic legs 42 forming the closed magnetic path.
From A and 50B, a detection output signal can be obtained by balanced modulating the carrier wave with a signal magnetic field according to the principle of magnetic modulation. The magnetic flux due to the signal magnetic field flows through symmetrical magnetic paths passing through the magnetic cores 49A and 49B which are arranged opposite to each other with the magnetic leg portions 41 and 42 of the magnetic yoke 47 in between. It is provided through a magnetic gap in the inner circumferential wall portion of the through hole 46 provided at the center of the magnetic yoke 47, which is a common portion. Therefore, in the magnetic flux responsive multi-gap head 40 having such a structure, the signal magnetic field from the coaxial magnetic scale 45 inserted into the through hole 46 of the magnetic yoke 47 is transmitted through the through hole 46.
It can be detected uniformly by the magnetic gap in the inner circumference of the sensor.

上述の如き原理的な構造を有する磁束応答型マ
ルチギヤツプヘツド40は、例えば第7図ないし
第11図に示すように具体的に構成される。第7
図および第8図は、本発明に係る磁束応答型マル
チギヤツプヘツド40の具体的な実施例の外観斜
視図および分解斜視図である。この実施例は、同
軸型直線磁気スケール45に磁気記録されている
基準目盛を読み取るためのマルチギヤツプ磁気ヘ
ツド40に本発明を適用したものであり、上記磁
気スケール45が貫通される貫通孔46を有する
磁気ヨーク47と、各々励磁コイル48A,48
Bおよび検出コイル50A,50Bが巻装された
各飽和磁気コア49A,49Bとを、押えバネ5
2により取付けた構成を有する。上記磁気ヨーク
47は、略H形ブロツク形状を有し、その磁脚部
41,42間に上記各可飽和磁気コア49A,4
9Bが載置固定されている。
The magnetic flux-responsive multi-gap head 40 having the above-mentioned basic structure is specifically constructed as shown in FIGS. 7 to 11, for example. 7th
8 and 8 are an external perspective view and an exploded perspective view of a specific embodiment of the magnetic flux responsive multi-geap head 40 according to the present invention. In this embodiment, the present invention is applied to a multi-gap magnetic head 40 for reading a reference scale magnetically recorded on a coaxial linear magnetic scale 45, and has a through hole 46 through which the magnetic scale 45 is passed. Magnetic yoke 47 and excitation coils 48A and 48, respectively.
B and the respective saturated magnetic cores 49A, 49B around which the detection coils 50A, 50B are wound,
It has a configuration attached by 2. The magnetic yoke 47 has a substantially H-shaped block shape, and the saturable magnetic cores 49A, 4 are interposed between the magnetic leg portions 41, 42.
9B is placed and fixed.

上記可飽和磁気コア49Aは、例えば第9図に
示すように、パーマロイ等の薄板状強磁性板49
aをセラミツク等の絶縁性補強板49bに貼着し
て成り、励磁コイル48Aを巻装した後に検出コ
イル50Aが嵌装される。
The saturable magnetic core 49A is, for example, as shown in FIG. 9, a thin ferromagnetic plate 49 made of permalloy or the like.
A is attached to an insulating reinforcing plate 49b made of ceramic or the like, and after the excitation coil 48A is wound, the detection coil 50A is fitted.

また、他の可飽和磁気コア49Bも、上述の可
飽和磁気コア49Aと同様に形成されており、励
磁コイル48Bを巻装した後に検出コイル50B
が嵌装される。この実施例では、単に板状の可飽
和磁気コア49A,49Bに巻線を施すだけで励
磁コイル48A,48Bの巻装作業を行うことが
でき、上述の従来例のように枠体形状の可飽和コ
アに巻装作業を行うのに比較して作業性を極めて
向上できる。また、励磁コイル48A,48Bお
よび検出コイル50A,50Bは、H形ブロツク
形状の磁気ヨーク47に取付けられる各磁気コア
49A,49Bに分配して巻装されるので、大き
な巻線用スペースを確保することができ巻装量を
増加することにより、上記検出コイル50A,5
0Bからの検出出力信号の信号レベルを高めるこ
とができる。
Further, the other saturable magnetic core 49B is also formed in the same manner as the above-mentioned saturable magnetic core 49A, and after winding the excitation coil 48B, the detection coil 50B is formed.
is fitted. In this embodiment, the excitation coils 48A, 48B can be wound simply by winding the plate-shaped saturable magnetic cores 49A, 49B, and the frame shape can be changed as in the above-mentioned conventional example. Workability can be greatly improved compared to winding a saturated core. Furthermore, since the excitation coils 48A, 48B and the detection coils 50A, 50B are distributed and wound around each magnetic core 49A, 49B attached to the H-block magnetic yoke 47, a large space for winding is secured. By increasing the amount of winding, the detection coils 50A, 5 can be
The signal level of the detection output signal from 0B can be increased.

また、上記磁気ヨーク47は、第10図および
第11図に示すように、各々H形板状の非磁性ス
ペーサ部材53a,53b,…53nを挾んで相異
なる磁極を形成する複数の磁脚片41a,42a
41b,42b…41o,42oを順番に積層して成
り、上記磁気スケール45に磁気記録されている
磁気格子の波長λの1/2に等しい間隔Pをもつて各 磁気空隙ga,gb,…gnが上記各スペーサ部材
53a,53b,…53nにより形成されている。
上記各磁脚片41a,42a,…41o,42oは、
奇数枚目のものが一方の磁脚部41を形成し、偶
数枚目のものが他方の磁脚部42を形成してお
り、各一側縁中央部分に形成した各突片43a
44a,…43o,44oの部分で積層され、第1
1図に示す如きHブロツク形状の磁気ヨーク47
を形成する。上記積層された各磁脚片41a,4
a,…41o,42oの最も外側には、各々二分
割された補充磁気コア54,55を挾んで補強板
56,57が取付けられている。これらの各部材
には、上記磁気スケール45の貫通される貫通孔
42を形成する各孔46a,46b,…46zが形
成されている。
Further, as shown in FIGS. 10 and 11, the magnetic yoke 47 has a plurality of H-shaped plate-shaped non-magnetic spacer members 53 a , 53 b , . . . , 53 n that form different magnetic poles. Magnetic leg pieces 41 a , 42 a ,
41 b , 42 b . . . 41 o , 42 o are laminated in order, and each magnetic gap g a , g b , . . . g n are formed by the respective spacer members 53 a , 53 b , . . . 53 n .
Each of the magnetic leg pieces 41a , 42a ,... 41o , 42o is as follows:
The odd-numbered pieces form one magnetic leg part 41, and the even-numbered pieces form the other magnetic leg part 42, and each protruding piece 43a formed at the center of each side edge
44a ,... 43o , 44o are laminated, and the first
H-block shaped magnetic yoke 47 as shown in Figure 1
form. Each of the laminated magnetic leg pieces 41 a , 4
Reinforcing plates 56 and 57 are attached to the outermost sides of 2 a , . Each of these members has holes 46 a , 46 b , . . . , 46 z forming the through hole 42 through which the magnetic scale 45 passes.

上述の如き構造の実施例では、上述の第4図に
示した従来例と比較して、次のような効果があ
る。
The embodiment of the structure described above has the following effects compared to the conventional example shown in FIG. 4 described above.

すなわち、この実施例では、H形ブロツク形状
の中心位置に設けた貫通孔の内周壁部分の磁気空
隙を介して与えられる信号磁界の磁束で搬送波に
よる磁束を磁気変調しているので、上記貫通孔の
円周方向の検出感度を平均した検出感度をもつて
常に一定の感度で検出出力信号を第12図中に実
線にて示すように得ることができる。これに対し
て、従来例では、信号磁界による磁束の流れる磁
路長に応じて貫通孔の円周方向での検出感度が変
化し、第12図中に破線で示すように、検出面方
向によつて検出出力信号の信号レベルが変化す
る。なお、第12図において横軸は従来例におけ
る貫通孔の内周壁すなわち検出面が可飽和コア側
に位置した状態を0゜とした検出面の方向を示
し、縦軸は検出出力信号の信号レベル比を示して
いる。このように、本発明に係る磁束応答型マル
チギヤツプヘツドでは、その検出面の円周方向に
ついて均一な検出感度分布が得られる。
That is, in this embodiment, the magnetic flux of the carrier wave is magnetically modulated by the magnetic flux of the signal magnetic field applied through the magnetic gap in the inner circumferential wall of the through hole provided at the center position of the H-shaped block. With a detection sensitivity that is the average of the detection sensitivities in the circumferential direction, it is possible to always obtain a detection output signal with a constant sensitivity as shown by the solid line in FIG. On the other hand, in the conventional example, the detection sensitivity in the circumferential direction of the through hole changes depending on the length of the magnetic path through which the magnetic flux due to the signal magnetic field flows, and as shown by the broken line in Fig. 12, the detection sensitivity changes in the direction of the detection surface. Therefore, the signal level of the detection output signal changes. In Fig. 12, the horizontal axis indicates the direction of the detection surface with the inner peripheral wall of the through hole in the conventional example, that is, the detection surface located on the saturable core side, as 0°, and the vertical axis indicates the signal level of the detection output signal. It shows the ratio. As described above, in the magnetic flux responsive multi-gap head according to the present invention, a uniform detection sensitivity distribution can be obtained in the circumferential direction of the detection surface.

そこで、例えば、スパイラル状の着磁むらのあ
る同軸型磁気スケールが貫通孔の内周壁の同一箇
所に片当りした状態で移動するような場合に、従
来例では第13図中に破線にて示すように、上記
スパイラル状の着磁むらに基因する検出出力信号
のレベル変動が大きくなつてしまうのに対し、上
記実施例では第13図中に実線にて示すように上
記レベル変動を小さくすることができる。なお、
この場合に同軸磁気スケールと貫通孔の内周壁と
の間のクリアランスが無い理想的な状態では、第
13図中に一点鎖線にて示すように上記レベル変
動を零にすることができる。
Therefore, for example, when a coaxial magnetic scale with a spiral magnetization unevenness moves while unevenly touching the same location on the inner circumferential wall of a through hole, in the conventional example, as shown by the broken line in FIG. As shown in FIG. 13, the level fluctuation of the detection output signal due to the spiral magnetization unevenness becomes large, whereas in the above embodiment, the level fluctuation is reduced as shown by the solid line in FIG. I can do it. In addition,
In this case, in an ideal state where there is no clearance between the coaxial magnetic scale and the inner circumferential wall of the through hole, the level fluctuation can be reduced to zero, as shown by the dashed line in FIG.

また、一般に磁気スケールを用いた測尺装置で
は、検出ヘツドを磁気スケールの磁気格子の記録
波長λに対してnλ±1/4λの間隔で2個配設し て、各検出ヘツドからの検出出力信号の位相変化
により測定値を算出する位相検出型の検出回路が
用いられ、さらに内挿処理により分解能の向上が
図られている。この実施例では上述の如く検出感
度分布が均一なので、各検出ヘツドとして上述の
如き実施例の磁束応答型マルチギヤツプヘツドを
用いれば、各検出出力信号の合成波のエンベロー
プ波形が安定し、上記内挿処理における誤差を小
さくできる。
In general, in a measuring device using a magnetic scale, two detection heads are arranged at an interval of nλ±1/4λ with respect to the recording wavelength λ of the magnetic grating of the magnetic scale, and the detection output from each detection head is A phase detection type detection circuit that calculates a measured value based on a change in the phase of a signal is used, and the resolution is further improved by interpolation processing. In this embodiment, the detection sensitivity distribution is uniform as described above, so if the magnetic flux responsive multi-gap head of the embodiment described above is used as each detection head, the envelope waveform of the composite wave of each detection output signal is stabilized. Errors in the above interpolation process can be reduced.

さらに、アジマスと着磁むらとを有する同軸型
磁気スケールによる基準目盛を読取つて位相検出
型の検出回路で検出する場合に、従来例では上記
アジマスと着磁むらとに基因する大きな位相誤差
が第14図中破線にて示すように各検出出力信号
間に生じてしまう。これに対して、上記実施例で
は上述の如く検出感度が均一なので、第14図中
に実線にて示すように上記位相誤差を小さくする
ことができる。
Furthermore, when reading a reference scale using a coaxial magnetic scale having azimuth and magnetization unevenness and detecting it with a phase detection type detection circuit, in the conventional example, a large phase error caused by the above-mentioned azimuth and magnetization unevenness occurs. As shown by the broken line in FIG. 14, this occurs between each detection output signal. On the other hand, in the embodiment described above, since the detection sensitivity is uniform as described above, the phase error can be reduced as shown by the solid line in FIG.

さらにまた、均一な着磁が施されアジマスが狂
つているような同軸型磁気スケールによる基準目
盛を読取る場合に生ずるスケールとヘツドとの相
対角度位置変化に基因する誤差も、この実施例で
は第15図中に実線にて示すように従来例(破線
にて示してある)よりも小さくすることができ
る。
Furthermore, in this embodiment, errors due to changes in the relative angular position between the scale and the head that occur when reading a reference scale using a coaxial magnetic scale that is uniformly magnetized and whose azimuth is out of alignment are also eliminated. As shown by the solid line in the figure, it can be made smaller than the conventional example (shown by the broken line).

上述の如く本発明に係る磁束応答型マルチギヤ
ツプヘツドでは、位相検出型の検出回路を用いる
場合に、各検出出力信号の合成波のエンベロープ
波形の変動を減少し、内挿誤差を低減することが
でき、しかも、スケールとヘツドとの相対位置関
係の変動による誤差も小さくすることができる。
As described above, in the magnetic flux responsive multi-gap head according to the present invention, when a phase detection type detection circuit is used, fluctuations in the envelope waveform of the composite wave of each detection output signal are reduced, and interpolation errors are reduced. Moreover, errors caused by fluctuations in the relative positional relationship between the scale and the head can also be reduced.

さらに、上述の如き構造の実施例では、励磁コ
イルの巻装される可飽和コアを2個に分割して磁
気ヨークに取付けてあるので、上記可飽和コアの
寸法・形状が従来例のように枠体形状に限定され
ることなく自由に設定できる。上記可飽和コアの
形状および寸法を選択することによつて、搬送波
の三次歪を減少させることができる。第16図に
上記従来例と実施例とにおける三次歪の発生状況
の実測結果を示してある。この実測結果は、スケ
ール入力換算したダミー信号で三次歪を測定した
ものであり、第16図中の実線は実施例を示し、
また破線を示している。この第16図から明らか
なように、この実施例では、従来例よりも信号全
域に亘つて三次歪の低減効果があり、特に大入力
信号に対する三次歪を激減することができた。
Furthermore, in the embodiment of the structure described above, the saturable core around which the excitation coil is wound is divided into two parts and attached to the magnetic yoke, so that the dimensions and shape of the saturable core are the same as in the conventional example. It can be freely set without being limited to the frame shape. By selecting the shape and dimensions of the saturable core, third-order distortion of the carrier wave can be reduced. FIG. 16 shows actual measurement results of the occurrence of third-order distortion in the conventional example and the embodiment. This actual measurement result was obtained by measuring third-order distortion using a dummy signal converted into a scale input, and the solid line in FIG. 16 indicates the example.
A broken line is also shown. As is clear from FIG. 16, this embodiment has a greater effect of reducing third-order distortion over the entire signal range than the conventional example, and was able to significantly reduce third-order distortion particularly for large input signals.

また、この実施例では、上述の如く励磁コイル
の巻装作業が簡単で、しかも検出コイルの巻装量
を増して、大きな信号レベルの検出出力信号を得
ることができる。
Further, in this embodiment, as described above, the work of winding the excitation coil is simple, and by increasing the amount of winding of the detection coil, it is possible to obtain a detection output signal with a large signal level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は帯状の磁気スケールによる基準目盛を
磁束応答型マルチギヤツプヘツドで読取るように
した測定装置の原理的な構成を示す構成図であ
る。第2図は上記磁束応答型マルチギヤツプヘツ
ドから得られる検出出力信号の波形図である。第
3図は従来の同軸型磁気スケール用の磁束応答型
マルチギヤツプヘツドの構造を示す模式図であ
る。第4図は上記従来の磁束応答型マルチギヤツ
プヘツドの具体的な構造例を示す外観斜視図であ
る。第5図は上記従来例における可飽和コア部分
の拡大分解斜視図である。第6図は本発明に係る
磁束応答型マルチギヤツプヘツドの原理的な構造
を示す模式図である。第7図ないし第11図は本
発明に係る磁束応答型マルチギヤツプヘツドの具
体的な実施例を示し、第7図は全体の外観斜視
図、第8図はその要部分解斜視図、第9図は可飽
和磁気コア部分の拡大分解斜視図、第10図は磁
気ヨークの分解斜視図、さらに第11図は磁気ヨ
ークの外観斜視図である。第12図ないし第16
図は上記従来例および実施例の各性能を比較して
示す各特性線図であり、第12図は検出感度の分
布状態を示し、第13図は磁気スケールの着磁む
らに基因した出力レベルの変動の状況を示し、第
14図は磁気スケールの着磁むらおよびアジマス
による位相誤差を示し、第15図はヘツドとスケ
ールとの相対角度位置の変化に基因する誤差の発
生状況を示し、さらに、第16図は搬送波の三次
歪の発生状況を示してある。 40…磁束応答型マルチギヤツプヘツド、41
a〜41o…第1の磁脚片、42a〜42o…第2の
磁脚片、41,42…磁脚部、43o〜43o…第
1の磁脚片の突片、44a〜44o…第2の磁脚片
の突片、45…同軸型磁気スケール、46o…突
片に設けた孔、46…磁気ヨークの貫通孔、47
…磁気ヨーク、48A,48B…励磁コイル、4
9A,49B…可飽和磁気コア、50A,50B
…検出コイル。
FIG. 1 is a diagram showing the basic structure of a measuring device in which a reference scale based on a band-shaped magnetic scale is read by a magnetic flux responsive multi-gap head. FIG. 2 is a waveform diagram of a detection output signal obtained from the magnetic flux responsive multi-gap head. FIG. 3 is a schematic diagram showing the structure of a conventional magnetic flux responsive multi-gap head for a coaxial magnetic scale. FIG. 4 is an external perspective view showing a specific example of the structure of the conventional magnetic flux responsive multi-gap head. FIG. 5 is an enlarged exploded perspective view of the saturable core portion in the conventional example. FIG. 6 is a schematic diagram showing the basic structure of the magnetic flux responsive multi-gap head according to the present invention. 7 to 11 show specific embodiments of the magnetic flux responsive multi-geap head according to the present invention, FIG. 7 is a perspective view of the overall appearance, FIG. 8 is an exploded perspective view of the main parts, FIG. 9 is an enlarged exploded perspective view of the saturable magnetic core portion, FIG. 10 is an exploded perspective view of the magnetic yoke, and FIG. 11 is an external perspective view of the magnetic yoke. Figures 12 to 16
The figures are characteristic diagrams that compare and show the respective performances of the conventional example and the example, Fig. 12 shows the distribution of detection sensitivity, and Fig. 13 shows the output level due to uneven magnetization of the magnetic scale. Fig. 14 shows the phase error due to magnetization unevenness and azimuth of the magnetic scale, Fig. 15 shows the occurrence of error due to changes in the relative angular position between the head and the scale, and , FIG. 16 shows the occurrence of third-order distortion of the carrier wave. 40...Magnetic flux responsive multi-gear head, 41
a to 41 o ...first magnetic leg piece, 42 a to 42 o ...second magnetic leg piece, 41, 42...magnetic leg part, 43 o to 43 o ...protruding piece of first magnetic leg piece, 44 a to 44 o ... Protruding piece of second magnetic leg piece, 45... Coaxial magnetic scale, 46 o ... Hole provided in protruding piece, 46... Through hole of magnetic yoke, 47
...Magnetic yoke, 48A, 48B...Excitation coil, 4
9A, 49B...Saturable magnetic core, 50A, 50B
...Detection coil.

Claims (1)

【特許請求の範囲】[Claims] 1 第1および第2の磁脚片の各一側縁中央部分
に形成した各突片に同軸型磁気スケールの挿通さ
れる孔を設け、各突片の孔が連通するように上記
第1および第2の磁脚片を各突片部分で積層し、
中心位置に上記孔にて形成される貫通孔の内周壁
部分に複数の磁気空隙を並設して成る略H形ブロ
ツク形状の磁気ヨークと、励磁コイルの巻装され
た一対の磁気コアとを備え、上記第1の磁脚片に
より形成される磁脚部および第2の磁脚片にて形
成される磁脚部の一端間に一方の磁気コアを架設
し他端間に他方の磁気コアを架設して、上記励磁
コイルに供給される搬送波による励磁用の磁束の
流れる閉磁路を形成し、該閉磁路の一部に検出コ
イルを巻装したことを特徴とする同軸型磁気スケ
ール用の磁束応答型マルチギヤツプヘツド。
1. A hole through which a coaxial magnetic scale is inserted is provided in each protruding piece formed at the center of one side edge of the first and second magnetic leg pieces, and the first and second magnetic leg pieces are arranged so that the holes in each protruding piece communicate with each other. Laminating the second magnetic leg piece at each protruding piece part,
A magnetic yoke having a substantially H-shaped block shape and having a plurality of magnetic gaps arranged in parallel on the inner circumferential wall portion of the through hole formed by the above-mentioned hole at the center position, and a pair of magnetic cores around which an excitation coil is wound. one magnetic core is installed between one end of the magnetic leg part formed by the first magnetic leg piece and the magnetic leg part formed by the second magnetic leg piece, and the other magnetic core is installed between the other ends. for a coaxial magnetic scale, characterized in that a closed magnetic path is formed through which magnetic flux for excitation by a carrier wave supplied to the excitation coil flows, and a detection coil is wound around a part of the closed magnetic path. Magnetic flux responsive multi gear head.
JP2375881A 1981-02-20 1981-02-20 Magnetic flux response type multigap head for coaxial type magnetic scale Granted JPS57137812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2375881A JPS57137812A (en) 1981-02-20 1981-02-20 Magnetic flux response type multigap head for coaxial type magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2375881A JPS57137812A (en) 1981-02-20 1981-02-20 Magnetic flux response type multigap head for coaxial type magnetic scale

Publications (2)

Publication Number Publication Date
JPS57137812A JPS57137812A (en) 1982-08-25
JPS6225969B2 true JPS6225969B2 (en) 1987-06-05

Family

ID=12119225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2375881A Granted JPS57137812A (en) 1981-02-20 1981-02-20 Magnetic flux response type multigap head for coaxial type magnetic scale

Country Status (1)

Country Link
JP (1) JPS57137812A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202821A (en) * 1982-05-21 1983-11-26 Sony Magnescale Inc Magnetic head device
EP0157034B1 (en) 1983-07-27 1994-09-21 Sony Magnescale Incorporation Detector head
DE3345331A1 (en) * 1983-12-15 1985-06-27 Artur Dr.H.C. 7244 Waldachtal Fischer Expanding nail
US6855409B1 (en) 1996-11-22 2005-02-15 Denso Corporation Method for connecting insulator coated wire

Also Published As

Publication number Publication date
JPS57137812A (en) 1982-08-25

Similar Documents

Publication Publication Date Title
JP7300324B2 (en) Scale configuration for inductive encoders
EP0217640A2 (en) A torque sensor of the non-contact type
US3641429A (en) Position-measuring transducer comprising a stator and relatively movable flux-altering member
JP2002013905A (en) Induction type position detector
JPS6225969B2 (en)
US4663588A (en) Detector for use for measuring dimensions of an object
US4590807A (en) Torque sensor of noncontact type
US3562687A (en) Variable-reluctance transducer and magnetic core
Ren A 100000-A high precision on-site measurement calibration device for heavy direct current
JPS5925441B2 (en) magnetic scale device
US2942457A (en) Rotation sensitive pickup
Choi et al. High sensitivity inductive sensing system for position measurement
US3008793A (en) Variable coupling electromagnetic
US3127571A (en) Apparatus for producing frequency changes by oppositely varying two inductors
JPH0477268B2 (en)
JPH0894728A (en) Magnetic field sensor and its manufacture
JPS6157809A (en) Magnetic flux response type multigap head
JPH0738871Y2 (en) Compensation device for magnetic field gradient sensor coil
SU1652950A1 (en) Ferromagnetic probe
US3193821A (en) Magnetic transducing apparatus
US3379969A (en) Magnetic bridge means for detecting the electrical properties of substances
US3266319A (en) Vibrating string transducer devices and systems employing the same
JPS6039765Y2 (en) magnetic scale
US3213396A (en) Flux barrier device
JPS594646B2 (en) Split type magnetoelectric conversion element