JPS62258924A - Combustion furnace nozzle device - Google Patents
Combustion furnace nozzle deviceInfo
- Publication number
- JPS62258924A JPS62258924A JP10197986A JP10197986A JPS62258924A JP S62258924 A JPS62258924 A JP S62258924A JP 10197986 A JP10197986 A JP 10197986A JP 10197986 A JP10197986 A JP 10197986A JP S62258924 A JPS62258924 A JP S62258924A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- combustion furnace
- fuel
- nozzle
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 46
- 239000012530 fluid Substances 0.000 claims abstract description 61
- 239000000446 fuel Substances 0.000 claims abstract description 46
- 239000003245 coal Substances 0.000 claims description 9
- 239000000571 coke Substances 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 239000000295 fuel oil Substances 0.000 claims 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 239000002245 particle Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 6
- 239000004449 solid propellant Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Landscapes
- Jet Pumps And Other Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、燃焼炉用ノズル装置と燃焼炉に関するもの
である。ざらに詳しくは、コアンダスバクラルフロ一方
式による高効率燃焼炉用ノズルとそれを用いた燃焼炉に
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a nozzle device for a combustion furnace and a combustion furnace. More specifically, the present invention relates to a high-efficiency combustion furnace nozzle based on one type of Coandas Bacalar flow and a combustion furnace using the nozzle.
(従来技術とその課題)
石油危機以来、省エネルギー、代替エネルギーへの関心
が高まり、産業の広範囲な分野で効率的、低コストのエ
ネルギーの利用についての検討が進められている。(Conventional technology and its challenges) Since the oil crisis, interest in energy conservation and alternative energy has increased, and studies on efficient and low-cost energy use are underway in a wide range of industrial fields.
すでに多くの分野で様々な省エネルギー、代呂エネルギ
一手段が採用されており、加熱炉、燃焼炉をはじめとし
て、熱エネルギーを利用する装置、設備の改善が進/ν
でいる。Various energy saving and energy saving methods have already been adopted in many fields, and improvements are being made in devices and equipment that utilize thermal energy, including heating furnaces and combustion furnaces.
I'm here.
また、近年、石炭の利用についても関心が高まり、CO
M (石炭・石油混合燃料)、CWM(石炭・水混合燃
料)、あるいは微粒状石炭などの利用が始められている
。In addition, in recent years, interest in the use of coal has increased, and CO
The use of M (coal/oil mixed fuel), CWM (coal/water mixed fuel), or granular coal has begun.
このような省エネルギー、代替エネルギーの開発と利用
が進むに従って、燃料の熱エネルギーへの変換とその熱
エネルギーの有効利用のための燃焼炉の構造についての
改善も様々に行われている。As the development and use of such energy saving and alternative energy advances, various improvements have been made to the structure of combustion furnaces for converting fuel into thermal energy and effectively utilizing that thermal energy.
たとえば、熱エネルギーの;【1失を防止する燃焼炉の
炉壁構造の改良、燃料とバーナー火炎との接触効率の改
善のためのノズル先端部の改良などかある。Examples include improving the furnace wall structure of a combustion furnace to prevent loss of thermal energy, and improving the nozzle tip to improve the contact efficiency between the fuel and burner flame.
しかしながら、これらの従来の技術においては、燃料を
燃焼炉内に送入するためのノズル装置についてはあまり
大ぎな改善はなかった。特に、石炭の利用、COM、C
WMなどの新燃料の使用という新しい状況に対応したノ
ズル装置は、これまでの技術では大きな問題があった。However, in these conventional techniques, there has not been much improvement in the nozzle device for feeding fuel into the combustion furnace. In particular, coal utilization, COM, C
Conventional technology has had major problems with nozzle devices that can accommodate the new situation of using new fuels such as WM.
