JPS62259054A - Reference electrode - Google Patents

Reference electrode

Info

Publication number
JPS62259054A
JPS62259054A JP10092386A JP10092386A JPS62259054A JP S62259054 A JPS62259054 A JP S62259054A JP 10092386 A JP10092386 A JP 10092386A JP 10092386 A JP10092386 A JP 10092386A JP S62259054 A JPS62259054 A JP S62259054A
Authority
JP
Japan
Prior art keywords
electrode
liquid
chamber
electrode chamber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10092386A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Hosaka
保坂 信義
Hiroshi Sakata
坂田 寛
Mamoru Takeuchi
守 竹内
Kadomasa Chiba
千葉 矩正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10092386A priority Critical patent/JPS62259054A/en
Publication of JPS62259054A publication Critical patent/JPS62259054A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably measure the electrode potential of an electrode surface in high- temp. and high-pressure pure water environment by supplying a specified amt. of Cl<-> necessary for the electrode reaction in an electrode chamber and measuring the surface potential of the sample metal in a high-temp. high-pressure vessel. CONSTITUTION:The electrode 2, the electrode chamber 3 and a detecting system for the resistance of an electrode reactive liquid are fixed, as main constituting elements to an upper cap 1 of the high-temp. high-pressure vessel. The electrode 2 is constituted by using silver-silver chloride and the surface connected to the electrode chamber 3 is adhered by melt-adhesive silver chloride 4 to the electrode chamber 3. The electrode chamber 3 is constituted of an insulating fixture 6 and an insulating sleeve 7, and a protective pipe 8 contg. potassium chloride powder is installed to the inside thereof to cover the electrode 2. A liquid junction 9 is installed to the sleeve 7. Said liquid junction 9 is attached to a fixture 10. The high-temp. high-pressure water infiltrates the inside of the electrode chamber 3 from a liquid junction pipe 11 in which a packing material is packed. A very small liquid junction pipe 16 is installed to a sealing cap 15. The bleeding liquid is conducted through the pipe 16 into an electrolytic cell 17, where the inter-liquid resistance is measured by a measuring instrument 18 and the concn. of Cl<-> in the electrode reactive liquid is estimated.

Description

【発明の詳細な説明】 〔腫莱上の利用分eJ 本発明は照□er ’tit捕に詠り1時に高温ボイラ
ー。
DETAILED DESCRIPTION OF THE INVENTION [Usage of the tumor eJ] The present invention is aimed at capturing a high temperature boiler at 1 o'clock.

原子炉冷却設備および高−高圧純水課税下の金属表面の
腐食挙動を評価するためのに極−位測定七/すとしての
高−尿、原子炉冷却系1石油火カ発電用復水器等用とし
て好適な内部照合型の照合電極に関するものである。
Reactor cooling system 1 Condenser for oil-fired power generation The present invention relates to an internal verification type reference electrode suitable for applications such as the following.

〔従来の技術〕[Conventional technology]

従来、高4高圧水中に2ける金属の電極4位測定の基準
として用いらnている照合電極には、測疋4位の再現性
がよく、長時間、熱力学的(で正しい動作を示し、かつ
、測定環境液との適せ性があるなどの電性が要ポされて
いる。
Conventionally, the reference electrode used as a standard for measuring the 4th position of metal electrodes in high-pressure water has good reproducibility of the 4th position measurement and shows correct thermodynamic (thermodynamic) behavior over a long period of time. In addition, electrical properties such as compatibility with the measurement environment liquid are required.

従来の照貧′1極には、第5図に代表されるように、高
温高圧容器上蓋31に固定されている石英g32などを
通し゛C高温高圧水33を高温高圧容器外へ導出し、こ
れを第5図中の水冷ジャケット34ンこよう6却して照
会電極型へ送り、電位測定を行う外部層d型といわれる
照合電極があった。
In the conventional irradiation method, as typified by FIG. On the other hand, there was a reference electrode called an external layer d type, which was sent to the reference electrode type and measured the potential in the water-cooled jacket 34 shown in Figure 5.

35は濾紙プラグ、Eぼアフロン絶縁物でろる。35 is a filter paper plug, and E is filled with an Aphron insulator.

・コア’t、 VC−)イテd I 、1tm4貧誌、
j5,47(1971)の膝井らの一又に記1し“ch
る。また、ポウアペイクス エム(pourbatx 
M)による「アトラス1ブ エレクトロケミカル エキ
ュイリイビリアイ/  アキュアス ソルユーゾヨンJ
  (Atlasof  Electrochmica
l  Equ+l1brca  1nAqueousS
olut+on ) (1g66年)に示してある第6
図に代表さルるように、銀−ハロゲン化銀電極(ここで
は銀−項化尿電極)がテフロンと多孔質アルミナfに保
護された電極室(以下、保護管という)の中Vこ設置さ
ノし、ここに塩化カリウノ・溶液を封入して、電極反応
に行わせる装置全体が高温高圧水中に浸漬さル、テフロ
ン製ルギン管37から導入される部製高圧水がアスベス
ト芯38を介してテフロン製蓋39を通ってK Cを溶
液を含浸したA12oz粉を充填した電極室40に入シ
、これにより高温高圧容器内の金属の表面電位を照合す
る内部照合型といわれる照合電極がある。これについて
は、杉本%相馬による19i:10年の腐食防食協会 
80春期学術講演会予稿集の185頁にも記載してある
。なお、41は銀電極、42は高温高圧容器上蓋、43
は多孔質アルミナ管、44はKC1内部液、45はテフ
ロン容器である。
・Core't, VC-) Ited I, 1tm4 Samurai,
J5, 47 (1971), “ch.
Ru. Also, pourbatx
"Atlas 1B Electrochemical Equilibrium/Acurus Solyuzoyon J" by M)
(Atlas of Electrochmica
l Equ+l1brca 1nAqueousS
olut+on) (1g66)
As represented in the figure, a silver-silver halide electrode (in this case, a silver-silver halide electrode) is installed in a V-shaped electrode chamber (hereinafter referred to as a protective tube) protected by Teflon and porous alumina. Then, potassium chloride solution is sealed here and the entire apparatus is immersed in high-temperature, high-pressure water for electrode reaction. The electrode chamber 40 filled with A12 oz powder impregnated with K C solution passes through the Teflon lid 39, and there is a reference electrode called an internal reference type that verifies the surface potential of the metal inside the high temperature and high pressure container. . Regarding this, see 19i: 10 Years of Corrosion Prevention Association by Sugimoto% Soma.
It is also mentioned on page 185 of the 1980 Spring Academic Lecture Proceedings. In addition, 41 is a silver electrode, 42 is a high-temperature, high-pressure container top lid, and 43 is a silver electrode.
44 is a porous alumina tube, 44 is a KC1 internal liquid, and 45 is a Teflon container.

ここで、電極室における電極反応電位は、銀−塩化銀電
極では次の(1)式の工うに表わされる(日本化学会の
化学便覧(基礎編1)1966年、丸@曹店発行を参照
)。
Here, the electrode reaction potential in the electrode chamber is expressed by the following formula (1) for the silver-silver chloride electrode (see Chemical Society of Japan's Chemical Handbook (Basic Edition 1) published by Maru@Sodian in 1966). ).

ここに、Ag’;g(7)反応平衡’lj1位(V/5
HE)EAヨct0.塩化銀の反応平衡電位 (V/5)iE) R;気体常数(8,314ジユ一ル/MOLK)T;絶
対温度(0K) F;ファラデイ一定数(96500クーロン)aCl−
、塩素イオン活量 こnらの電極のうち、外部照合型の照合電極では、扁温
筒圧容器から試験液を液絡の之めに絶えず流出させる必
要がらり、このための圧力シール部(第5図では濾紙プ
ラグ35)の7−リング方法が繊しく、この部分では減
圧される液中の溶存ガスが気泡となって液絡を阻害した
り、あるいは。
Here, Ag';g(7) reaction equilibrium'lj1 position (V/5
HE) EA Yoct0. Reaction equilibrium potential of silver chloride (V/5) iE) R: Gas constant (8,314 units/MOLK) T: Absolute temperature (0K) F: Faraday constant (96,500 coulombs) aCl-
, chloride ion activity Among these electrodes, the external reference type reference electrode requires the test liquid to constantly flow out from the cryotubular pressure vessel toward the liquid junction, and a pressure seal part (no. In Figure 5, the 7-ring method of the filter paper plug 35) is delicate, and in this part, dissolved gas in the liquid being depressurized becomes bubbles and obstructs the liquid junction.

高温液を冷却して常温度で測定するため、電位補正を行
わなければならないが、それが難しいなどの問題がある
Since the high-temperature liquid is cooled and measured at room temperature, it is necessary to perform potential correction, but there are problems such as the difficulty of doing so.

一方、内部照合型の照合電極においては、測定した試料
電極の電位を熱力学的取り扱いに便利なSHE基準値に
換算できるものの、電極内の封入液が漏出して電極室に
おける反応電位があらかじめ熱力学的に確認された挙動
と異ってくるという欠点がある。
On the other hand, with internal reference type reference electrodes, although the measured potential of the sample electrode can be converted into the SHE reference value, which is convenient for thermodynamic handling, the liquid sealed inside the electrode leaks and the reaction potential in the electrode chamber is heated up in advance. The disadvantage is that the behavior differs from the mechanically confirmed behavior.

〔発、1明が解決しようとする問題点〕従来の内部照合
型の照合電極においては、液箱部を通して^温高圧容器
の高圧水を取シ込む構造となっているが、このために電
極室内のCl−がすこから容器中に拡散するかもしくは
電極が絶縁さnている絶縁物との界面を通って高m高圧
容器外に漏出することがめシ、このような場合、(1)
式に示したWL憔至内の電極反応電位を正確に把掴でき
ないという問題点があった。
[Problems to be solved by the authors] Conventional internal reference type reference electrodes have a structure in which high-pressure water from a high-temperature and high-pressure container is pumped through the liquid box. In such a case, (1) Cl- in the room may diffuse into the container or leak out of the high-pressure container through the interface with the insulating material in which the electrode is insulated.
There was a problem in that the electrode reaction potential within the WL gap shown in the formula could not be accurately determined.

本発明の目的は、高温高圧純水環境における金属表面の
電極電位を安定に測定でき、また、電極呈内に一定量の
Cl−を供給可能でめり、しかも。
An object of the present invention is to be able to stably measure the electrode potential of a metal surface in a high-temperature, high-pressure pure water environment, and to be able to supply a certain amount of Cl- into the electrode.

高温高圧容器内への電極反応液の逆拡散をないようにで
きる内部照合型の照合電極を提供することにるる。
It is an object of the present invention to provide an internal reference type reference electrode that can prevent back diffusion of an electrode reaction liquid into a high-temperature, high-pressure container.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、銀−塩化銀からなる金属電極を設置した外
界から隔離絶縁された電極室と、この電極室の上記金属
電極を覆うように設けた塩化カリウム粉末を含む保護管
と、上記′成極室内に高温高圧容器内の純水を−dD込
む液絡管とを備え、上記電極室内のnttm反応に必要
な一定虚のCl−を供給して上記高温高圧容器内の供試
金属表面電位を測定する構成として達成するようにした
The above purpose is to provide an electrode chamber isolated and insulated from the outside world in which a metal electrode made of silver-silver chloride is installed, a protective tube containing potassium chloride powder provided to cover the metal electrode in this electrode chamber, and The electrode chamber is equipped with a liquid junction tube that introduces -dD of pure water in a high-temperature, high-pressure container, and a constant imaginary Cl- necessary for the nttm reaction in the electrode chamber is supplied to increase the surface potential of the test metal in the high-temperature, high-pressure container. This was achieved through a configuration for measuring.

〔作用〕[Effect]

電極室内に塩化カリウムを高温高圧水に一定の割合で供
給する塩化カリウム粉末を含む保護管でnt電極室内金
属電極を覆うようにしたので、高温高圧純水環境におけ
る金属異面の電極電位を安定に測定でき、また、高温高
圧水の漏失に対応して塩化カリウムを供給できるので、
封入電解質の漏失を阻止することができる。またi成極
室内には高温高圧容器内の純水を斌絡管を介して取シ込
むようにしたので、照合電極から高温高圧容器内への電
極反応液の逆拡散をなくすことができる。さらに、高温
舗王水を一定流量で高温高圧容器外へ漏失させるように
したので、そのpJ、/#tの電気伝導度より電極室内
のCl−活量を予知できる。
The metal electrode in the NT electrode chamber is covered with a protective tube containing potassium chloride powder that supplies potassium chloride to high-temperature, high-pressure water at a constant rate in the electrode chamber, which stabilizes the electrode potential of different metal surfaces in a high-temperature, high-pressure pure water environment. In addition, potassium chloride can be supplied in response to leaks of high-temperature, high-pressure water.
Leakage of the encapsulated electrolyte can be prevented. Furthermore, since the pure water in the high-temperature, high-pressure container is introduced into the i-polarization chamber through the torrent tube, it is possible to eliminate back diffusion of the electrode reaction liquid from the reference electrode into the high-temperature, high-pressure container. Furthermore, since the high-temperature aqua regia is allowed to leak out of the high-temperature and high-pressure container at a constant flow rate, the Cl- activity in the electrode chamber can be predicted from the electrical conductivity of pJ, /#t.

〔実施例〕〔Example〕

以ド本発明を第1図、第2図に示した実施例および第3
図、第4図を用いて詳細に説明する。
Embodiments of the present invention shown in FIGS. 1 and 2 and 3.
This will be explained in detail using FIGS.

第1図は本発明の内部照合型の照合磁極の一実施例を示
す概要図でるる。第1図の照合1!極は。
FIG. 1 is a schematic diagram showing an embodiment of an internal verification type verification magnetic pole of the present invention. Figure 1 matching 1! The pole is.

電極2.電極室3.電極反応液の液抵抗の検出系を主要
構成要素としている。照合電極は高温高圧“容器上蓋1
に図示のように固定されてお9.電極2は銀−塩化銀を
用いて構成してろシ、図示のような断面形状を有してお
シ、突起を有する。そして、tJL極室3に接する面は
溶融接着塩化銀4によって電極室3に接着してある。
Electrode 2. Electrode chamber 3. The main component is a detection system for the resistance of the electrode reaction solution. The reference electrode is high temperature and high pressure.
9. is fixed as shown in the figure. The electrode 2 is made of silver-silver chloride, has a cross-sectional shape as shown in the figure, and has protrusions. The surface in contact with the tJL electrode chamber 3 is adhered to the electrode chamber 3 with melt adhesive silver chloride 4.

また、電極2は、塩化銀4がある部分を除き。Moreover, the electrode 2 except for the part where the silver chloride 4 is present.

全表面がテフロン焼付けなどによう絶縁被覆してるり、
この電極2はテフロンなどの絶縁物を加工して表作した
絶縁固定具5,6により密着固定してある。
The entire surface is coated with insulation such as Teflon baking,
This electrode 2 is closely fixed by insulating fixtures 5 and 6 made of an insulating material such as Teflon.

電極室3は、絶縁固定具6と絶縁スリーブ7とで構成さ
れた空間であり、その内側に電極2を覆うように保護管
8が設置してある。保護管8は。
The electrode chamber 3 is a space made up of an insulating fixture 6 and an insulating sleeve 7, and a protective tube 8 is installed inside thereof so as to cover the electrode 2. Protection tube 8.

塩化カリウム微粉末をパーライト、バーミキュライト、
ソーダ石灰ガラス、S化ケイ素などの多孔質ガラスで被
覆した後、これらを粘土質材料を用いて焼結結合して保
護管状にしたものである。
Potassium chloride fine powder is combined with perlite, vermiculite,
After being coated with porous glass such as soda lime glass or silicon sulfide, these are sintered and bonded using a clay material to form a protective tube.

また、電極室3には、外部からの尚王水によシ絶縁スリ
ーブ7や保護管8が損傷するのを防止すlるため固定ア
スベスト、アルミナ(ktzos )などの焼結微粒子
が充填してある。
In addition, the electrode chamber 3 is filled with sintered fine particles of fixed asbestos, alumina (ktzos), etc. to prevent damage to the insulating sleeve 7 and protective tube 8 due to aqua regia from the outside. be.

さらに、絶縁スリーブ7には、図示のような液絡9が設
置してろυ、固定具10に取シ付けてあり、かつ、上記
と同じ充填物を充填した液絡管11より高′tMA王水
が電極室3内に浸入する。
Furthermore, a liquid junction 9 as shown in the figure is installed in the insulating sleeve 7, which is attached to the fixture 10, and has a higher tMA than the liquid junction pipe 11 filled with the same filling material as above. Water enters into the electrode chamber 3.

12.13はe縁固足具5の支持具である。12.13 is a support for the e-edge fixture 5.

−万、高鴎洲圧谷器上蓋1の外側に取り出された電憾2
の固定用絶縁固定具5の先端にはシーリングリング14
が設置してsb、これをシーリングキャンプ15のネジ
によシ適当な強さに圧縮することにより、電極2と絶縁
固定具5との界面よシ滲出する電極反応液の流速を制御
するようにしてあるっ      ・ さらに、シーリングキャップ15には微小な液絡−g1
6が設置してあり、参出液は液絡管16を通過して電解
セル17に導かれ、ここで計測器18によ多液間抵抗が
測定され、電極反応液中のCl−濃度が推定される。
- 10,000, Takaozu Pressure Valley Apparatus Upper Lid 1 Taken out from the outside 2
A sealing ring 14 is attached to the tip of the insulating fixture 5 for fixing the
sb is installed and compressed to an appropriate strength by the screw of the sealing camp 15 to control the flow rate of the electrode reaction liquid seeping out from the interface between the electrode 2 and the insulating fixture 5.・ In addition, there is a minute liquid junction -g1 in the sealing cap 15.
6 is installed, and the participating liquid passes through the liquid junction pipe 16 and is led to the electrolytic cell 17, where the multi-liquid resistance is measured by the measuring device 18, and the Cl- concentration in the electrode reaction liquid is measured. Presumed.

′また。この方法によシミ極室3内の電極反応液は高温
高圧容器内に逆拡散することが避けられる。
'Also. This method prevents the electrode reaction liquid in the stain electrode chamber 3 from back-diffusion into the high-temperature and high-pressure container.

次に、電極反応に関与する事項について説明する。まず
、高温高圧容器中の環流液−は、第1図の液絡管11よ
シ浸入し、電極ヱ3内に充満すると。
Next, matters related to electrode reactions will be explained. First, the reflux liquid in the high-temperature, high-pressure container enters through the liquid junction pipe 11 in FIG. 1 and fills the electrode 3.

保護管8より次の(2)式にしたがって塩化カリウム(
KO2)の溶解が起シ。
Potassium chloride (
Dissolution of KO2) occurs.

電極室3内にCl−が供給される。Cl- is supplied into the electrode chamber 3.

ここで、塩化銀電極2の表面では1次の(3)弐に示す
電極反応が行われ、 その電極電位は塩素イオンの活量で決定される。
Here, on the surface of the silver chloride electrode 2, the primary electrode reaction shown in (3) 2 takes place, and the electrode potential is determined by the activity of chloride ions.

また、@度による影#は、(1)式によシ示される。Further, the shadow # due to @ degree is expressed by equation (1).

次に、効果を確認するため1本発明に係る照合電極を高
温高圧容器上蓋に第1図に示すように取シ付け、第2図
に示す実施例の測定回路によって金属試験片の陽分極曲
線を測定によって求゛めた。
Next, in order to confirm the effect, a reference electrode according to the present invention was attached to the upper lid of a high-temperature and high-pressure container as shown in FIG. was determined by measurement.

第2図中の高温高圧容器19は、温度300C1圧力1
50atmまでのものを用い、これに金属試験片20お
よび電位走引用電極21として試験片20と同−狭面積
を有する白金it極を設置し、さらに本発明に係る照合
電極22を設置し、それぞれの導電線をポテンショスタ
ンド23に接続した。
The high temperature and high pressure vessel 19 in Fig. 2 has a temperature of 300C and a pressure of 1.
A metal test piece 20 and a platinum IT electrode having the same narrow area as the test piece 20 were installed as a metal test piece 20 and a potential running electrode 21, and a reference electrode 22 according to the present invention was further installed. The conductive wire was connected to the potentiometer stand 23.

そして、ポテンションスタンド23によシミ位を自動走
引して得られる電流値を直流記録計24と電位記録計2
5に記録し、このデータをもとにして金属試験片20の
陽分極曲線をプロッター26に作図する工うKした。
Then, the current value obtained by automatically running the stain position using the potentiometer stand 23 is measured by the DC recorder 24 and the potential recorder 2.
5, and based on this data, a positive polarization curve of the metal test piece 20 was plotted on the plotter 26.

この操作を温度150C,200r、250Cについて
行った結果、第3図に示すような陽分極曲線が得られた
。第3図のa曲lBは150C,1)曲森は200C,
C曲線は250Cの場合で、同図から金属試験片20の
電極反応の平衡電位に近似する電位(腐*屯征)に、温
度の上昇とともに′4−位側に移行し、平衡反応の熱力
学Vζおいて示されている温度−平衡電位の関係に近似
していることが認められた。また、同図から金属試験片
20の腐S:を流に直き換えられる電流に、1度の上昇
とともに増加する温間が認められる。
As a result of performing this operation at temperatures of 150C, 200r, and 250C, an anodic polarization curve as shown in FIG. 3 was obtained. In Figure 3, the a song IB is 150C, 1) The song Mori is 200C,
The C curve is for the case of 250C, and from the same figure, as the temperature rises, the potential approximates the equilibrium potential of the electrode reaction of the metal test piece 20 (ro*tonsei), and shifts to the '4-position side, and the heat of the equilibrium reaction increases. It was found that the relationship between temperature and equilibrium potential is similar to that shown in the dynamics Vζ. Furthermore, from the same figure, it can be seen that the current that converts the corrosion S: of the metal test piece 20 directly into a current has a warm temperature that increases as the temperature rises by 1 degree.

さらに、金属試犠片20の不一悪化の峨向け。Furthermore, the unevenness of the metal sacrificial piece 20 is becoming worse.

温度の上昇とともに不安定となってくることも認められ
ることより、本発明に係る照合電極22は。
Since it is recognized that the reference electrode 22 according to the present invention becomes unstable as the temperature rises.

このような4境に2いて十分安定した状態でこれらの電
像反応を測定し得るものであることが確認できた。
It was confirmed that these electromagnetic reactions could be measured in a sufficiently stable state within these four boundaries.

一方1本発明に係る照会電極220一度一@度に、第4
図に示すように、保護管8からの塩化カリウムの電極室
溶液への溶解度が温度の上昇とともに増加するため、そ
の増加分だけ換算が必要である。
While one interrogation electrode 220 according to the present invention once at a time, the fourth
As shown in the figure, the solubility of potassium chloride from the protective tube 8 in the electrode chamber solution increases as the temperature rises, so it is necessary to convert by the amount of increase.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、高温高圧純水環
境における金属表面の電極電位を安定に測定でき、また
、電極案内に一定量のCl−を供給可能であプ、電極呈
内の電解液質のCl−a度を測定可能であり、しかも、
照会電極から高温高圧容器内へのwL極反応液の逆拡散
がないという効果がある。
As explained above, according to the present invention, it is possible to stably measure the electrode potential of a metal surface in a high-temperature, high-pressure pure water environment, and it is also possible to supply a certain amount of Cl- to the electrode guide. It is possible to measure the Cl-a degree of electrolyte, and
This has the advantage that there is no back-diffusion of the wL electrode reaction liquid from the inquiry electrode into the high temperature and high pressure vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の内部照合型の照会電極の一実施例を示
す概要図、第2図は第1図の照合電極を高温高圧容器上
蓋に4u)付けた場合の測定回路の一実施例を示す回路
図、第3図は金属の陽分極曲線の実験結果を示す線図、
第4図は塩化銀の溶解度に及ぼす温度の影響を示す線図
、第5図は従来の外部照合型照合電極の例を示す概要図
、第6図は従来の内部照合型照合電極の例を示す概要図
である。 1・・・高温高圧容器上蓋、2・・・電極、3・・・電
極室、4・・・溶融接着塩化銀、5,6・・・絶縁固定
具、7・・・絶縁スリーブ、8・・・保護管、9・・・
液絡、lO・・・固定具、11,16・・・液絡管、1
4・・・シーリングリング、15・・・シーリングキャ
ップ、17・・・電解セル、18・・・計測器。
Figure 1 is a schematic diagram showing an embodiment of the internal verification type inquiry electrode of the present invention, and Figure 2 is an example of a measurement circuit when the reference electrode of Figure 1 is attached to the upper lid of a high-temperature, high-pressure container. Figure 3 is a diagram showing the experimental results of the anodic polarization curve of metal.
Figure 4 is a diagram showing the effect of temperature on the solubility of silver chloride, Figure 5 is a schematic diagram showing an example of a conventional external reference type reference electrode, and Figure 6 is an example of a conventional internal reference type reference electrode. FIG. DESCRIPTION OF SYMBOLS 1... Upper lid of high temperature and high pressure container, 2... Electrode, 3... Electrode chamber, 4... Melt bonding silver chloride, 5, 6... Insulating fixture, 7... Insulating sleeve, 8...・Protection tube, 9...
Liquid junction, lO... Fixture, 11, 16... Liquid junction pipe, 1
4... Sealing ring, 15... Sealing cap, 17... Electrolytic cell, 18... Measuring instrument.

Claims (1)

【特許請求の範囲】 1、高温高圧純水環境における金属表面の電極電位を測
定し、それとあわせて分極特性などを測定する内部照合
型の照合電極において、銀−塩化銀からなる金属電極を
設置した外界から隔離絶縁された電極室と、該電極室内
の前記金属電極を覆うように設けた塩化カリウム微粉末
を含む保護管と、前記電極室内に高温高圧容器内の純水
を取り込む液絡管とを備え、前記電極室内に電極反応に
必要な一定量のCl^−を供給して前記高温高圧容器内
の供試金属表面電位を測定する構成としたことを特徴と
する照合電極。 2、前記金属電極の前記高温高圧容器外側の端部には前
記電極室内の液体を一定流速で前記高圧容器外に滲出さ
せて、前記電極室内の電極反応液のCl^−を測定可能
とする手段を備えている特許請求の範囲第1項記載の照
合電極。 3、前記液絡管は、前記電極室の電極反応液を前記高温
高圧容器内に逆拡散させないようにするために固定アス
ベスト、アルミナなどの焼結微粒子を充填してある特許
請求の範囲第1項または第2項記載の照合電極。 4、前記保護管は、塩化カリウム微粉末を多孔質ガラス
で被覆した後、粘土質材料を用いて焼結結合した構成と
してある特許請求の範囲第1項または第2項または第3
項記載の照合電極。
[Scope of Claims] 1. A metal electrode made of silver-silver chloride is installed in an internal verification type reference electrode that measures the electrode potential of a metal surface in a high-temperature, high-pressure pure water environment and also measures polarization characteristics. an electrode chamber isolated and insulated from the outside world, a protective tube containing fine potassium chloride powder provided to cover the metal electrode in the electrode chamber, and a liquid junction tube that introduces pure water in a high-temperature and high-pressure container into the electrode chamber. A reference electrode characterized in that it is configured to supply a certain amount of Cl^- necessary for an electrode reaction into the electrode chamber and measure the surface potential of a test metal in the high temperature and high pressure container. 2. At the outer end of the high temperature and high pressure container of the metal electrode, the liquid in the electrode chamber is allowed to ooze out of the high pressure container at a constant flow rate, so that Cl^- of the electrode reaction liquid in the electrode chamber can be measured. A reference electrode according to claim 1, comprising means. 3. The liquid junction tube is filled with sintered fine particles such as fixed asbestos or alumina in order to prevent the electrode reaction liquid in the electrode chamber from back diffusing into the high temperature and high pressure container. Reference electrode according to item 1 or 2. 4. The protection tube is constructed by coating potassium chloride fine powder with porous glass and then sintering and bonding it using a clay material.
Reference electrode as described in section.
JP10092386A 1986-05-02 1986-05-02 Reference electrode Pending JPS62259054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10092386A JPS62259054A (en) 1986-05-02 1986-05-02 Reference electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10092386A JPS62259054A (en) 1986-05-02 1986-05-02 Reference electrode

Publications (1)

Publication Number Publication Date
JPS62259054A true JPS62259054A (en) 1987-11-11

Family

ID=14286866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10092386A Pending JPS62259054A (en) 1986-05-02 1986-05-02 Reference electrode

Country Status (1)

Country Link
JP (1) JPS62259054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177678A (en) * 2004-12-20 2006-07-06 Dkk Toa Corp Reference electrode
JP2019113316A (en) * 2017-12-20 2019-07-11 ラピスセミコンダクタ株式会社 Reference electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177678A (en) * 2004-12-20 2006-07-06 Dkk Toa Corp Reference electrode
JP2019113316A (en) * 2017-12-20 2019-07-11 ラピスセミコンダクタ株式会社 Reference electrode

Similar Documents

Publication Publication Date Title
US3645875A (en) Electrode assembly
US3915830A (en) Solid electrolyte electrochemical cell with self contained reference
US4264424A (en) Hydrogen ion sensor having a membrane sheath of an oxygen ion conducting ceramic
TW201812273A (en) Electrochemical detection of corrosion and corrosion rates of metal in molten salts at high temperatures
TW305023B (en)
CN108645898A (en) Electrochemical property test device and electrochemical property test method
JPS62259054A (en) Reference electrode
US3498900A (en) Corrosion-analytical monitoring apparatus
Parks et al. A study of the use of Y2O3 doped ZrO2 membranes for solar electrothermal and solarthermal separations
JP3667762B2 (en) Method for measuring electrochemical activity
US5234570A (en) Reference electrode with annular junction
Lee et al. Electrochemical modeling of iodide oxidation in metal-halide molten salts
RU2602757C2 (en) Hydrogen sensor in gaseous media
RU2120624C1 (en) Electrochemical sensor of concentration of hydrogen in gas and liquid mixtures
JPH0452407B2 (en)
JPS625167A (en) Non-polarizable electrode
Kurita et al. The electromotive force of a hydrogen and/or oxygen concentration cell using 10 mol% In-doped CaZrO3 as the solid electrolyte
JPH07167821A (en) Electrochemical monitor
JPH0422290Y2 (en)
JPH04337452A (en) Platinum reference electrode for atomic reactor
JP3855010B2 (en) Equipment for measuring oxygen concentration in metal fluids
KR20110127839A (en) Auxiliary electrode typed sensor and that reference electrode and manufacturing method thereof
JPH02223854A (en) Electrochemical sensor
JPH0675055B2 (en) Method for measuring hydrogen concentration in molten metal and sensor probe used for the same
Numata et al. Galvanostatic Double Pulse Study of O 2−/1/2 O 2 (Pt) Electrode in NaCl‐KCl Melts