JPS62258338A - Novel p-terphenyltetracarboxylic acid or its dianhydride and production thereof - Google Patents

Novel p-terphenyltetracarboxylic acid or its dianhydride and production thereof

Info

Publication number
JPS62258338A
JPS62258338A JP10037886A JP10037886A JPS62258338A JP S62258338 A JPS62258338 A JP S62258338A JP 10037886 A JP10037886 A JP 10037886A JP 10037886 A JP10037886 A JP 10037886A JP S62258338 A JPS62258338 A JP S62258338A
Authority
JP
Japan
Prior art keywords
formula
para
terphenyl
dianhydride
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10037886A
Other languages
Japanese (ja)
Other versions
JPH0329778B2 (en
Inventor
Noburu Kikuchi
宣 菊地
Toshiyuki Fujita
藤田 利之
Takayuki Saito
斉藤 高之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10037886A priority Critical patent/JPS62258338A/en
Priority to EP87303730A priority patent/EP0247731B1/en
Priority to DE8787303730T priority patent/DE3772260D1/en
Publication of JPS62258338A publication Critical patent/JPS62258338A/en
Priority to US07/262,220 priority patent/US4912233A/en
Publication of JPH0329778B2 publication Critical patent/JPH0329778B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

NEW MATERIAL:p-Terphenyl-3,4,3'',4''-tetracarboxylic acid expressed by formula I or dianhydride thereof expressed by formula II. USE:A raw material for excellent heat-resistant polyimide resins, curing agent, etc., for epoxy resins, phenolic resins, etc. PREPARATION:A 4-halogoeno-o-xylene is reacted with metallic Mg and converted into Grignard reagent expressed by formula III (X1 is Cl, Br or I) by a conventional method and a p-dihalogenobenzene expressed by formula IV (X2 is same as X1) is subjected to double cross coupling with the above- mentioned compound expressed by formula I in the presence of a nickel metal complex catalyst e.g. dichloro[1,2-bis(diphenylphosphino)ethane]nickel, etc., to afford a compound expressed by formula V, which is then oxidized with a permanganate, nitric acid or air in the liquid phase to provide the compound expressed by formula I. The resultant compound expressed by formula I is then cyclodehydrated while heating or with acetic anhydride or directly oxidized in the vapor phase to give the compound expressed by formula II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規なパラ−ターフェニルテトラカルボン酸
又はそのジ無水物並びにこれらの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel para-terphenyltetracarboxylic acid or its dianhydride and a method for producing the same.

〔従来の技術〕[Conventional technology]

、従来、芳香族テトラカルボン酸又はそのジ無水物とし
ては、ピロメリット酸又はそのジ無水物、ベンゾフェノ
ンテトラカルボン酸ジ無水物等が知られておシ、主に、
ポリイミド樹脂の原料として知られている。
Conventionally, as aromatic tetracarboxylic acid or its dianhydride, pyromellitic acid or its dianhydride, benzophenone tetracarboxylic dianhydride, etc. have been known.
Known as a raw material for polyimide resin.

また、ターフェニルテトラカルボン酸としては。Also, as terphenyltetracarboxylic acid.

西独特許公開筒2,100.391号公報、英国特許第
1、338.932号明細書及び米国特許第3,891
.633号明細書に記載されている式〔■〕で示される
パラ−ターフエニル−2,3,2”、3“−テトラカル
ボン酸−2,3:2“、3″−ジ無水物が知られている
West German Patent Publication No. 2,100.391, British Patent No. 1,338.932 and US Patent No. 3,891
.. Para-terphenyl-2,3,2",3"-tetracarboxylic acid-2,3:2",3"-dianhydride represented by the formula [■] described in the specification of No. 633 is known. ing.

式〔I〕で示されるテトラカルボン酸ジ無水物は、次の
反応式〔■〕で示される経路で合成される化合物である
The tetracarboxylic dianhydride represented by the formula [I] is a compound synthesized by the route shown by the following reaction formula [■].

すなワチ、  1. 4−ビス(α−フラノ)ベンゼン
と無水マレイン酸2分子とのディールスアルダー反応に
よって中間体化合物を得、さらにこれを濃硫酸あるいは
ポリリン酸によって脱水してテトラカルボン酸ジ無水物
となる方法で、反応の性質上、酸無水物基の位置は2,
3−位及び2“−ぎ′−位であSo この式〔I〕で示されるの化合物は、エポキシ樹脂ある
いはフェノール−ホルムアルデヒド樹脂の架橋剤として
用いられるものである。
Sunawachi, 1. An intermediate compound is obtained by a Diels-Alder reaction between 4-bis(α-furano)benzene and two molecules of maleic anhydride, and this is further dehydrated with concentrated sulfuric acid or polyphosphoric acid to obtain a tetracarboxylic dianhydride. Due to the nature of the reaction, the position of the acid anhydride group is 2,
The compound represented by formula [I] is used as a crosslinking agent for epoxy resins or phenol-formaldehyde resins.

また、メタ−ターフェニルテトラカルボン酸としては、
わずかに、フランス特許第1.556.159号明細書
(ケミカルアブストラクト第71巻49609k)に報
告されているだけであシ、その合成方法は次の反応式(
1)によって示される。
In addition, as meta-terphenyltetracarboxylic acid,
It is only reported in French Patent No. 1.556.159 (Chemical Abstracts Vol. 71, 49609k), and its synthesis method is based on the following reaction formula (
1).

(テトラカルボン酸ジ無水物) + 802 +HCL
    [:II[]すなわち、銅を触媒として、メタ
−ベンゼンジスルホニルクロライドと過剰の無水フタル
酸とを無水フタル酸リフラックスの条件下に亜硫酸ガス
と塩化水素ガスとを発生させながら反応せしめてメタ−
ターフェニルテトラカルボン酸ジ無水物とするものであ
り、得られた化合物の融点は130〜165Cであった
(Tetracarboxylic dianhydride) + 802 +HCL
[:II[] Namely, using copper as a catalyst, meta-benzenedisulfonyl chloride and excess phthalic anhydride are reacted under phthalic anhydride reflux conditions while generating sulfur dioxide gas and hydrogen chloride gas. −
It was intended to be terphenyltetracarboxylic dianhydride, and the melting point of the obtained compound was 130 to 165C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来知られている芳香族テトラカルボン酸ジ無水物とジ
アミン化合物、例えば、ジアミノジフェニルエーテル、
ジアミノジフェニルメタン等から得られるポリイミド樹
脂は、耐熱性の樹脂として知られているが、最近の技術
の進歩に伴ない、一層の耐熱化が望まれている。
Conventionally known aromatic tetracarboxylic dianhydrides and diamine compounds, such as diaminodiphenyl ether,
Polyimide resins obtained from diaminodiphenylmethane and the like are known as heat-resistant resins, but with recent advances in technology, even greater heat resistance is desired.