すなわち、石炭、コークスなどの固体状の燃料粒子、あ
るいはCOM、CWMなどの固体粒子含有の流体を燃料
として用いる場合、従来は、いわゆるエジェクタ一方式
などの乱流混合輸送法が採用されていた。この方法にお
いては、高速の空気、あるいは液状流体が固体粒子とと
もに乱流混合の状態にあるため、粒子はノズル先端の出
口から放出されるまでに管路の内面壁と激しく衝突し、
この内面壁の摩耗は避tプられなかった。しかも、この
摩耗は管路の破壊にまで急速に進む。That is, when solid fuel particles such as coal and coke, or fluids containing solid particles such as COM and CWM, are used as fuel, conventionally, a turbulent mixed transport method such as a so-called ejector one-type method has been employed. In this method, high-speed air or liquid fluid is in a state of turbulent mixing with solid particles, so the particles violently collide with the inner wall of the pipe before being ejected from the outlet at the tip of the nozzle.
This wear of the inner wall was unavoidable. Moreover, this wear rapidly progresses to the point of destruction of the pipe line.
このため、この摩耗を抑制し、しかも燃料の燃焼炉内へ
の供給を適切に=1ントロールするためには、管路材料
を耐衝撃性、耐久性の大きな特殊材料とするか、セラミ
ックにJ、る内面コーティングなどの手段によって管内
壁を強化する必要があった。また、同様のことは、管路
だけでなく、バルブ類、管接手類、流量計あるいは圧力
計などの計測器類にとっても必要とされていた。Therefore, in order to suppress this wear and to properly control the supply of fuel into the combustion furnace, the pipe material must be made of a special material with high impact resistance and durability, or ceramic It was necessary to strengthen the inner wall of the tube by means such as internal coating. Moreover, the same thing was required not only for pipes but also for valves, pipe fittings, and measuring instruments such as flowmeters and pressure gauges.
またさらに、乱流混合による場合には圧ノコ損失が大き
く、燃料の供給と燃焼炉の効率を上げる場合には、燃料
供給のための圧力装置などを大型化せざるを冑なかった
。Furthermore, pressure saw loss is large when turbulent mixing is used, and in order to increase the efficiency of fuel supply and combustion furnace, it is necessary to increase the size of the pressure equipment for fuel supply.
このため、このような問題のない効率性、経済性に優れ
た燃焼炉用ノズル装置とそのノズル装置を用いた燃焼炉
の実現が強く望まれていた。Therefore, it has been strongly desired to realize a nozzle device for a combustion furnace that is free from such problems and has excellent efficiency and economical efficiency, and a combustion furnace using the nozzle device.
(発明の目的)′
この発明は、このような事情を鑑みてなされたものであ
り、従来法における問題点を解決した、燃焼炉用ノズル
装置とこのノズルを用いた燃焼炉を提供することを目的
としている。(Object of the Invention) This invention was made in view of the above circumstances, and aims to provide a nozzle device for a combustion furnace that solves the problems in the conventional method, and a combustion furnace using this nozzle. The purpose is
(発明の構成と効果)
この発明の燃焼炉用ノズル装置は、燃料、特に固体粒子
を含有する燃料流体を効率的に、かつ管等の内壁の摩耗
を抑制しつつ燃焼炉内に供給するために、従来の乱流混
合による燃料供給法に変えて、コアンダスパイラルフロ
一方式を採用することを特徴としている。(Structure and Effects of the Invention) The nozzle device for a combustion furnace of the present invention is for efficiently supplying fuel, particularly a fuel fluid containing solid particles, into a combustion furnace while suppressing wear on the inner walls of pipes, etc. It is characterized by the adoption of a Coanda spiral flow system instead of the conventional fuel supply method using turbulent flow mixing.
このコアンダスパイラルフローとその産業的利用のはこ
の発明の発明者によってはじめて見出されたもので、管
路方向の流体のベクトルに管半径方向のベクトルを加え
ると流体が旋回し、この旋回流に基ずき管内壁近傍に動
的境界層が形成されるとともに、流体はスパイラル(螺
旋)を描きつつ管路方向に高速で進行するという事実に
基づいている。This Coanda spiral flow and its industrial use were first discovered by the inventor of this invention.When a vector in the radial direction of the pipe is added to the vector of the fluid in the direction of the pipe, the fluid swirls, and this swirling flow This is based on the fact that a dynamic boundary layer is formed near the inner wall of the base pipe, and the fluid moves at high speed in the direction of the pipe while drawing a spiral.
このスパイラルフローに固体粒子を混入すると粒子はス
パイラルを招きつつ管路方向に進行し、しかも粒子と管
内壁との接触は著しく抑制されるのである。When solid particles are mixed into this spiral flow, the particles proceed in the direction of the pipe while causing a spiral, and contact between the particles and the inner wall of the pipe is significantly suppressed.
この発明は、このようなコアンダ効果を利用するもので
ある。This invention utilizes such a Coanda effect.
図面に沿って、この発明のノズル装置とこれを用いた燃
焼炉について説明1′る。A nozzle device of the present invention and a combustion furnace using the same will be explained in accordance with the drawings.
第1図は、この発明のノズル装置の一例を断面図として
示したものである。この第1図に例示したこの発明のノ
ズル装置は、管路(1)の端面に管路径と等しくなるよ
うに接続され、該接続面と反対方向に次第に径が大きく
なっていく円筒管(2)に、加圧流体を該円筒管内に送
入するための環状の細隙(3)を形成し、該細隙(3)
から管路(1)に向って滑らかに湾曲した壁面(4)を
設り、円筒管の管路(1)の反対の端面には燃料流体の
流入口(5)を設け、さらに、細隙(3)に加圧流体を
供給する手段と、燃料流体の流入口(5)に燃料流体を
供給づる手段とを設けたコアンダスパイラルフロー生成
部と: 燃t1流体をコアンダスパイラルフローによっ
てノズル出口に移送する管路部と: 燃料流体を燃焼炉
内に放出するノズル部とからなっている。FIG. 1 shows a cross-sectional view of an example of a nozzle device of the present invention. The nozzle device of the present invention illustrated in FIG. ) is formed with an annular slit (3) for feeding pressurized fluid into the cylindrical pipe, and the slit (3)
A smoothly curved wall (4) is provided from the cylindrical pipe toward the pipe (1), a fuel fluid inlet (5) is provided at the opposite end of the cylindrical pipe, and a slit is provided. (3) a Coanda spiral flow generation unit provided with a means for supplying pressurized fluid to the fuel fluid inlet (5) and a means for supplying fuel fluid to the fuel fluid inlet (5); It consists of a pipe section for transferring and a nozzle section for discharging the fuel fluid into the combustion furnace.
細隙(3)の壁面(4)と反対の側には、補助筒(8)
を接続するか、もしくは、この補助筒に相当する部分を
円筒管(2)と一体のものとしてもよい。ただ、細隙(
3)の開隔については、燃焼炉の状態をみながら燃料供
給をコントロールするためにも、調整自在とするのまが
好ましい。また、細隙(3)において湾曲面(4)と対
向する壁面(9)は、はぼ直角状または鋭角状に折り曲
げる。On the side opposite to the wall surface (4) of the slit (3), there is an auxiliary cylinder (8).
Alternatively, the portion corresponding to this auxiliary tube may be integrated with the cylindrical tube (2). However, the slit (
Regarding the gap 3), it is preferable to make it freely adjustable in order to control the fuel supply while monitoring the condition of the combustion furnace. Moreover, the wall surface (9) facing the curved surface (4) in the gap (3) is bent into a substantially right-angled or acute-angled shape.
環状の細隙(3)に加圧流体を供給する手段(7)とし
ては適宜のなものが採用できるが、円筒管(2)を囲む
ように分配室(6)を設け、この分配室と細隙(3)と
を連通させることができる。Any suitable means (7) for supplying pressurized fluid to the annular slit (3) can be adopted, but a distribution chamber (6) is provided to surround the cylindrical pipe (2), and this distribution chamber and The slit (3) can be communicated with the slit (3).
この構造においては、加圧流体、たとえば空気、水など
、を高速で細隙(3)から円筒管(2)内に送入する。In this construction, a pressurized fluid, such as air, water, etc., is pumped at high speed through the slot (3) into the cylindrical tube (2).
細隙(3)の出口で流体はコアンダ効果により円筒管か
ら管路(1)側に傾いた流線(α)を描き、その結果、
反対側には負圧域を生じる。その負圧域に外部から燃料
流体が流入する(矢印β)。At the exit of the slit (3), the fluid draws a streamline (α) tilted from the cylindrical pipe toward the pipe (1) due to the Coanda effect, and as a result,
A negative pressure area is created on the opposite side. Fuel fluid flows into the negative pressure region from the outside (arrow β).
細隙(3)からの流体の運動ベクlヘルと外部からの燃
料流体の運動ベクトルとは合成されて円筒管内を管路(
1)側へ進行Jる流体流が形成される。The motion vector of the fluid from the slit (3) and the motion vector of the fuel fluid from the outside are combined to form a pipe (
1) A fluid flow is formed that advances toward the side.
流体流は、次第に径をゼばめられ、その際に半径方向の
ベクトルが与えられる。この半径方向のベクトルが旋回
ベクトルに転換し、直進ベクトルと合せてスパイラルモ
ーションを生ずるに至る。The fluid stream is gradually narrowed in diameter and given a radial vector. This radial vector is converted into a turning vector, which together with the straight vector produces a spiral motion.
もちろん、この第1図の例に、この発明が限定されるも
のではない。コアンダスパイラルフローを生成させるこ
とができ、それを維持する限り、構造上に特段の限定は
ない。また、この発明のノズル装置においては、加圧流
体と固体燃料粒子とは乱流混合しないので、管内壁との
衝突も抑制される。このため、燃焼炉用に用いることの
できる耐熱性があれば、管およびその内壁に格別硬質な
材料を使用する必要はない。Of course, the present invention is not limited to the example shown in FIG. There are no particular limitations on the structure as long as a Coanda spiral flow can be generated and maintained. Furthermore, in the nozzle device of the present invention, since the pressurized fluid and the solid fuel particles do not mix turbulently, collision with the inner wall of the pipe is also suppressed. Therefore, it is not necessary to use a particularly hard material for the tube and its inner wall, as long as it has a heat resistance that can be used in a combustion furnace.
この発明のノズル装置のコアンダスパイラルフローの生
成部としては、第1図に示したような環状の細隙(3)
側から直らに円筒管(2)がコーン状に形成されたもの
だけではなく、たとえば第2図および第3図に示すよう
に環状の細隙側から円筒部分(10)を経てコーン状に
形成されたものでもよい。The Coanda spiral flow generating section of the nozzle device of this invention has an annular slit (3) as shown in FIG.
The cylindrical tube (2) is not only formed into a cone shape straight from the side, but also formed into a cone shape from the annular slit side through the cylindrical portion (10) as shown in FIGS. 2 and 3. It may be something that has been done.
また、固体燃料粒子を第3図に示したように、導入管(
11)から、流線βに沿って流入する流体とは別に送入
してもよい。In addition, as shown in Figure 3, the solid fuel particles are introduced into the inlet pipe (
11), the fluid may be introduced separately from the fluid flowing in along the streamline β.
この発明に用いるノズル装置においては(第1図参照)
、たとえば、円筒管(2)の傾斜角0は、tanθが1
/4〜1/8程度になるようにするのが好ましい。また
管路と円筒管との内径の比率は1/2〜115程度とす
るのが好ましい。In the nozzle device used in this invention (see Figure 1)
, for example, when the inclination angle of the cylindrical tube (2) is 0, tanθ is 1
It is preferable to set the ratio to about 1/4 to 1/8. Moreover, it is preferable that the ratio of the inner diameters of the conduit and the cylindrical tube is about 1/2 to 115.
この発明のノズル装置を用いるにあたっては、燃焼炉の
形式、ljl造に格別の限定はない。When using the nozzle device of the present invention, there are no particular limitations on the type or construction of the combustion furnace.
垂直型または水平型のバーナー火炎方式のいずれのもの
にも用いることができる。燃焼炉の形状冑 に
ついても、円筒型、立方型、その他様々なものにこの発
明のノズル装置を用いることができる。It can be used with either vertical or horizontal burner flame systems. The nozzle device of the present invention can be used for combustion furnaces of various shapes such as cylindrical, cubic, and others.
ノズル装置は、適宜な、反射板やガス循環手段等の附属
手段とともに燃焼炉に単数または複数設置することがで
きる。たとえば、円筒型の燃焼炉、もしくは加熱炉にお
いて底部よりバーナー火炎を放射し、円筒の中心線から
放射状に設置された複数のノズル装置より燃料流体を円
筒中心に向って放出させ、これら燃料流体が相互に衝突
するJ、うにすることもできる。こうすることにより、
スパイラルモーションによって供給された燃料は、燃焼
域に拡散し、燃焼効率を向上させることができる。One or more nozzle devices can be installed in the combustion furnace together with appropriate auxiliary means such as a reflector and gas circulation means. For example, in a cylindrical combustion furnace or heating furnace, burner flame is emitted from the bottom, and fuel fluid is ejected toward the center of the cylinder from multiple nozzle devices installed radially from the center line of the cylinder. You can also make them collide with each other. By doing this,
The fuel supplied by the spiral motion can diffuse into the combustion zone and improve combustion efficiency.
あるいはまた、この発明のノズル装置は燃焼炉に対して
垂直方向に複数設けてもよい。Alternatively, a plurality of nozzle devices of the present invention may be provided in a direction perpendicular to the combustion furnace.
以上のようなこの発明装置とそれを用いた燃焼炉には、
たとえば直径0.1#1I11以下の細かい粉体にまで
粉砕された石炭と石油との混合物であるCOMや石油に
代えて水を用いたCWMをはじめ、石炭、あるいはコー
クスなどの固体燃料粒子を含有した燃料流体の適宜なも
のを用いることができる。加圧流体としても、石油、水
などの液体、あるいは空気、燃焼炉循環ガス、天然ガス
、L N Gなどの気体の適宜なものを用いることがで
きる。The device of this invention and the combustion furnace using it as described above have the following features:
For example, COM, which is a mixture of coal and petroleum that has been ground to a fine powder with a diameter of 0.1#1I11 or less, and CWM, which uses water instead of petroleum, contains solid fuel particles such as coal or coke. Any suitable fuel fluid can be used. As the pressurized fluid, appropriate liquids such as oil and water, or gases such as air, combustion furnace circulating gas, natural gas, and LNG can be used.
燃料に用いる固体の粒子径は、燃焼炉の能力、構造によ
ってもらがってくるが、ファンダスパイラルフローの形
成の上からは、ノズル装置の管路径の1/3以下とし、
固体粒子と流体との混合比は10以下とするのが好まし
い。The particle size of the solid used as fuel depends on the capacity and structure of the combustion furnace, but from the viewpoint of forming a fundus spiral flow, it should be 1/3 or less of the pipe diameter of the nozzle device,
The mixing ratio of solid particles and fluid is preferably 10 or less.
ノズル装置の加圧流体の圧ノJとしては、2〜10に3
/ct/lG程度とするのが好ましい。The pressure number J of the pressurized fluid of the nozzle device is 2 to 3 in 10.
It is preferable to set it to about /ct/lG.
このようなノズル装置を用いることにより、燃料流体を
高速で効率的に供給することができるばかりか、燃料固
体粒子と管路等の装置内壁面との衝突を効果的に抑制す
ることが可能となる。By using such a nozzle device, it is possible to not only efficiently supply fuel fluid at high speed, but also to effectively suppress collisions between solid fuel particles and the inner wall surface of the device such as the pipe line. Become.
第1図、第2図、および第3図は、この発明のノズル装
置の一例の要部を断面図として示したものである。
図中の番号は次のものを示している。FIG. 1, FIG. 2, and FIG. 3 are sectional views showing essential parts of an example of a nozzle device of the present invention. The numbers in the figure indicate the following.
Claims (10)
続され、該接続面と反対方向に次第に径が大きくなって
いく円筒管(2)に、加圧流体を該円筒内に送入するた
めの環状の細隙(3)を形成し、該細隙(3)から管路
(1)に向って滑らかに湾曲した壁面(4)を設け、円
筒管の管路(1)の反対の端面には燃料流体の流入口(
5)を設け、さらに、細隙(3)に加圧流体を供給する
手段と、燃料流体の流入口(5)に燃料流体を供給する
手段とを設けたコアンダスパイラルフロー生成部と;燃
料流体をコアンダースパイラルフローによってノズル出
口に移送する管路部と;燃料流体を燃焼炉内に放出する
ノズル部とからなることを特徴とする燃焼炉用ノズル装
置。(1) Pressurized fluid is introduced into the cylindrical pipe (2), which is connected to the end face of the pipe line (1) so as to be equal to the pipe diameter, and whose diameter gradually increases in the opposite direction to the connecting face. An annular slit (3) for feeding is formed, a wall surface (4) is smoothly curved from the slit (3) toward the pipe line (1), and the pipe line (1) is a cylindrical pipe. The opposite end face has a fuel fluid inlet (
5), and further includes means for supplying pressurized fluid to the slit (3) and means for supplying fuel fluid to the fuel fluid inlet (5); 1. A nozzle device for a combustion furnace, comprising: a pipe section for transferring fuel fluid to a nozzle outlet by Coander spiral flow; and a nozzle section for discharging fuel fluid into a combustion furnace.
囲第(1)項記載の燃焼炉用ノズル装置。(2) A nozzle device for a combustion furnace according to claim (1), wherein the interval between the slits (3) is adjustable.
体の分配室を設けた特許請求の範囲第(1)項記載の燃
焼炉用ノズル装置。(3) A nozzle device for a combustion furnace according to claim (1), wherein a pressurized fluid distribution chamber is provided between the slit (3) and the pressurized fluid supply means.
続され、該接続面と反対方向に次第に径が大きくなって
いく円筒管(2)に、加圧流体を該円筒内に送入するた
めの環状の細隙(3)を形成し、該細隙(3)から管路
(1)に向って滑らかに湾曲した壁面(4)を設け、円
筒管の管路(1)の反対の端面には燃料流体の流入口(
5)を設け、さらに、細隙(3)に加圧流体を供給する
手段と、燃料流体の流入口(5)に燃料流体を供給する
手段とを設けたコアンダスパイラルフロー生成部と;燃
料流体をコアンダースパイラルフローによってノズル出
口に移送する管路部と;燃料流体を燃焼炉内に放出する
ノズル部とからなるノズル装置を用いたことを特徴とす
る燃焼炉。(4) Pressurized fluid is introduced into the cylindrical pipe (2), which is connected to the end face of the pipe line (1) so as to be equal to the pipe diameter, and whose diameter gradually increases in the opposite direction to the connecting face. An annular slit (3) for feeding is formed, a wall surface (4) is smoothly curved from the slit (3) toward the pipe line (1), and the pipe line (1) is a cylindrical pipe. The opposite end face has a fuel fluid inlet (
5), and further includes means for supplying pressurized fluid to the slit (3) and means for supplying fuel fluid to the fuel fluid inlet (5); A combustion furnace characterized by using a nozzle device comprising: a pipe section for transferring fuel fluid to a nozzle outlet by Coander spiral flow; and a nozzle section for discharging fuel fluid into the combustion furnace.
第(4)項記載の燃焼炉。(5) A combustion furnace according to claim (4), wherein a plurality of nozzle devices are provided in the combustion furnace.
流体が相互に衝突するようにノズル装置を設けた特許請
求の範囲第(5)項記載の燃焼炉。(6) A combustion furnace according to claim (5), wherein the nozzle devices are provided so that the fuel fluids discharged from the nozzle portions of the plurality of nozzle devices collide with each other.
の範囲第(4)項ないし第(6)項記載の燃焼炉。(7) A combustion furnace according to claims (4) to (6), using COM or CWM as fuel.
囲第(4)項ないし第(6)項記載の燃焼炉。(8) A combustion furnace according to claims (4) to (6), which uses coal or coke as fuel.
範囲第(7)項ないし第(8)項記載の燃焼炉。(9) A combustion furnace according to claims (7) to (8), in which heavy oil or water is used as the pressurized fluid.
(7)項ないし第(8)項記載の燃焼炉。(10) A combustion furnace according to claims (7) to (8), in which air is used as the pressurized fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61101979A JP2655555B2 (en) | 1986-05-06 | 1986-05-06 | Nozzle device for combustion furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61101979A JP2655555B2 (en) | 1986-05-06 | 1986-05-06 | Nozzle device for combustion furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62258924A true JPS62258924A (en) | 1987-11-11 |
JP2655555B2 JP2655555B2 (en) | 1997-09-24 |
Family
ID=14314974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61101979A Expired - Fee Related JP2655555B2 (en) | 1986-05-06 | 1986-05-06 | Nozzle device for combustion furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2655555B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188868A (en) * | 1989-12-28 | 1993-02-23 | Fukuvi Chemical Industry Co., Ltd. | Method for coating surfaces of a powdered material by directing coating material into coanda spiral flow of powdered material |
JP2011007478A (en) * | 2009-05-26 | 2011-01-13 | Biomass Products:Kk | Biomass powder fuel combustion burner |
DE102008036095B4 (en) * | 2008-08-04 | 2015-04-02 | Schenck Process Gmbh | burner feed |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101471636B1 (en) * | 2014-08-29 | 2014-12-15 | 한국기계연구원 | Pellet Combustion Device and Method for Low-Emission |
KR101669552B1 (en) * | 2016-04-05 | 2016-10-27 | (주)한남세라믹 | Multiple prot for coal pulverizing mill |
KR101839847B1 (en) * | 2017-08-25 | 2018-03-19 | 단국대학교 산학협력단 | Apparatus for combusting volatile organic compounds |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183817A (en) * | 1984-09-28 | 1986-04-28 | Babcock Hitachi Kk | Burner device for coal-water slurry fuel |
-
1986
- 1986-05-06 JP JP61101979A patent/JP2655555B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183817A (en) * | 1984-09-28 | 1986-04-28 | Babcock Hitachi Kk | Burner device for coal-water slurry fuel |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5188868A (en) * | 1989-12-28 | 1993-02-23 | Fukuvi Chemical Industry Co., Ltd. | Method for coating surfaces of a powdered material by directing coating material into coanda spiral flow of powdered material |
DE102008036095B4 (en) * | 2008-08-04 | 2015-04-02 | Schenck Process Gmbh | burner feed |
JP2011007478A (en) * | 2009-05-26 | 2011-01-13 | Biomass Products:Kk | Biomass powder fuel combustion burner |
Also Published As
Publication number | Publication date |
---|---|
JP2655555B2 (en) | 1997-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5431346A (en) | Nozzle including a venturi tube creating external cavitation collapse for atomization | |
US5626017A (en) | Combustion chamber for gas turbine engine | |
US4464314A (en) | Aerodynamic apparatus for mixing components of a fuel mixture | |
US2695265A (en) | Injection mixer for use in catalytic hydrocarbon conversion processes | |
CA1195228A (en) | Burner and method | |
CN1183354C (en) | Pulverized coal combustion burner and combustion method thereby | |
US4741624A (en) | Device for putting in contact fluids appearing in the form of different phases | |
US20130068852A1 (en) | Spray system and method for spraying a secondary fluid into a primary fluid | |
GB2060158A (en) | Solid fuel combustion | |
JP3219875B2 (en) | Device for mixing two gaseous components and burner incorporating this device | |
US2846150A (en) | Fluid energy grinding | |
EP1592495B1 (en) | Mixer | |
US6866504B2 (en) | Burner with high-efficiency atomization | |
JPS62258924A (en) | Combustion furnace nozzle device | |
CN109185876A (en) | The cooling jacket with heat exchange fin for coal gasification burner | |
CN111515041A (en) | Gasifying agent and water mixed atomizing nozzle and atomizing method thereof | |
JP4077554B2 (en) | Vortex burner | |
US5960026A (en) | Organic waste disposal system | |
RU2727817C1 (en) | Fluidizing gas nozzle head and fluidized bed reactor with multiple fluidizing gas nozzle heads | |
JP2506080B2 (en) | Transport method of solid particles | |
CN1100790A (en) | Gas burner | |
JPS6038519A (en) | Atomizer | |
RU2294494C1 (en) | Device for burning fuel in rotating furnace | |
GB2083197A (en) | Pulverized coat burner | |
CN104132338B (en) | Fuel nozzle and combustor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |