JPS62259058A - Measuring instrument for carbon concentration - Google Patents

Measuring instrument for carbon concentration

Info

Publication number
JPS62259058A
JPS62259058A JP61100927A JP10092786A JPS62259058A JP S62259058 A JPS62259058 A JP S62259058A JP 61100927 A JP61100927 A JP 61100927A JP 10092786 A JP10092786 A JP 10092786A JP S62259058 A JPS62259058 A JP S62259058A
Authority
JP
Japan
Prior art keywords
sample liquid
liquid
carbon
gas
extractor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61100927A
Other languages
Japanese (ja)
Inventor
Takaaki Yamaguchi
卓見 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61100927A priority Critical patent/JPS62259058A/en
Publication of JPS62259058A publication Critical patent/JPS62259058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure concn. over a wide range without requiring manpower by automatically changing the amt. of a sample liquid and the amt. of an extracting gas according to a measuring range. CONSTITUTION:The sample liquid is fed from a sample liquid tank A by a sample liquid pump 1. The reactive liquid is fed thereto from a reactive liquid tank B by a reactive liquid pump 2. The sample liquid enters a deaerator 3 by which inorg. carbon compd. is deaerated. The deaerating gas is released from a releasing line 4. The sample liquid is thereafter intensified in pressure and enters a reactor 8 where the liquid is heated to a high temp. Org. materials are oxidized in a reaction tube 9. The gas is cooled by a cooler 10 and is reduced in the pressure; thereafter, the liquid enters a storage tank 12. The necessary flow rate is fed by the instruction of the control unit 17 to an extractor 15. The extracting gas is controlled of the flow rate by a control valve 18 in the extractor 15 by the instruction of the unit 17. The org. carbon in the oxidized sample liquid is extracted as carbon dioxide and is admitted together with the extracting gas into an IR spectroscope 16. The liquid after the extraction is discharged by a drain line 19. The unit 17 calculates and displays the concn. of the org. carbon in the sample liquid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液中の炭素濃度を測定する装置に係り、特に
低濃度から高濃度まで炭素濃度を測定するのに好適な測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring carbon concentration in a liquid, and particularly to a measuring device suitable for measuring carbon concentration from a low concentration to a high concentration.

〔従来の技術〕[Conventional technology]

従来、試料液中の炭素濃度の範囲を高範囲に測定する方
法としては、マイクロシリンジにより試料液を手動注入
し、試料の注入量を濃度に応じて変える方法が有る。
Conventionally, as a method for measuring a high range of carbon concentration in a sample liquid, there is a method in which the sample liquid is manually injected using a microsyringe and the amount of sample injected is changed according to the concentration.

なお、この種の測定装置として関連するものには例えば
特開昭60−142256号が挙げられる。
Note that related measuring devices of this type include, for example, Japanese Patent Application Laid-Open No. 142256/1983.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来の技術の項で述べた方法によると、試料液の量
を濃度に応じて増減し手動注入する方法では、注入その
ものが手動操作を要すること、また試料液の濃度を求め
るには測定結果に対して試料液の量の補正が必要である
。また測定レンジに応じて抽出ガスの量を変えるのみで
は測定可能な濃度範囲は十分とはいえない。
According to the method described in the prior art section, in which the amount of sample liquid is increased or decreased depending on the concentration and manually injected, the injection itself requires manual operation, and in order to determine the concentration of the sample liquid, the measurement result is Therefore, it is necessary to correct the amount of sample liquid. Furthermore, it cannot be said that the measurable concentration range is sufficient just by changing the amount of extracted gas depending on the measurement range.

本発明の目的は測定レンジに応じて試料液の量及び抽出
ガスの量を自動的に変えろことにより人手を要さずに広
い範囲の濃度測定が可能な濃度測定装置を提供すること
にある。
An object of the present invention is to provide a concentration measuring device that can automatically change the amount of sample liquid and the amount of extracted gas depending on the measurement range, thereby making it possible to measure concentrations over a wide range without requiring manual labor.

〔間顕点を解決するための手段〕[Means for resolving the gap]

上記目的は、測定レンジに応じて試料液供給量及び抽出
ガスの流量をコントロールするコントロールユニットを
設け、さらに、このコントロールユニットに、赤外線分
析計の出力、試料液供給量、抽出ガスの流量にもとづい
て試料液の炭素濃度を算出、表示する機能を持たせる事
により達成される。試料液供給量を変えるのは容斌可変
ポンプを用い、抽出ガスを変えるのは抽出ガスラインに
流量制御弁を用いることにより実施できろ。試料液供給
量を変える他の方法としては、各測定レンジに応じた流
量を流せる固定絞りを有するラインをポンプの吐出側に
複数ライン設けておき、測定レンジに応じて電磁弁等の
開閉により必要なラインに流す方法も有る。
The above purpose is to provide a control unit that controls the amount of sample liquid supplied and the flow rate of extraction gas according to the measurement range. This is achieved by providing a function to calculate and display the carbon concentration of the sample solution. The amount of sample liquid supplied can be changed by using a variable displacement pump, and the extraction gas can be changed by using a flow control valve in the extraction gas line. Another way to change the amount of sample liquid supplied is to install multiple lines on the discharge side of the pump with fixed throttles that can flow the flow rate according to each measurement range, and then open and close a solenoid valve, etc. according to the measurement range. There is also a way to run it on a line.

〔作用〕[Effect]

試料液の炭素濃度をP (pp+w)、試料液の供給量
をF s (*/−1n)、抽出ガスの流量をFe(c
c/lll1n)、赤外線分析器の出力をx (rpm
)とし、定数をαとすると、 x=aXPXFq/Fe             −
(1)が成り立つ、従って試料液濃度Pが変化しても。
The carbon concentration of the sample liquid is P (pp+w), the supply amount of the sample liquid is F s (*/-1n), and the flow rate of the extraction gas is Fe (c
c/lll1n), the output of the infrared analyzer is x (rpm
) and the constant is α, then x=aXPXFq/Fe −
(1) holds true even if the sample solution concentration P changes.

赤外線分析器の出力Xが検出可能な値になる様試料液供
給量Fsおよび抽出ガスの流量Feをコントロールする
事により、試料液の広い濃度範囲に対して測定が可能と
なり、また、(1)式に従って、赤外線分析器の出力X
、試料液供給量Fs。
By controlling the sample liquid supply amount Fs and the extraction gas flow rate Fe so that the output X of the infrared analyzer becomes a detectable value, it is possible to measure a wide concentration range of the sample liquid, and (1) According to the formula, the output of the infrared analyzer
, sample liquid supply amount Fs.

抽出ガスの流にFoより試料液の濃度を求める事ができ
る。これらの事は、コントロールユニットが各測定レン
ジに応じて試料液の量及び抽出ガスの流量を流す様制御
させ、さらに、これらの流量及び、赤外線検出器の出力
にもとづき前記(1)式により試料液の濃度を算出し、
その結果を表示する。
The concentration of the sample liquid can be determined from Fo in the flow of the extracted gas. To solve these problems, the control unit controls the amount of sample liquid and the flow rate of extraction gas according to each measurement range, and then calculates the amount of sample liquid using equation (1) above based on these flow rates and the output of the infrared detector. Calculate the concentration of the liquid,
Display the results.

〔実施例〕〔Example〕

本発明の一実施例を図面により説明する。本実施例は、
試料液中の有機炭素を高温、高圧下で連続的に酸化し、
連続的に抽出して濃度を測定する有機炭素濃度計に本発
明を適用した一例を示す。
An embodiment of the present invention will be described with reference to the drawings. In this example,
The organic carbon in the sample solution is continuously oxidized at high temperature and pressure.
An example in which the present invention is applied to an organic carbon concentration meter that continuously extracts and measures the concentration will be shown.

試料液は、試料液槽Aより試料液ポンプ1によす送られ
る。これに反応液槽より反応液が反応液ポンプ2により
送り込まれる。試料液は脱気器3に入り、バルブ5を通
って来る脱気ガスにより無気炭素を脱気され、無機炭素
を含んだ脱気ガスは放出ライン4より放出される。その
後試料液は高圧ポンプ7により昇圧され、脱気器からは
余分の試料液がドレンライン6より放出される。高圧ポ
ンプにより昇圧された試料液は反応器8に入り、高温に
加熱されて、反応管9内で試料液内の有機物が酸化され
る。その後試料液は冷却鼎10により冷却され、減圧弁
】1により減圧される。減圧された試料液は貯槽12に
入り、コントロールユニット17からの指示に従って必
要な流量が試料液供給ポンプ14により抽出器15に送
られる。貯槽12からは、余分な試料液がドレンライン
13により放出される。抽出器15には、コントロール
ユニット17の指示に従って必要な量の抽出ガスが、コ
ントロール弁18により流量をコントロールされて人っ
て来る。抽出器15により、酸化した試料液中の有機炭
素は炭酸ガスとして抽出され、抽出ガスと共に赤外線分
析器16に入る。抽出された後の液はドレンライン19
により排出される。コントロールユニットは、設定測定
レンジにもとづく試料液の量、抽出ガスの量及び赤外線
分析器の出力をもとに前記(1)式により、試料液の有
機炭素濃度を算出して表示する0本発明において試料液
供給量及び抽出ガスの流量は各測定レンジに於いて一定
になる様に設定しておき、あらかじめ検定しておいた流
量を用いるようにしているので、各々の流量を炭素濃度
側定時毎に測定する必要はない。
The sample liquid is sent from the sample liquid tank A to the sample liquid pump 1. A reaction liquid is fed into this by a reaction liquid pump 2 from a reaction liquid tank. The sample liquid enters the deaerator 3, where the inorganic carbon is removed by the deaeration gas passing through the valve 5, and the deaeration gas containing inorganic carbon is released from the release line 4. Thereafter, the pressure of the sample liquid is increased by the high-pressure pump 7, and excess sample liquid is discharged from the deaerator through the drain line 6. The sample liquid pressurized by the high-pressure pump enters the reactor 8, is heated to a high temperature, and organic substances in the sample liquid are oxidized in the reaction tube 9. Thereafter, the sample liquid is cooled by a cooling tube 10, and the pressure is reduced by a pressure reducing valve 1. The reduced pressure sample liquid enters the storage tank 12, and the required flow rate is sent to the extractor 15 by the sample liquid supply pump 14 according to instructions from the control unit 17. Excess sample liquid is discharged from the storage tank 12 through a drain line 13. A necessary amount of extraction gas is delivered to the extractor 15 according to instructions from a control unit 17, with the flow rate being controlled by a control valve 18. Organic carbon in the oxidized sample liquid is extracted as carbon dioxide gas by the extractor 15, and enters the infrared analyzer 16 together with the extracted gas. The liquid after being extracted is drain line 19
It is discharged by The control unit calculates and displays the organic carbon concentration of the sample liquid using the above formula (1) based on the amount of sample liquid based on the set measurement range, the amount of extracted gas, and the output of the infrared analyzer. The sample liquid supply amount and extraction gas flow rate are set to be constant in each measurement range, and the pre-verified flow rate is used, so each flow rate is adjusted to the carbon concentration side at a fixed time. There is no need to measure every time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低濃度から高濃度までの広い範囲の炭
素濃度を人手を介さずに自動的に測定することができる
According to the present invention, carbon concentrations in a wide range from low concentrations to high concentrations can be automatically measured without human intervention.

【図面の簡単な説明】[Brief explanation of drawings]

図面は試料液中の有機物を高温、高圧下で連続酸化し、
連続的に抽出して有機炭素濃度を測定する有機炭素濃度
計に本発明を適用した場合の一実施例を示したものであ
る。 l4・・・試料液供給ポンプ、15・・・抽出器、]7
・・・コントロールユニット、18・・・コントロール
弁。
The drawing shows the continuous oxidation of organic matter in the sample solution at high temperature and high pressure.
This figure shows an example in which the present invention is applied to an organic carbon concentration meter that measures organic carbon concentration through continuous extraction. l4...Sample liquid supply pump, 15...Extractor, ]7
...Control unit, 18...Control valve.

Claims (1)

【特許請求の範囲】[Claims] 1、試料液中の有機物を高温、高圧下で酸化させ、抽出
器からの抽出ガスにより酸化した炭素を炭酸ガスとして
抽出し、炭素濃度を検出する炭素濃度測定装置において
、前記抽出器の前に設けた貯液槽及び可変容量ポンプと
、抽出ガス流量をコントロールするコントロール弁と、
赤外線分析計の測定レンジに応じて抽出器へ流れる液量
および抽出ガスの流量を変化させ、かつ赤外線分析計の
出力、抽出器へ流れる液量、抽出ガスの流量に基づき試
料液の炭素濃度を算出する機能を有するコントロールユ
ニットとを備えたことを特徴とする炭素濃度測定装置。
1. In a carbon concentration measuring device that detects carbon concentration by oxidizing organic matter in a sample solution at high temperature and high pressure, and extracting the oxidized carbon as carbon dioxide gas with an extraction gas from an extractor, before the extractor. A liquid storage tank and a variable capacity pump provided, a control valve that controls the extraction gas flow rate,
The amount of liquid flowing to the extractor and the flow rate of extracted gas are changed according to the measurement range of the infrared analyzer, and the carbon concentration of the sample liquid is determined based on the output of the infrared analyzer, the amount of liquid flowing to the extractor, and the flow rate of extracted gas. A carbon concentration measuring device comprising: a control unit having a calculation function.
JP61100927A 1986-05-02 1986-05-02 Measuring instrument for carbon concentration Pending JPS62259058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61100927A JPS62259058A (en) 1986-05-02 1986-05-02 Measuring instrument for carbon concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61100927A JPS62259058A (en) 1986-05-02 1986-05-02 Measuring instrument for carbon concentration

Publications (1)

Publication Number Publication Date
JPS62259058A true JPS62259058A (en) 1987-11-11

Family

ID=14286984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61100927A Pending JPS62259058A (en) 1986-05-02 1986-05-02 Measuring instrument for carbon concentration

Country Status (1)

Country Link
JP (1) JPS62259058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021712A1 (en) * 2018-07-27 2020-01-30 株式会社島津製作所 Analysis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021712A1 (en) * 2018-07-27 2020-01-30 株式会社島津製作所 Analysis device
JPWO2020021712A1 (en) * 2018-07-27 2021-06-24 株式会社島津製作所 Analysis equipment

Similar Documents

Publication Publication Date Title
JP2987483B2 (en) Method and apparatus for measuring gaseous medium using chemical sensor
US3520657A (en) Method and apparatus for the analysis of off-gases in a refining process
EP0395200A1 (en) Method and system for determining vapor pressure of liquid compositions
US4397958A (en) Hydrocarbon analysis
JPS62259058A (en) Measuring instrument for carbon concentration
JP4503926B2 (en) Method and apparatus for determining the moisture content of a liquid
EP0413866A2 (en) Fractionating column control apparatus and methods
KR20200009041A (en) Device for processing liquid to be analyzed
JPH0370180B2 (en)
JPH075084A (en) Device and method for capturing substance mixed in exhaust gas
CN207894881U (en) A kind of gas chromatograph
Han et al. A new method of entrainment fraction measurement in annular gas–liquid flow in a small diameter vertical tube
JPS63315944A (en) Instrument for measuring carbon content
JPS63135858A (en) Carbon quantity measuring apparatus
JP2694024B2 (en) Carbon content measuring device
JPS63315946A (en) Instrument for measuring carbon content
US20050069455A1 (en) Chemical analyzer for sulfur
US6190434B1 (en) Method for determination and control of the amounts of nitrogen dissolved in metallic liquid phases and device for its realization
JPH01318954A (en) Carbon-quantity measuring apparatus
JP3118123B2 (en) Yeast addition device
US4545894A (en) Control of an aromatic extraction
JPH0645883Y2 (en) Carbon content measuring device
JPH0424553A (en) Carbon-quantity measuring apparatus
JP2818239B2 (en) Carbon content measuring device
DE20100557U1 (en) Device for measuring the concentration of dissolved gases in a liquid