また、前記式〔■〕で示されるパラ−ターフェニルテト
ラカルボン酸ジ無水物はエポキシ樹脂又はフェノール樹
脂の架橋剤として知られている。
Further, the para-terphenyltetracarboxylic dianhydride represented by the above formula [1] is known as a crosslinking agent for epoxy resins or phenol resins.

しかし、該パラ−ターフェニルテトラカルボン酸ジ無水
物は、2,3−位及び2//、3“−位に酸無水物基を
有することから、これを原料として合成されるポリイミ
ド樹脂は、高分子量化が困難であシ、従って耐熱性も不
十分である。
However, since the para-terphenyltetracarboxylic dianhydride has acid anhydride groups at the 2, 3-position and the 2//, 3"-position, the polyimide resin synthesized using it as a raw material is It is difficult to increase the molecular weight, and therefore the heat resistance is also insufficient.

また、前記のメタ−ターフェニルテトラカルボン酸ジ無
水物は、その合成反応の性質上、酸無水物基の位置が不
明であシ、シかも得られた化合物の融点が130〜16
5Cと幅広いことから、酸無水物基の位置が異なる種々
の化合物の混合物であり、このようなテトラカルボン酸
ジ無水物をポリイミド樹脂の原料とした場合、低分子量
のポリイミド樹脂しか得られず、耐熱性が不十分である
In addition, due to the nature of the synthesis reaction, the position of the acid anhydride group in the meta-terphenyltetracarboxylic dianhydride may be unknown, and the resulting compound may have a melting point of 130 to 16
Because it has a wide range of 5C, it is a mixture of various compounds with different positions of acid anhydride groups, and when such tetracarboxylic dianhydride is used as a raw material for polyimide resin, only low molecular weight polyimide resin can be obtained. Heat resistance is insufficient.

本発明は、このような問題点を解決するために、新規な
ターフェニルテトラカルボン酸又はそのジ無水物並びこ
れらの製造法を提供するものである。
In order to solve these problems, the present invention provides novel terphenyltetracarboxylic acids or dianhydrides thereof, as well as methods for producing them.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

第1の発明ハ、ハラ−ターフェニル−3,4゜3″,4
″−テトラカルボン酸又はそのジ無水物に関する。
First invention c. Hala-terphenyl-3,4゜3'',4
″-Tetracarboxylic acid or its dianhydride.

パラ−ターフエニル−3,4,3”、  4“−テトラ
カルボン酸は次の式〔■〕で表わされる化合物である。
Para-terphenyl-3,4,3",4"-tetracarboxylic acid is a compound represented by the following formula [■].

また、このジ無水物であるパラ−ターフエニル−3,4
,3“、4〃−テトラカルボン酸−3゜4:3″、4“
−ジ無水物は次の式〔■〕で表わされる化合物である。
In addition, this dianhydride para-terphenyl-3,4
, 3", 4〃-tetracarboxylic acid-3゜4:3", 4"
-Dianhydride is a compound represented by the following formula [■].

本発明に係る新規パラ−ターフェニルテトラカルボン酸
又はそのジ無水物はカルボキシル基又は酸無水物基の位
置が3,4−位及び3 // 、  4 //−位であ
り、パラ−ターフェニルの両端に位置しており、従来の
式〔I〕で示されるパラ−ターフェニルテトラカルボン
酸ジ無水物とは異なる構造を有している。このため、ジ
アミン化合物との反応で、ポリアミド酸及びさらに脱水
してポリイミド樹脂とした際に、分子類が伸展した直線
状の調造となり、優れた耐熱性のポリイミド樹脂を与え
ることができる。
The novel para-terphenyltetracarboxylic acid or its dianhydride according to the present invention has carboxyl groups or acid anhydride groups at the 3, 4-positions and the 3//, 4//- positions, and is para-terphenyl and has a structure different from that of the conventional para-terphenyltetracarboxylic dianhydride represented by formula [I]. Therefore, when polyamic acid is reacted with a diamine compound and further dehydrated to form a polyimide resin, it becomes a linear preparation with extended molecules, making it possible to provide a polyimide resin with excellent heat resistance.

第2の発明は、第1の発明に係る化合物の製造法に関す
る。
The second invention relates to a method for producing the compound according to the first invention.

すなわち、第2の発明は、3. 4. 3”、  4“
−テトラメチル−パラ−ターフェニルを酸化すること又
はこの後、さらに脱水閉環反応することを%徴とするパ
ラ−ターフエニル−3,4,3“。
That is, the second invention has 3. 4. 3", 4"
-Tetramethyl-para-terphenyl-3,4,3'', which is characterized by oxidation of para-terphenyl or subsequent further dehydration and ring closure reaction.

4“−テトラカルボ/酸又はそのジ無水物の製造法に関
する。
The present invention relates to a method for producing 4"-tetracarbo/acid or its dianhydride.

上記3,4,3”、4”−テトラメチル−パラ−ターフ
ェニルは、4−ハロゲノ−オルト−キシレンのグリニヤ
ール試薬ドパラージハロゲノベンゼンをダブルクロスカ
ップリング反応させることによう得ることができる。
The above 3,4,3'',4''-tetramethyl-para-terphenyl can be obtained by subjecting 4-halogeno-ortho-xylene to a double cross-coupling reaction with the Grignard reagent doparadihalogenobenzene.

以下に、製造法について詳しく説明する。The manufacturing method will be explained in detail below.

本発明に係るパラ−ターフェニルテトラカルボン酸およ
びそのジ無水物は次式〔■〕で示される反応によって製
造することができる。
Para-terphenyltetracarboxylic acid and its dianhydride according to the present invention can be produced by the reaction represented by the following formula [■].

o                 I[’:1(こ
こで、Xt及びX2は各々独立して塩素、臭素又はヨウ
素を表わす) すなわち、4−ハロゲノ−オルト−キシレンを常法に従
って金属マグネシウムと反応させ、グリニヤール試薬と
したのち、これにパラ−ジハロゲノベンゼンとニッケル
金属錯体触媒を加えてダブルクロスカップリング反応に
よってテトラメチル、Sラーターフェニルとする。得ら
れた中間体でターフェニルを過マンガン酸塩、硝酸、又
は液相空気酸化によってパラ−ターフエニル−3,4゜
3″,4″−テトラカルボン酸とし、この後加熱又は無
水酢酸によってパラ−ターフエニル−3゜4.3″、4
“−テトラカルボ/酸−3,4:3//、4“−ジ無水
物とする。また、3,4゜3tt、4ti−テトラメチ
ル−パラ−ターフェニルを気相酸化すれば直接上記ジ無
水物を得ることができる。
o I[':1 (here, Xt and X2 each independently represent chlorine, bromine, or iodine) That is, after reacting 4-halogeno-ortho-xylene with metallic magnesium according to a conventional method to obtain a Grignard reagent, , Para-dihalogenobenzene and a nickel metal complex catalyst are added to this to form tetramethyl and S-laterphenyl through a double cross-coupling reaction. In the resulting intermediate, terphenyl is converted to para-terphenyl-3,4°3'',4''-tetracarboxylic acid by permanganate, nitric acid, or liquid phase air oxidation, followed by para-terphenyl-3,4°3'',4''-tetracarboxylic acid with heating or acetic anhydride. Terphenyl-3゜4.3″, 4
“-tetracarbo/acid-3,4:3//,4”-dianhydride. Alternatively, the above dianhydride can be directly obtained by gas phase oxidation of 3,4°3tt,4ti-tetramethyl-para-terphenyl.

この方法をさらに詳細に説明する。This method will be explained in more detail.

4−ハロゲノ−オルト−キシレンとしてu、4−ヨード
−オルト−キシレン、4−プロモーオルトーキ/シン等
がある。
Examples of 4-halogeno-ortho-xylene include u,4-iodo-ortho-xylene and 4-promo-ortho-xylene.

4−ハロゲノ−オルト−キシレンをグリニヤール試薬と
する方法は、4−ハロゲノ−オルト−キシレン1,0モ
ルに対して、1.0グラム原子以上の金属マグネシウム
を用いてグリニヤール試薬とする。金属マグネシウムが
1.0グラム原子未満の場合、未反応の4−ハロゲノ−
オルト−キシレンがノーオルト−キシレンのグリニヤー
ル試薬と4−ハロゲノ−オルト−キシレンが反応して、
テトラメチル−ピフェニルが生成するので好ましくない
A method of using 4-halogeno-ortho-xylene as a Grignard reagent is to use 1.0 gram atom or more of metallic magnesium per 1.0 mole of 4-halogeno-ortho-xylene. If the magnesium metal is less than 1.0 gram atom, unreacted 4-halogeno-
Ortho-xylene reacts with Grignard reagent of no-ortho-xylene and 4-halogeno-ortho-xylene,
This is not preferred because tetramethyl-piphenyl is produced.

グリニヤール試薬とする際の反応温度はOc以上で溶媒
のりフラックス温度以下で行ない、反応時間は1〜10
時間である。
When preparing a Grignard reagent, the reaction temperature is above Oc and below the solvent flux temperature, and the reaction time is 1 to 10 minutes.
It's time.

反応に用いた金属マグネシウムの量が4−ハロゲノ−オ
ルト−キシレン1.0モルに対シて、1.0グラム原子
を越える場合、未反応の金属マグネシウムが残るが、こ
れは濾過して除く。このときに使用される溶媒としては
メチルエーテル、テトラヒドロフラン等がある。
When the amount of metallic magnesium used in the reaction exceeds 1.0 gram atom per 1.0 mole of 4-halogeno-ortho-xylene, unreacted metallic magnesium remains, which is removed by filtration. Examples of solvents used at this time include methyl ether and tetrahydrofuran.

パラ−ジハロゲノベンゼンとしては、パラ−ジブロモベ
ンゼン、パラージクロロベンゼン等カアリ、これらのう
ちパラ−ジブロモベンゼンヲ使用するとダブルクロスカ
ップリング反応の収率がより高くなる。
Examples of para-dihalogenobenzene include para-dibromobenzene and para-dichlorobenzene. Among these, use of para-dibromobenzene will increase the yield of the double cross coupling reaction.

パラ−ジハロゲノベンゼンの使用量は、4−ハロゲノ−
オルトーキ7レンのグリニヤール試薬1.0モルに対し
て、0.5モル用いる。0.5モル未満の場合、反応の
終了後グリニヤール試薬が残存し、これが次の水洗時に
加水分解されオルト−キシレンとなるだけで反応を妨害
することはないが、収率が低下する。また、0.5モル
を越える場合、ポリ−パラ−フェニレンの副生物が多く
なシ好ましくない。
The amount of para-dihalogenobenzene used is 4-halogenobenzene.
0.5 mol is used per 1.0 mol of the Grignard reagent of orthoky7lene. When the amount is less than 0.5 mol, the Grignard reagent remains after the reaction is completed, and this is hydrolyzed during the next washing with water to form ortho-xylene, which does not interfere with the reaction, but the yield decreases. Moreover, if it exceeds 0.5 mole, it is not preferable because a large amount of poly-para-phenylene by-products will be produced.

ニッケル金属錯体触媒としては、ジクロロビス(トリフ
ェニルホスフィン)ニッケル、シフロモピス(トリフェ
ニルホスフィン)ニッケル、ショートヒス(トリフェニ
ルホスフィン)ニッケル、ジクロロ(1,2−ビス(ジ
フェニルホスフィノ)エタン〕ニッケル、ジブロモ[:
1.2−ビス(ジフェニルホスフィノ)エタン〕ニッケ
ル、ジクロロ[”l、3−ビス(ジフェニルホスフィノ
)フロパンツニッケル、ジブロモl:1.3−ビス(ジ
フェニルホスフィノ)フロパンツニッケル等がある。
Examples of nickel metal complex catalysts include dichlorobis(triphenylphosphine)nickel, cifromopis(triphenylphosphine)nickel, shorthis(triphenylphosphine)nickel, dichloro(1,2-bis(diphenylphosphino)ethane)nickel, dibromo[ :
1.2-bis(diphenylphosphino)ethane]nickel, dichloro[''l, 3-bis(diphenylphosphino)flopantnickel, dibromoll:1.3-bis(diphenylphosphino)flopantnickel, etc. .

ニッケル金属錯体触媒は、グリニヤール試薬の4−ハロ
ゲノ−オルト−キシレン成分換算量に対′して0.1〜
1.0重量%用いることが好ましい。
The nickel metal complex catalyst has a content of 0.1 to 0.1 to
It is preferable to use 1.0% by weight.

ダブルクロスカップリング反応は、20〜60Cで行な
うのが好ましく、反応時間は通常1〜5時間である。反
応温度が低い場合は反応時間が長くなるだけで、本質的
問題とはならないが、反応温度が60Cを越えて高い場
合、ポリ−パラ−フェニレンなどの高沸点成分あるいは
テトラメチル−ビフェニルなどの副生物が多くなシやす
い。
The double cross coupling reaction is preferably carried out at 20 to 60C, and the reaction time is usually 1 to 5 hours. If the reaction temperature is low, the reaction time will only become longer and this is not an essential problem; however, if the reaction temperature is higher than 60C, high-boiling components such as poly-para-phenylene or by-products such as tetramethyl-biphenyl It is easy to live with many living things.

反応が終了した後、水洗によってマグネシウム塩を除く
。中間体3,4,3″,4″−テトラメチル−パラ−タ
ーフェニルは必要に応じてトルエン、キシレン等を溶媒
とする再結晶操作によって精製することができる。
After the reaction is completed, the magnesium salt is removed by washing with water. The intermediate 3,4,3'',4''-tetramethyl-para-terphenyl can be purified by recrystallization using toluene, xylene, etc. as a solvent, if necessary.

中間体3,4,3″、4″−テトラメチル−パラ−ター
フェニルを酸化して本発明に係るパラ−ターフェニル3
. 4. 3″,4″−テトラカルボン酸を得ることが
できる。
Intermediate 3,4,3'',4''-tetramethyl-para-terphenyl is oxidized to produce para-terphenyl 3 according to the invention
.. 4. 3″,4″-tetracarboxylic acid can be obtained.

過マンガン酸塩を用いて酸化する場合について次に説明
する。
The case of oxidation using permanganate will be explained next.

過マンガン酸塩としては、過マンガン酸カリウム等が使
用される。用いる溶媒は、水とピリジンの混合液で、そ
の重量比率は水1.0に対してピリジン0.5〜2.0
であるのが好ましい。この溶液100gに対して3,4
.3″,4″−テトラメチル−パラ−ターフェニルを5
〜15 g加t、コれに過マンガン酸カリウムを12倍
モル徐々て加える。12倍モル未満では酸化反応が完結
しない。
As the permanganate, potassium permanganate or the like is used. The solvent used is a mixture of water and pyridine, with a weight ratio of 1.0 of water to 0.5 to 2.0 of pyridine.
It is preferable that 3,4 for 100g of this solution
.. 3″,4″-tetramethyl-para-terphenyl 5
Add ~15 g of potassium permanganate to the mixture and gradually add 12 times the mole of potassium permanganate. If the amount is less than 12 times the mole, the oxidation reaction will not be completed.

反応温度は50C以上でリフラックス温度(93C)以
下で行ない、反応時間は通常5〜10時間である。この
反応で過マンガン酸カリウムは溶媒に不溶の酸化マンガ
ンとなるので、これを濾過して除く。濾液中にはパラ−
ターフエニル−3,4゜3″、4“−テトラカルボン酸
がカリウム塩として溶解しているので、濃塩酸で酸析処
理をするが、濾液中にはピリジンが含まれるのでロータ
リーエバポレーターでピリジンを留去したのち酸析する
The reaction temperature is 50C or higher and the reflux temperature (93C) or lower, and the reaction time is usually 5 to 10 hours. In this reaction, potassium permanganate becomes manganese oxide, which is insoluble in the solvent, and this is removed by filtration. The filtrate contains para-
Since terphenyl-3,4゜3'',4''-tetracarboxylic acid is dissolved as a potassium salt, acid precipitation treatment is performed with concentrated hydrochloric acid, but since pyridine is contained in the filtrate, pyridine is distilled off using a rotary evaporator. After removing it, acid precipitate it.

濃塩酸を加える量は溶液のpHが1になるまで行ない、
白色のパラ−ターフエニル−3,4,3“。
Add concentrated hydrochloric acid until the pH of the solution reaches 1.
White para-terphenyl-3,4,3''.

4″−テトラカルボン酸結晶を得る。この時、水溶液か
ら析出させるため、パラ−ターフエニル−3,4,3″
,4″−テトラカルボン酸は2分子の結晶水を有する化
合物となっている。
4"-tetracarboxylic acid crystals are obtained. At this time, in order to precipitate from an aqueous solution, para-terphenyl-3,4,3"
, 4''-tetracarboxylic acid is a compound having two molecules of water of crystallization.

このようにして得られたパラ−ターフエニル−3,4,
3″、4“−テトラカルボン酸を、120〜250Cで
5〜50胴Hgの減圧下で1〜24時間加熱する方法、
上記パラ−ターフエニル−3゜4.3″,4″−テトラ
カルボン酸1gに対して30〜60gの無水酢酸を加え
0.5〜2時間加熱還流させた後、熱濾過し再結晶する
方法等により、パラ−ターフエラルー3.4.3″,4
″−テトラカルボン酸−3,4:3″,4″−ジ無水物
とすることができる。
Para-terphenyl-3,4, thus obtained
A method of heating 3″, 4″-tetracarboxylic acid at 120 to 250 C under a reduced pressure of 5 to 50 body Hg for 1 to 24 hours,
A method of adding 30 to 60 g of acetic anhydride to 1 g of the para-terphenyl-3゜4.3'',4''-tetracarboxylic acid, heating under reflux for 0.5 to 2 hours, followed by hot filtration and recrystallization, etc. Due to the parameter error 3.4.3″, 4
"-tetracarboxylic acid-3,4:3",4"-dianhydride.

本発明に係るパラ−ターフエニル−3,4,3”。Para-terphenyl-3,4,3'' according to the invention.

4“−テトラカルボン酸又はそのジ無水物は、ポリイミ
ド樹脂その他の樹脂の原料、エポキシ樹脂、フェノール
樹脂等の硬化剤等として有用である。
4''-tetracarboxylic acid or its dianhydride is useful as a raw material for polyimide resins and other resins, and as a curing agent for epoxy resins, phenol resins, and the like.

〔実施例〕〔Example〕

以下、%は電食%を意味する。 Hereinafter, % means electrolytic corrosion %.

実施例 1 (1)  グリニヤール薬の製造 ^ アリーン冷却器、滴下ロート、温度計及び攪拌装置を取
付けた2を四つロフラスコをアルゴンガス雰囲気下で十
分乾燥させたのち、金属ナトリウムで脱水したテトラヒ
ドロフラン100mt、金属マグネシウム9.72 g
及びプロモーオルト−キシレン(4−プロモーオルト−
キシレン75%及ヒ3−プロモーオルト−キシレン25
%混合物)10、0 gを加えた。反応液かにとり始め
て、グリニヤール試薬が生成し始めたとき、滴下ロート
かう上記ト同一のプロモーオルトーキヅレン64.0g
とテトラヒドロフラン100mAの混合液を1時間かけ
て滴下した。この間、発熱反応であるので水浴で冷却し
ながら反応温度を40Cに保った。
Example 1 (1) Manufacture of Grignard medicine ^ A two-four flask equipped with an Aline condenser, a dropping funnel, a thermometer, and a stirring device was sufficiently dried under an argon gas atmosphere, and then 100 mt of tetrahydrofuran was dehydrated with metallic sodium. , magnesium metal 9.72 g
and promo-ortho-xylene (4-promo-ortho-
Xylene 75% and 3-promo-ortho-xylene 25%
% mixture) 10.0 g was added. When the reaction solution started to be taken and the Grignard reagent started to be produced, 64.0 g of the same promo-ortho-kydurene as above was added to the dropping funnel.
A mixed solution of 100 mA of and tetrahydrofuran was added dropwise over 1 hour. During this time, since the reaction was exothermic, the reaction temperature was maintained at 40 C while cooling with a water bath.

滴下終了後も金属マグネシウムが残っているので、オイ
ルバスで加熱し、温度40Cのまま5時間攪拌し、金属
マグネシウムを完全に反応させグリニヤール試薬とした
Since metallic magnesium remained even after the dropwise addition was completed, the mixture was heated in an oil bath and stirred for 5 hours at a temperature of 40 C to completely react the metallic magnesium and obtain a Grignard reagent.

(2)  3,4.3″、4“−テトラメチル−パラ−
ターフェニルの製造 次に、フラスコにジクロロ[1,2−ビス(ジフェニル
ホスフィノ)エタン〕ニッケル触媒0.37g(上記プ
ロモーオルト−キシレンの総量に対して0.5%)を加
工、滴下ロートからパラ−ジクロロベンゼン29.4 
g (0,200モル)をテトラヒドロフラン85mt
に溶解させた溶液を1時間かけて滴下した。この間反応
温度を35Cに保った。
(2) 3,4.3″,4″-tetramethyl-para-
Preparation of terphenyl Next, 0.37 g of dichloro[1,2-bis(diphenylphosphino)ethane]nickel catalyst (0.5% based on the total amount of promo-ortho-xylene) was added to the flask and added from the dropping funnel. Para-dichlorobenzene 29.4
g (0,200 mol) in 85 mt of tetrahydrofuran
was added dropwise over 1 hour. During this time, the reaction temperature was maintained at 35C.

滴下終了後、さらに1時間、35Cに保ったまま+H’
Pkaけ、ダブルクロスカップリング反応を完結させた
After the completion of dropping, keep the temperature at 35C +H' for another hour.
Pka completed the double cross coupling reaction.

反応終了液にトルエン300mtを加え攪拌しながらイ
オン交換水150m4を1時間かけて徐放冷すると無色
の箔片状結晶が析出した。濾過によシ結晶を取り出し、
乾燥したところ26.8g得られた。
300 mt of toluene was added to the reaction completed liquid, and 150 m4 of ion-exchanged water was slowly cooled over 1 hour while stirring, and colorless flaky crystals were precipitated. Remove the crystals by filtration,
When dried, 26.8 g was obtained.

この結晶の融点は168〜169Cであり、第1図にプ
ロトン核磁気共鳴(IH−NMR)スペクトル及び第2
図に炭素核磁気共鳴(13C−NMR)スペクトルの分
析結果を示す。第1図において、2.29−と2.32
Pのメチル基プロトンに基づく吸収と7.17〜7.6
5 Pのベンゼン環プロトンに基づく吸収の積分強度比
は、前者:後者が180:150 (=12: 10)
であり、理論値とよく一致している。第2図において、
10本のピークしか出現しないことから得られた化合物
(理論炭素22)は対称構造であることがわかる。しか
も式〔■〕 (窮 で示される化合物の炭素番号■〜■のベンゼン還炭素の
ザビツキー(Savitzky)則によるベンゼン環炭
素のケミカルシフトの予想値と良く一致して第2図中に
吸収1〜8が出現している。
The melting point of this crystal is 168-169C, and Figure 1 shows the proton nuclear magnetic resonance (IH-NMR) spectrum and the second
The figure shows the analysis results of carbon nuclear magnetic resonance (13C-NMR) spectrum. In Figure 1, 2.29- and 2.32
Absorption based on the methyl group proton of P and 7.17 to 7.6
The integrated intensity ratio of absorption based on the benzene ring proton of 5P is 180:150 (=12:10) for the former: the latter.
, which is in good agreement with the theoretical value. In Figure 2,
It can be seen that the obtained compound (theoretical carbon 22) has a symmetric structure since only 10 peaks appear. Furthermore, the absorptions 1 to 1 in Figure 2 are in good agreement with the predicted chemical shifts of the benzene ring carbons according to Savitzky's rule for the benzene ring carbons with carbon numbers ■ to ■ of the compound represented by the formula [■]. 8 has appeared.

以上より、上記結晶が3. 4. 3”、  4″−テ
トラメチル−パラ−ターフェニルであることを確認した
From the above, the above crystal is 3. 4. It was confirmed to be 3'', 4''-tetramethyl-para-terphenyl.

(3)  パラ−ターフエニル−3,4,3″,4″−
テトラカルボン酸の製造 次いで、3. 4. 3″,4″−テトラメチル−パラ
−ターフェニル14.3g(50ミリモル)、ピリジン
200g及びイオン交換水200gをアリーン冷却管、
温度計及び攪拌装置を取シ付けた1を四つロフラスコに
仕込み、フラスコ内を80Cに加熱し、過マンガン酸カ
リウム110.7 g(700ミリモル)を3時間かか
つて徐々に加え、その後さらに5時間、80Cに保持し
て攪拌を続けた。反応で生成した酸化マンガンの沈殿を
濾過で除去し、濾液中のピリジンをロータリエバポレー
ターで留去した後、36%塩酸で酸析したところ白色の
微細結晶が析出した。この時の溶液のpHは1であった
。濾過・水洗を2回操り返えしたのち、減圧乾燥し、白
色粉末状結晶ii、6gを得た。
(3) Para-terphenyl-3,4,3″,4″-
Production of tetracarboxylic acid, then 3. 4. 14.3 g (50 mmol) of 3″,4″-tetramethyl-para-terphenyl, 200 g of pyridine, and 200 g of ion-exchanged water were added to an Aline cooling tube.
Four pieces of 1 with a thermometer and a stirring device were placed in a flask, the inside of the flask was heated to 80C, 110.7 g (700 mmol) of potassium permanganate was gradually added over 3 hours, and then an additional 5 Stirring was continued while maintaining the temperature at 80C for an hour. The precipitate of manganese oxide produced in the reaction was removed by filtration, and the pyridine in the filtrate was distilled off using a rotary evaporator. After acid precipitation with 36% hydrochloric acid, white fine crystals were precipitated. The pH of the solution at this time was 1. After repeating filtration and water washing twice, it was dried under reduced pressure to obtain 6 g of white powdery crystals II.

この結晶の融点は311〜313Cであった。The melting point of this crystal was 311-313C.

この結晶の赤外線吸収スペクトルを第3図に示す。The infrared absorption spectrum of this crystal is shown in FIG.

この結晶0.4gに対してメタノール50mt及び97
%硫酸2mtを加え、8時間リフラックスし、上記結晶
のメチルエステル化を行なった。得られたメチルエステ
ル化物のIH−NMRスペクトルの結果を第4図に示す
。第4図において、3.91Fと3.94Pのメチル基
プロトンに基づく吸収と7.71〜7.95Fのベンゼ
ン項プロトンに基づく吸収の積分強度比は、前者:後者
が180 : 151(=12 : 10.07)であ
シ、理論値(式uvjの化合物のメチルエステル化→と
よく一致した。
For 0.4 g of this crystal, 50 mt of methanol and 97
% sulfuric acid was added and refluxed for 8 hours to methyl esterify the above crystals. The results of the IH-NMR spectrum of the obtained methyl ester compound are shown in FIG. In Figure 4, the integrated intensity ratio of the absorption based on the methyl group protons of 3.91F and 3.94P and the absorption based on the benzene term protons of 7.71 to 7.95F is 180:151 (=12 : 10.07) was in good agreement with the theoretical value (methyl esterification of the compound of formula uvj).

また、上記結晶を元素分析した結果は次のとおりであっ
た。
Further, the results of elemental analysis of the above crystal were as follows.

実測値 炭素:59.67%、水素:4.15%理論値
 炭素:65.03%、水素:3.47X(ただし、理
論値は、式〔■〕の化合物として求めた値) 元素分析の結果、実測値と理論値が異なるので、上記結
晶を、5C/分の昇温速度で、示差熱天秤分析を行なっ
たところ、1601Z’、230t:”及び310Cに
吸熱ピークがあった。160C及び230Cで合計17
重量%の重量減少が認められた。310Cにおける吸熱
ピークは融点によるものであるが、160tZ’及び2
30Cの吸熱ピークは脱水によ為ものである。パラ−タ
ーフエニル−3、4,3″,4″−テトラカルボン酸が
示差熱天秤分析中の加熱によって脱水閉環を起こて対応
する酸無水物になっただけであれば重責減少は9%であ
る。このことから得られた結晶には結晶水を有すると考
えられ、上記元素分析の実測値は、式〔■〕の化合物に
2分子の結晶水が水和した時の元素分析の理論値炭素5
9.73%、水素4.10%にきわめてよく一致する。
Actual value Carbon: 59.67%, Hydrogen: 4.15% Theoretical value Carbon: 65.03%, Hydrogen: 3.47X (However, the theoretical value is the value obtained as a compound of formula [■]) Elemental analysis As a result, since the measured value and the theoretical value were different, the above crystal was subjected to differential calorimetry analysis at a heating rate of 5C/min, and endothermic peaks were found at 1601Z', 230t:'' and 310C.160C and Total 17 at 230C
A weight loss of % by weight was observed. The endothermic peak at 310C is due to the melting point, but at 160tZ' and 2
The endothermic peak at 30C is due to dehydration. If para-terphenyl-3,4,3'',4''-tetracarboxylic acid undergoes dehydration and ring closure due to heating during differential calorimetry analysis and becomes the corresponding acid anhydride, the reduction in liability would be 9%. . From this, it is thought that the obtained crystals contain water of crystallization, and the actual value of the above elemental analysis is the theoretical value of elemental analysis when two molecules of water of crystallization are hydrated in the compound of formula [■] Carbon 5
9.73% and hydrogen 4.10%.

以上より、上記結晶が、式〔■〕で示されるパラ−ター
フエニル−3,4,3″,4″−テトラカルボン酸であ
って結晶水を2分子有するものであることを確認した。
From the above, it was confirmed that the above crystal was para-terphenyl-3,4,3'',4''-tetracarboxylic acid represented by the formula [■] and had two molecules of water of crystallization.

(4)  パラ−ターフエニル−3,4,3″,4″−
テトラカルボン酸−3,4:3″,4″−ジ無水物の調
造 次いで、上記結晶10.0 gと無水酢酸400gとを
1tなす形フラスコに入れ、30分間加熱還流で溶解し
たのち熱濾過し、放冷したところ、淡かつ色の粉末状の
微細結晶が析出した。濾過し減圧乾燥して、6.9gの
粉末状結晶を得た。この粉末状結晶赤外線吸収スペクト
ル及びLH−NMR。
(4) Para-terphenyl-3,4,3″,4″-
Preparation of tetracarboxylic acid-3,4:3'',4''-dianhydride Next, 10.0 g of the above crystals and 400 g of acetic anhydride were placed in a 1 ton square flask, and dissolved by heating under reflux for 30 minutes. When the mixture was filtered and allowed to cool, pale powdery fine crystals were precipitated. It was filtered and dried under reduced pressure to obtain 6.9 g of powdered crystals. This powder crystal infrared absorption spectrum and LH-NMR.

スペクトルをそれぞれ第5図及び第6図に示す。The spectra are shown in FIGS. 5 and 6, respectively.

この結晶の融点は311〜313℃であり、元素分析の
結果、炭素71.28%、水素2.76であり、理論値
(式〔v〕ノ化合物)ノ炭素71.36cX、水素2.
72%とよく一致し、パラ−ターフエニル−3、4,3
”、4”−テトラカルボン酸−3,4:3“、4”−ジ
無水物であることを確認した。
The melting point of this crystal is 311 to 313°C, and as a result of elemental analysis, it is 71.28% carbon and 2.76% hydrogen, and the theoretical value (compound of formula [v]) is 71.36cX carbon and 2.7% hydrogen.
Good agreement with 72%, para-terphenyl-3,4,3
It was confirmed that it was ",4"-tetracarboxylic acid-3,4:3",4"-dianhydride.

応用例 実施例1で得られたパラ−ターフエニル−3゜4.3″
,4″−テトラカルボン酸−3,4:3’;4”−ジ無
水物10.0 g (27,0ミリモル)、4゜4′−
ジアミノジフェニルエーテル5.41g(27,0ミリ
モル)および反応溶媒としてN−メチルピロリド787
.3gを攪拌装置の付いた200m1の三つロフラスコ
に仕込み、窒素雰囲気下で25Cの温度で8時間攪拌を
行ない、ポリアミド酸フェス(不揮発分15重量%)と
した。なお反応途中、ポリアミド酸フェスの最大粘度は
30ポイズ(25C測定)であった。
Application Example Para-terphenyl-3°4.3″ obtained in Example 1
, 4″-tetracarboxylic acid-3,4:3′; 4″-dianhydride 10.0 g (27.0 mmol), 4°4′-
5.41 g (27.0 mmol) of diaminodiphenyl ether and 787 g of N-methylpyrrolid as reaction solvent
.. 3 g was charged into a 200 ml three-neck flask equipped with a stirring device, and stirred for 8 hours at a temperature of 25 C under a nitrogen atmosphere to obtain a polyamic acid cloth (non-volatile content: 15% by weight). During the reaction, the maximum viscosity of the polyamic acid cloth was 30 poise (measured at 25C).

得られたポリアミド酸ワニスをガラス板上に流延し、熱
風恒温槽中で150tT、1時間および350C11時
間の加熱処理を行ない1反応溶媒を除くとともに、脱水
反応によりポリアミド酸をポリイミド化させ、厚さ40
μmのポリイミドフィルムを得た。
The obtained polyamic acid varnish was cast onto a glass plate and heat-treated at 150 tT for 1 hour and 350C for 11 hours in a hot air constant temperature bath to remove one reaction solvent, and the polyamic acid was converted into polyimide by a dehydration reaction to form a thick film. Sa 40
A μm polyimide film was obtained.

このポリイミドフィルムを空気中460Cの条件下に3
0分間放置したのちの減量は2.1重量%であり、熱天
秤分析(昇温速度10C/分)による減量開始温度は4
72Cであった。
This polyimide film was exposed to air at 460C for 3 hours.
The weight loss after standing for 0 minutes was 2.1% by weight, and the weight loss starting temperature according to thermobalance analysis (heating rate 10C/min) was 4.
It was 72C.

比較応用例 ピロメリット酸ジ無水物8.0g(36,7ミリモル)
 、4. 4’ −ジアミノジフェニルエーテル7.3
4 g (36,7ミリモル)及びN−メチルピロリド
ン86.9gを応用例と同様に反応させ、不揮発分15
重重量のポリアミド酸ワニスを合成した。
Comparative application example Pyromellitic dianhydride 8.0g (36.7 mmol)
,4. 4'-diaminodiphenyl ether 7.3
4 g (36.7 mmol) and 86.9 g of N-methylpyrrolidone were reacted in the same manner as in the application example, and the nonvolatile content was 15
A heavy weight polyamic acid varnish was synthesized.

この時、反応途中のポリアミド酸ワニスの最大粘度ば3
. OOOポイズ(25C測定)であった。
At this time, the maximum viscosity of the polyamic acid varnish during the reaction is 3.
.. It was OOO poise (measured at 25C).

得られたポリアミド酸ワニスから応用例と同様にしてポ
リイミドフィルムを得、このフィルムの耐熱性を測定し
たところ、空気中460C130分間放置後の減量は3
.5重量%であシ、熱天秤分析(昇温速度10C/分)
による減量開始温度は4607:”であった。
A polyimide film was obtained from the obtained polyamic acid varnish in the same manner as in the application example, and the heat resistance of this film was measured.The weight loss after being left in air at 460C for 130 minutes was 3.
.. 5% by weight, thermobalance analysis (heating rate 10C/min)
The temperature at which weight loss started was 4607:''.

〔発明の効果〕〔Effect of the invention〕

本発明に係るパラ−ターフエニル−3,4,3“。 Para-terphenyl-3,4,3'' according to the invention.

4“−テトラカルボン酸又はそのジ無水物は、新規化合
物であシ、ポリイミド樹脂等の原料として有用である。
4''-tetracarboxylic acid or its dianhydride is useful as a new compound and as a raw material for polyimide resins and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における中間体である3、4゜3//
、4“−テトラメチル−パラ−ターフェニルのlH−N
MRスペクトル、第2図は、3,4,3′:4“−テト
ラメチル−パラ−ターフェニルの13C−NMRスペク
トル、第3図はパラ−ターフエニル−3,4,3”、4
”−テトラカルボン酸の赤外線吸収スペクトル、第4図
はパラ−ターフエニル−3,4,3″,4″−テトラカ
ルボン酸テトラメチルエステルのIH−NMRスペクト
ル、第5図はパラ−ターフエニル−3,4,3“、4″
−テトラカルボン酸−3,4:3″,4″−ジ無水物の
赤外線吸収スペクトル及び第6図は、パラ−ターフエニ
ル−3,4,3“、4〃−テトラカルボン酸−3,4:
3″、4“−ジ無水物のIH−NMRスペクトルを示す
Figure 1 shows the intermediate 3,4゜3// in Example 1.
, 4″-tetramethyl-para-terphenyl lH-N
MR spectrum, Figure 2 is the 13C-NMR spectrum of 3,4,3':4''-tetramethyl-para-terphenyl, Figure 3 is para-terphenyl-3,4,3'',4
4 is the IH-NMR spectrum of para-terphenyl-3,4,3'',4''-tetracarboxylic acid tetramethyl ester, and Figure 5 is the infrared absorption spectrum of para-terphenyl-3,4,3'',4''-tetracarboxylic acid. 4,3",4"
-Tetracarboxylic acid-3,4:3'',4''-dianhydride's infrared absorption spectrum and Figure 6 show para-terphenyl-3,4,3'',4〃-tetracarboxylic acid-3,4:
3 shows an IH-NMR spectrum of 3″,4″-dianhydride.

Claims (1)

【特許請求の範囲】 1、パラ−ターフエニル−3,4,3″,4″,−テト
ラカルボン酸又はそのジ無水物。 2、3,4,3″,4″−テトラメチル−パラ−ターフ
エニルを酸化すること又はこの後,さらに脱水閉環反応
することを特徴とするパラ−ターフエニル−3,4,3
″,4″−テトラカルボン酸又はそのジ無水物の製造法
。 3、3,4,3″,4″−テトラメチル−パラ−ターフ
エニルが4−ハロゲノ−オルト−キシレンのグリニヤー
ル試薬とパラ−ジハロゲノベンゼンをダブルクロスカッ
プリング反応させて得られるものである特許請求の範囲
第2項記載のパラ−ターフエニル−3,4,3″,4″
−テトラカルボン酸又はそのジ無水物の製造法。 4,パラ−ジハロゲノベンゼンがパラ−ジクロロベンゼ
ンである特許請求の範囲第3項記載のパラ−ターフエニ
ル−3,4,3″,4″−テトラカルボン酸又はそのジ
無水物の製造法。
[Claims] 1. Para-terphenyl-3,4,3'',4''-tetracarboxylic acid or its dianhydride. Para-terphenyl-3,4,3 characterized by oxidizing 2,3,4,3'',4''-tetramethyl-para-terphenyl or further subjecting it to a dehydration ring-closure reaction thereafter.
A method for producing ``,4''-tetracarboxylic acid or its dianhydride. A patent claim in which 3,3,4,3″,4″-tetramethyl-para-terphenyl is obtained by double cross-coupling reaction of a Grignard reagent of 4-halogeno-ortho-xylene and para-dihalogenobenzene. para-terphenyl-3,4,3″,4″ as described in item 2 within the range of
- A method for producing a tetracarboxylic acid or its dianhydride. 4. The method for producing para-terphenyl-3,4,3'',4''-tetracarboxylic acid or its dianhydride according to claim 3, wherein the para-dihalogenobenzene is para-dichlorobenzene.
JP10037886A 1986-04-30 1986-04-30 Novel p-terphenyltetracarboxylic acid or its dianhydride and production thereof Granted JPS62258338A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10037886A JPS62258338A (en) 1986-04-30 1986-04-30 Novel p-terphenyltetracarboxylic acid or its dianhydride and production thereof
EP87303730A EP0247731B1 (en) 1986-04-30 1987-04-28 Novel para- or meta-terphenyltetracarboxylic acid, dianhydride thereof and process for preparing the same
DE8787303730T DE3772260D1 (en) 1986-04-30 1987-04-28 PARA- OR META-TERPHENYLTETRACARBONIC ACIDS, YOUR DIANHYDRIDES AND METHOD FOR THE PRODUCTION THEREOF.
US07/262,220 US4912233A (en) 1986-04-30 1988-10-21 Para- or meta-terphenyltetracarboxylic acid, dianhydride thereof and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037886A JPS62258338A (en) 1986-04-30 1986-04-30 Novel p-terphenyltetracarboxylic acid or its dianhydride and production thereof

Publications (2)

Publication Number Publication Date
JPS62258338A true JPS62258338A (en) 1987-11-10
JPH0329778B2 JPH0329778B2 (en) 1991-04-25

Family

ID=14272357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037886A Granted JPS62258338A (en) 1986-04-30 1986-04-30 Novel p-terphenyltetracarboxylic acid or its dianhydride and production thereof

Country Status (1)

Country Link
JP (1) JPS62258338A (en)

Also Published As

Publication number Publication date
JPH0329778B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
JPS604178B2 (en) Method for producing aromatic bis(ether acid anhydride)
JPS62258338A (en) Novel p-terphenyltetracarboxylic acid or its dianhydride and production thereof
JPS6357589A (en) Bicyclo(2.2.1)heptane-2,3,5,6-tetracarboxylic acid dianhydride and production thereof
US4912233A (en) Para- or meta-terphenyltetracarboxylic acid, dianhydride thereof and process for preparing the same
US4002645A (en) Bis aromatic anhydrides
JP2704200B2 (en) Fluorine-containing pyromellitic anhydride and method for producing the same
JPS62258339A (en) Novel m-terphenyltetracarboxylic acid or its dianhydride and production thereof
DE69114430T2 (en) Tetracarboxylic dianhydrides.
JPS5848532B2 (en) Benzoic acid derivatives with metastable states
JPS58124790A (en) Anthracenetetracarboxylic acid dianhydride derivative
CA2015164A1 (en) Dioxydiphthalic anhydride
JPS5849554B2 (en) Production method of aryloxy acid dianhydride
JPH0445527B2 (en)
JPS5822113B2 (en) Method for producing bismaleimide
US5166363A (en) Process for producing 1,3-bis(dicarboxyphenyl)-disiloxane derivative or dianhydride thereof
JPH0525251B2 (en)
JP2698384B2 (en) Fluorine-containing pyromellitic anhydride and method for producing the same
JPH04103579A (en) Tetracarboxylic acid dianhydride
JPH02124893A (en) 1,3-bis(dicarboxyphenyl)-1,1,3,3-tetraphenyldisiloxane derivative, production thereof and production of polyimide using same compound
CN117940487A (en) Fluorine-containing polyamide compound and fluorine-containing polybenzoxazole
JPS58206552A (en) Production of diarylsulfonic acid
US5242917A (en) Tetracarboxylic acid dianhydride having disiloxane linkage and process for producing the same
JPS6135173B2 (en)
JP4803896B2 (en) Halogen-containing aromatic dianhydride
CN117384121A (en) Preparation method of 2,2' -di (trifluoromethyl) -4,4', 5' -biphenyl dianhydride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees