JPS62257905A - Catalyst for olefin polymerization - Google Patents

Catalyst for olefin polymerization

Info

Publication number
JPS62257905A
JPS62257905A JP10208886A JP10208886A JPS62257905A JP S62257905 A JPS62257905 A JP S62257905A JP 10208886 A JP10208886 A JP 10208886A JP 10208886 A JP10208886 A JP 10208886A JP S62257905 A JPS62257905 A JP S62257905A
Authority
JP
Japan
Prior art keywords
catalyst
component
polymerization
solid composition
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10208886A
Other languages
Japanese (ja)
Other versions
JPH0830085B2 (en
Inventor
Minoru Terano
稔 寺野
Hirokazu Soga
弘和 曽我
Kohei Kimura
公平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP10208886A priority Critical patent/JPH0830085B2/en
Priority to PCT/JP1987/000278 priority patent/WO1987006945A1/en
Priority to US07/150,650 priority patent/US4829037A/en
Priority to EP87902763A priority patent/EP0268685B2/en
Priority to DE8787902763T priority patent/DE3777339D1/en
Publication of JPS62257905A publication Critical patent/JPS62257905A/en
Publication of JPH0830085B2 publication Critical patent/JPH0830085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalyst acting in high activity when applied to olefin polymerization leading to production of stereoregular polymer with symmetrical particle size distribution in high yield, prepared from a silicon compound, organoaluminum compound, and a catalytic component formed by heating treatment of a specific solid composition. CONSTITUTION:The objective catalyst can be prepared from (A) a catalytic component obtained by treatment on heating to normally to >=30 deg.C in the presence of a liquid aliphatic hydrocarbon at normal temperature, of a solid composition formed by mutual contact between dialkoxymagnesium (e.g. diethoxymagnesium), aromatic dicarboxylic acid diester (e.g. dimethyl phthalate), aromatic hydrocarbon (e.g. toluene, benzene) and titanic halide (e.g. TiCl4), (B) a silicon compound of formula (R is H, alkyl or aryl; R' is alkyl or aryl; 0<=m<=4) (e.g. phenylalkoxysilane), and (C) an organoaluminum compound. It is preferable that 1-1,000mol of the component C per mole of the Ti in the component A and 0.005-0.5mol of the component B per mole of the component C are used, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオレフィン類の重合に供した際、高活性に作用
し、しかも整った粒度分布をもつ立体規則性重合体を極
めて高い収率で得ることのできる高性能触媒に係り、更
に詳しくはジアルコキシマグネシウム、芳香族ジカルボ
ン酸のジエステル、芳香族炭化水素およびチタンハロゲ
ン化物を接触させて得られる固体組成物を常温で液体の
脂肪族炭化水素共存下で加熱処理して得られるオレフィ
ン類重合用触媒成分、ケイ素化合物および有機アルミニ
ウム化合物からなるオレフィン類重合用触媒に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention produces stereoregular polymers that act with high activity and have a uniform particle size distribution in extremely high yields when subjected to the polymerization of olefins. The high-performance catalyst that can be obtained is more specifically a solid composition obtained by contacting dialkoxymagnesium, a diester of an aromatic dicarboxylic acid, an aromatic hydrocarbon, and a titanium halide with an aliphatic hydrocarbon that is liquid at room temperature. The present invention relates to a catalyst component for olefin polymerization obtained by heat treatment in the coexistence of an olefin polymerization catalyst component, a silicon compound, and an organoaluminium compound.

〔従来の技術〕[Conventional technology]

従来、高活性を有するオレフィン類重合用触媒としては
、触媒成分としての固体のチタンハロゲン化物と有機ア
ルミニウム化合物とを組合わせたものが周知であシ広く
用いられているが、触媒成分および触媒成分中のチタン
当りの重合体の収!(以下触媒成分および触媒成分中の
チタン当りの重合活性という。)が低いため触媒残渣を
除去するための所謂脱灰工程が不可避であった。この脱
灰工程は多量のアルコールまたはキレート剤を使用する
ために、それ等の回収装置または再生装置が必要不可欠
であり、資源、エネルギーその他付随する問題が多く、
当業者にとっては早急に解決を望まれる重要な課題であ
った。この煩雑な脱灰工程を省くために触媒成分とりわ
け触媒成分中のチタン当シの重合活性を高めるべく数多
くの研究がなされ提案されている。
Conventionally, as a highly active catalyst for polymerizing olefins, a combination of a solid titanium halide and an organoaluminum compound as a catalyst component has been well known and widely used. Polymer yield per titanium inside! (hereinafter referred to as the catalyst component and the polymerization activity per titanium in the catalyst component) is low, so a so-called deashing step to remove the catalyst residue was inevitable. This deashing process uses a large amount of alcohol or chelating agent, so recovery equipment or regeneration equipment is essential, and there are many problems related to resources, energy, etc.
For those skilled in the art, this was an important issue that needed to be solved as soon as possible. In order to eliminate this complicated deashing step, many studies have been made and proposals have been made to increase the polymerization activity of the catalyst component, particularly titanium, in the catalyst component.

特に最近の傾向として活性成分であるチタンハロゲン化
物等の遷移金属化合物を塩化マグネシウム等の担体物質
に担持させ、オレフィン類の重合に供した際に触媒成分
中のチタン当りの重合活性を飛躍的に高めたという提案
が数多く見かけられる。
In particular, a recent trend is to support transition metal compounds such as titanium halides, which are active ingredients, on carrier materials such as magnesium chloride, and when used in the polymerization of olefins, the polymerization activity per titanium in the catalyst component can be dramatically increased. I've seen many suggestions for increasing it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら担体物質としてその主流をしめる塩化マグ
ネシウムに含有される塩素は、チタンハロゲン化物中の
ハロゲン元素と同様生成重合体に悪影響を及ぼすという
欠点を有しており、そのために事実上塩素の影響を無視
し得る程の高活性が要求されたり、或いはまた塩化マグ
ネシウムそのものの濃度を低くおさえる必要に迫られる
など未解決な部分を残していた。
However, the chlorine contained in magnesium chloride, which is the main carrier material, has the same disadvantage as the halogen element in titanium halides, which has a negative effect on the polymer produced, and for this reason, the effect of chlorine is virtually ignored. However, there remained unresolved issues such as the need to have as high an activity as possible, or the need to keep the concentration of magnesium chloride itself low.

本発明者らは、触媒成分当りの重合活性ならびに立体規
則性重合体の収率を高度に維持しつつ、生成重合体中の
残留塩素を低下させることを目的として、特願昭57−
200454においてオレフィン類重合用触媒成分の製
造方法を提案し、所期の目的を達している。さらにオレ
フィン類の重合、特にプロピレン、1−ブテン等の立体
規則性重合を工業的に行なう場合、通常重合系内に芳香
族カルボン酸エステルのような電子供与性化合物を共存
させることが前記塩化マグネシウムを担体とする触媒成
分を有機アルミニウム化合物と組合わせて用いる触媒に
おいては必須とされている。しかし、この芳香族カルボ
ン酸エステルは、生成重合体に特有のエステル臭を付与
し、これの除去が当業界では大きな問題となっている。
The present inventors have developed a patent application filed in Japanese Patent Application No. 1983-1-1 with the aim of reducing the residual chlorine in the produced polymer while maintaining a high degree of polymerization activity per catalyst component and the yield of a stereoregular polymer.
No. 200454, we proposed a method for producing a catalyst component for olefin polymerization, and achieved the intended purpose. Furthermore, when polymerizing olefins, especially stereoregular polymerization of propylene, 1-butene, etc., is carried out industrially, it is common to coexist an electron-donating compound such as an aromatic carboxylic acid ester in the polymerization system. It is essential for catalysts that use a catalyst component having a carrier as a carrier in combination with an organoaluminum compound. However, this aromatic carboxylic acid ester imparts a characteristic ester odor to the produced polymer, and its removal has become a major problem in the industry.

また、前記塩化マグネシウムを担体とする触媒成分を用
いた触媒など、いわゆる高活性担持型触媒においては、
重合初期の活性は高いものの失活が大きく、プロセス操
作上問題となる上、ブロック共重合等、重合時間をより
長くすることが必要な場合、実用上使用することがほと
んど不可能であった。この点を改良すべく、例えば特開
昭54−945?0号公報においては、マグネシウムジ
ハロゲン化物を出発原料として、触媒成分をFA ff
し、有機アルミニウム化合物、有機カルボン酸エステル
、M−0−R基を有する化合物などと組合わせてオレフ
ィン類の重合に用いる方法が示されているが、重合時に
有機カルボン酸エステルを用いるため、生成重合体の臭
いの問題が解決されておらず、また実施例からもわかる
ように非常に繁雑な操作を必要とする上、性能的にも活
性の持続性においても実用上充分なものが得られている
とは云えない。
In addition, in so-called highly active supported catalysts, such as catalysts using catalyst components using magnesium chloride as a carrier,
Although the activity at the initial stage of polymerization is high, the deactivation is large, which causes problems in process operation, and it is almost impossible to use it practically in cases such as block copolymerization where a longer polymerization time is required. In order to improve this point, for example, in JP-A-54-945?0, magnesium dihalide is used as a starting material and the catalyst component is FA ff
However, a method for polymerizing olefins in combination with an organoaluminum compound, an organic carboxylic acid ester, a compound having an M-0-R group, etc. has been proposed, but since the organic carboxylic acid ester is used during polymerization, the formation of The problem of the odor of the polymer has not been solved, and as can be seen from the examples, it requires extremely complicated operations, and it has not been possible to obtain a product that is practically sufficient in terms of performance and durability of activity. I can't say that it is.

また、工業的な重合装置では触媒を高温の重合槽に供給
することが必要とされることがあるが、従来の担持型触
媒では斯かる場合にかなり大きく性能特に活性、立体規
則性、嵩比重などが低下することが知られている。この
ことは特に有機溶媒を用いた所謂連続スラリー重合法に
おいては大きな課題であり、その改善が斯界の強い要望
であった。
In addition, in industrial polymerization equipment, it is sometimes necessary to feed the catalyst into a high temperature polymerization tank, and conventional supported catalysts have significantly higher performance in such cases, especially in terms of activity, stereoregularity, and bulk specific gravity. It is known that there is a decrease in This is a major problem, especially in so-called continuous slurry polymerization using organic solvents, and there has been a strong demand for improvement in this field.

本発明者らは、斯かる従来技術に残された課題を解決す
べく鋭意研究の結果本発明に達し絃に提案するものであ
る。
The inventors of the present invention have arrived at the present invention as a result of intensive research to solve the problems remaining in the prior art, and propose it to the strings.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明の特色とするところは、 (1)  (a)ジアルコキシマグネシウム、(b)芳
香族ジカルボン酸のジエステル、(c)芳香族炭化水素
および(d)チタンハロゲン化物を接触させて得られる
固体組成物を(e)常温で液体の脂肪族炭化水素共存下
で加熱処理して得られる触媒成分;(It)  一般式
SiRm(OR’)4−ll、(式中Rは水素、アルキ
ル基またはアリールにであり、R′はアルキル基または
アリール基であり、mは0≦m≦4である。)で表わさ
れるケイ素化合物(以下、単にケイ素化合物ということ
がある。);および (至)有機アルミニウム化合物 よりなるオレフィン類重合用触媒を提供するところにあ
る。
That is, the features of the present invention are as follows: (1) A compound obtained by contacting (a) dialkoxymagnesium, (b) diester of aromatic dicarboxylic acid, (c) aromatic hydrocarbon, and (d) titanium halide. (e) a catalyst component obtained by heat-treating the solid composition obtained in the presence of a liquid aliphatic hydrocarbon at room temperature; (It) general formula SiRm(OR')4-ll, (wherein R is hydrogen, alkyl or aryl group, R' is an alkyl group or an aryl group, and m is 0≦m≦4) (hereinafter sometimes simply referred to as a silicon compound); ) An object of the present invention is to provide a catalyst for polymerizing olefins comprising an organoaluminum compound.

本発明において使用されるジアルコキシマグネシウムと
しては、ジェトキシマグネシウム、ジブトキシマグネシ
ウム、ジフェノヤシマグネシウム、ジプロポキシマグネ
シウム、ジー気−プトキシマグネシウム、ジーtert
−ブトキシマグネシウム、ジイソプロポキシマグネシウ
ム等があげられるが中でもジアルキシマグネシウム、ジ
プロポキシマグネシウムが好ましい。
The dialkoxymagnesium used in the present invention includes jetoxymagnesium, dibutoxymagnesium, diphenomagnesium, dipropoxymagnesium, di-poxymagnesium, di-tert
-butoxymagnesium, diisopropoxymagnesium, etc., among which dialxymagnesium and dipropoxymagnesium are preferred.

本発明で用いられる芳香族ジカルボン酸のジエステルと
しては、フタル酸ジエステルが好まシく、例えば、ジメ
チルフタレート、ジエチルフタレート、ジプロピルフタ
レート、ジイソプロピルフタレート、ジブチルフタレー
ト、ジインブチルフタレート、シアミルフタレート、ジ
イソアミルフタレート、エチルブチルフタレート、エチ
ルイソブチルフタレート、エチルプロピルフタレートな
どがあげられる。
The diester of aromatic dicarboxylic acid used in the present invention is preferably a phthalic acid diester, such as dimethyl phthalate, diethyl phthalate, dipropyl phthalate, diisopropyl phthalate, dibutyl phthalate, diimbutyl phthalate, cyamyl phthalate, diisoamyl Examples include phthalate, ethyl butyl phthalate, ethyl isobutyl phthalate, and ethyl propyl phthalate.

本発明で用いられる芳香族炭化水素としては、常温で液
体の芳香族炭化水素が好ましく、例えばトルエン、O−
キシレン、m−キシレン、p−キシレン、ベンゼン、エ
チルベンゼン、フロビルベンゼン、トリメチルベンゼン
等があげられる。
The aromatic hydrocarbon used in the present invention is preferably an aromatic hydrocarbon that is liquid at room temperature, such as toluene, O-
Examples include xylene, m-xylene, p-xylene, benzene, ethylbenzene, flobylbenzene, and trimethylbenzene.

本発明において使用されるチタンノ・ロゲン化物として
はTiC4,TiBr4. TiI4等があげられるが
中でもTiC44が好ましい。
The titanium chlorides used in the present invention include TiC4, TiBr4. Examples include TiI4, among which TiC44 is preferred.

本発明において使用される常温で液体の脂肪族炭化水素
としては炭素数5ないし15の脂肪族炭化水素が好まし
い。
The aliphatic hydrocarbons that are liquid at room temperature used in the present invention are preferably aliphatic hydrocarbons having 5 to 15 carbon atoms.

本発明において使用される前記ケイ素化合物トシてハ、
フェニルアルコキシシラン、アルキルアルコキシシラン
などがあげられる。さらにフェニルアルコキシシランの
例として、フェニルトリメトキシシラン、フェニルトリ
エトキシ7ラン、フェニルトリプロポキシシラン、フエ
二ルトリイングロボキシシラン、ジフェニルジメトキシ
シラン、ジフェニルジェトキシシランなどをあげること
ができ、アルキルアルコキシシランの例として、テトラ
メトキシシラン、テトラエトキシシラン、トリメトキシ
エチルシラン、トリメトキシメチルシラン、トリメトキ
シメチルシラン、エチルトリエトキシシラン、エチルト
リイソプロポキシシランなどをあげることができる。
The silicon compound used in the present invention,
Examples include phenylalkoxysilane and alkylalkoxysilane. Furthermore, examples of phenylalkoxysilane include phenyltrimethoxysilane, phenyltriethoxy 7rane, phenyltripropoxysilane, phenyltriynegloboxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and alkylalkoxysilane. Examples include tetramethoxysilane, tetraethoxysilane, trimethoxyethylsilane, trimethoxymethylsilane, trimethoxymethylsilane, ethyltriethoxysilane, and ethyltriisopropoxysilane.

本発明における固体組成物を得る際、各原料物質の使用
割合および接触条件等は、生成する触媒成分の性能に悪
影響を及ぼすことのない限り、任意であり、特に限定す
るものではないが、通常ジアルコキシマグネシウム11
に対し、芳香族ジカルボン酸のジエステルは101〜2
 f。
When obtaining the solid composition of the present invention, the proportions and contact conditions of each raw material are arbitrary as long as they do not adversely affect the performance of the catalyst component to be produced, and are not particularly limited. Dialkoxymagnesium 11
On the other hand, the diester of aromatic dicarboxylic acid is 101-2
f.

好ましくは0.1〜1?の範囲であり、チタンハロゲン
化物はQ、12以上、好ましくは1f以上の範囲である
。また、芳香族炭化水素は、任意の割合で用いられるが
、懸濁液を形成し得る量であることが好ましい。
Preferably 0.1-1? The titanium halide has a Q of 12 or more, preferably 1f or more. Further, the aromatic hydrocarbon can be used in any proportion, but it is preferably in an amount that can form a suspension.

さらに、各原料物質の接触は通常0℃から用いられるチ
タンハロゲン化物の沸点までの温度で100時間以下、
好ましくは10時間以下の範囲で行なわれる。
Furthermore, the contact between each raw material is usually carried out at a temperature between 0°C and the boiling point of the titanium halide used for up to 100 hours.
It is preferably carried out for 10 hours or less.

なお、この際各原科物質の接触順序および接触方法は特
に限定されることはなく、任意に適切なものを選定する
ことができる。
At this time, the order and method of contacting each raw material are not particularly limited, and any suitable method can be selected.

前記接触後得られた固体組成物に、くり返しチタンハロ
ゲン化物を接触させることも可能であり、またn−へブ
タン等の有機溶媒を用いて洗浄することも可能である。
It is also possible to repeatedly contact the solid composition obtained after the above-mentioned contact with the titanium halide, and it is also possible to wash it using an organic solvent such as n-hebutane.

以上の如くして得られた固体組成物の加熱処理は該固体
組成物1?に対して0.15’以上の脂肪族炭化水素の
共存下で通常50℃以上のは度で1分間以上、好ましく
は5分間以上行なわれる。
The heat treatment of the solid composition obtained as described above was performed on the solid composition 1? The heating is usually carried out at 50° C. or higher for 1 minute or more, preferably 5 minutes or more, in the presence of an aliphatic hydrocarbon of 0.15′ or higher.

なお、この際加圧もしくは減圧下で該加熱処理を行なう
ことも可能でちる。
At this time, it is also possible to perform the heat treatment under increased pressure or reduced pressure.

以上の如くして製造された触媒成分は、前記ケイ素化合
物および有機アルばニウム化合物と組合せてオレフィン
重合用触媒を形成する。
The catalyst component produced as described above is combined with the silicon compound and organic albanium compound to form a catalyst for olefin polymerization.

使用される有機アルミニウム化合物は触媒成分中のチタ
ン原子のモル当9モル比で1〜1000の範囲で用いら
れ、該ケイ素化合物は、有機アルミニウム化合物のモル
当りモル比で1以下、好ましくはo、oos〜α5の範
囲で用いられる。
The organoaluminum compound used is used in a molar ratio of 1 to 1000 per mole of titanium atoms in the catalyst component, and the silicon compound is used in a molar ratio of 1 or less, preferably o, It is used in the range of oos to α5.

重合は有機溶媒の存在下でも或いは不存在下でも行なう
ことができ、またオレフィン単量体は気体および液体の
いずれの状態でも用いることができる。重合温度は20
0℃以下好ましくは100℃以下であり、重合圧力は1
00IK9/i−G以下、好ましくは50に97−・G
以下である。
Polymerization can be carried out in the presence or absence of an organic solvent, and the olefin monomer can be used in either gas or liquid state. The polymerization temperature is 20
The temperature is 0°C or lower, preferably 100°C or lower, and the polymerization pressure is 1
00IK9/i-G or less, preferably 50 to 97-G
It is as follows.

本発明方法により製造された触媒を用いて単独重合また
は共重合されるオレフィン類はエチレン、プロピレン、
1−ブテン等である。
The olefins to be homopolymerized or copolymerized using the catalyst produced by the method of the present invention include ethylene, propylene,
1-butene, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られた触媒成分を用いてオレフィン類
の重合を行なった場合、触媒が非常に高活性であるため
生成重合体中の触媒残渣を極めて低くおさえることがで
き、しかも残留塩素量が微量であるためだ脱灰工程を全
く必要としない程度Kまで生成重合体に及ぼす塩素の影
響を低減することができる。
When olefins are polymerized using the catalyst component obtained according to the present invention, the catalyst has extremely high activity, so the amount of catalyst residue in the resulting polymer can be kept to an extremely low level, and the amount of residual chlorine is very small. Therefore, the influence of chlorine on the produced polymer can be reduced to such an extent that no deashing step is required at all.

生成重合体に含まれる塩素は造粒、成形などの工程に用
いる機器の腐食の原因となる上、生成重合体そのものの
劣化、黄変等の原因ともなり、これを低減させることが
でき九ことは当業者にとって極めて重要な意味をもつも
のである。
Chlorine contained in the produced polymer not only causes corrosion of equipment used in processes such as granulation and molding, but also causes deterioration and yellowing of the produced polymer itself, but this can be reduced. has extremely important meaning for those skilled in the art.

さらく、本発明の特徴とするところは、重合時に芳香族
カルボン酸エステルを用いないことによって生成重合体
の臭いという大きな問題を解決し九ばかりか、触媒の単
位時間当りの活性が重合の経過に伴なって大幅に低下す
る、いわゆ゛る高活性担持型触媒の本質的な欠点を解決
し、単独重合だけでなく共重合にさえも実用的に適用で
きる触媒を提供するところだある。
Furthermore, the present invention is characterized by not only solving the major problem of odor of the produced polymer by not using an aromatic carboxylic acid ester during polymerization, but also improving the activity per unit time of the catalyst over the course of polymerization. The present invention aims to solve the essential drawbacks of so-called high-activity supported catalysts, in which the activity is significantly reduced due to aging, and to provide a catalyst that can be practically applied not only to homopolymerization but also to copolymerization.

従来より工業的なオレフィン重合体の製造においては重
合時に水素を共存させることがMI制御などの点から一
般的とされているが、前記塩1ヒマグネシウムを担体と
する触媒成分を用いた触媒は水素共存下では、活性およ
び立体規則性が大幅に低下するという欠点を有していた
Conventionally, in the industrial production of olefin polymers, it has been common to allow hydrogen to coexist during polymerization from the viewpoint of MI control, etc., but a catalyst using a catalyst component having the above-mentioned salt 1 hismagnesium as a carrier is In the coexistence of hydrogen, the activity and stereoregularity were significantly reduced.

しかし、本発明によって得られた触媒を用いて水素共存
下にオレフィン類の重合を行なった場合、生成重合体の
MIが極めて高い場合においても殆んど活性および立体
規則性が低下せず、斯かる効果は当業者にとって極めて
大きな利益をもたらすものである。
However, when olefins are polymerized in the presence of hydrogen using the catalyst obtained according to the present invention, the activity and stereoregularity hardly decrease even when the MI of the produced polymer is extremely high. Such an effect is of great benefit to those skilled in the art.

また、工業的な重合装置では触媒を高温の重合槽に供給
することが必要とされることがあるが、従来の担持型触
媒では斯かる場合にがなり大きく性能、特に活性、立体
規則性、嵩比重などが低下することが知られている。こ
のことは特に有機溶媒を用いた所謂連続スラリー重合法
においては大きな問題であり、その改善が斯界の強い要
望であったが本発明による触媒はこの問題をも十分に解
決している。
In addition, in industrial polymerization equipment, it is sometimes necessary to feed the catalyst into a high-temperature polymerization tank, and conventional supported catalysts have significant performance problems in such cases, especially in terms of activity, stereoregularity, and It is known that bulk specific gravity etc. decrease. This is a big problem especially in so-called continuous slurry polymerization using organic solvents, and there has been a strong demand for improvement in this field, but the catalyst of the present invention satisfactorily solves this problem.

〔実施例〕〔Example〕

以下本発明を実施例および比較例により具体的に説明す
る。
The present invention will be specifically explained below using Examples and Comparative Examples.

実施例1 く触媒成分の調型〉 窒素ガスで充分に置換され、攪拌機を具備した容量20
0−の丸底フラスコにジェトキシマグネシウム10Fお
よびトルエン80−を装入して悪濁状態とし、次いでこ
の懸濁液K TiC420−を加え、90℃忙昇温して
ジブチルフタレート2.7−を加え、さら(昇温して1
15℃で2時間攪拌しながら反応させ念。反応終了後9
0℃のトルエン100dで2回洗浄し、新たにトルエン
8O−1TiC’t、  20−を加えて115℃で2
時間攪拌しつつ反応させた。反応終了後40℃のn7ヘ
ブタン200−で10回洗浄した後、減圧下で乾燥し固
体組成物を得た。なお、この際該固体組成物のチタン含
有率は2.61重量%であった。次に該固体組成物3り
を窒素ガスで充分に!換された内容積200−の攪拌機
を具備した丸底フラスコにとり、n−へブタン30−を
加え100℃で1時間加熱処理し、触媒成分とした。
Example 1 Preparation of catalyst components〉 A 20-liter container fully purged with nitrogen gas and equipped with a stirrer
Jetoxymagnesium 10F and toluene 80- were charged into a round bottom flask of 0- to make it cloudy, then this suspension KTiC420- was added, and the temperature was raised to 90°C to dissolve dibutyl phthalate 2.7-. Add and further heat up to 1
Allow to react at 15°C for 2 hours with stirring. After completion of reaction 9
Wash twice with 100 d of toluene at 0°C, add new toluene 8O-1TiC't, 20- and wash at 115°C for 2
The reaction was allowed to take place while stirring for a period of time. After the reaction was completed, the mixture was washed 10 times with 200° C. of n7 hebutane at 40° C., and then dried under reduced pressure to obtain a solid composition. At this time, the titanium content of the solid composition was 2.61% by weight. Next, thoroughly fill the solid composition with nitrogen gas! The mixture was placed in a round-bottomed flask with an internal volume of 200 mm and equipped with a stirrer, and 30 mm of n-hebutane was added thereto and heated at 100° C. for 1 hour to obtain a catalyst component.

く重 合〉 窒素ガスで完全に置換された内容積′2−OLの撹拌装
置付オートクレーブに、n−へブタン700−を装入し
、窒素ガス雰囲気を保ちつつトリエチルアルミニウム5
01119、フェニルトリエトキシシラン64■を装入
した。その後80℃に昇温して前記触媒成分を1 [L
OJ19および水素ガス120−を装入し、プロピレン
ガスを導入しつつ6に97−・Gの圧力を維持して4時
間の重合を行なった。重合終了後得られた固体重合体を
戸別し、80℃に加温して減圧乾燥し、た。
Polymerization> Into an autoclave equipped with a stirrer and having an internal volume of 2-OL that was completely purged with nitrogen gas, 700-g of n-hebutane was charged, and while maintaining the nitrogen gas atmosphere, 500- of triethylaluminum was added.
01119, phenyltriethoxysilane and 64 μm were charged. Thereafter, the temperature was raised to 80°C and the catalyst component was added to 1 [L
19 of OJ and 120 of hydrogen gas were charged, and polymerization was carried out for 4 hours while maintaining a pressure of 97.G while introducing propylene gas. After the polymerization was completed, the obtained solid polymer was separated, heated to 80° C., and dried under reduced pressure.

一方F液を凝縮して重合溶媒に溶存する重合体の量を(
A)とし、固体重合体の量を(B)とする。また得られ
た固体重合体を沸騰n−へブタンで6時間抽出しn−へ
ブタンに不溶解の重合体を得、この量を(c)とする。
On the other hand, the amount of polymer dissolved in the polymerization solvent after condensing the F solution is (
A), and the amount of solid polymer is (B). Further, the obtained solid polymer was extracted with boiling n-hebutane for 6 hours to obtain a polymer insoluble in n-hebutane, and this amount was designated as (c).

触媒成分当りの重合活性(ハ)を式 また結晶性重合体の収率(ト))を式 で表わし、全結晶性重合体の収率(ト)を式より求めた
。ま九生成重合体中の残留塩素を(c))、生成重合体
のM工を(6)、嵩比重を(1)で表わす。
The polymerization activity (c) per catalyst component was expressed by the formula and the yield of the crystalline polymer (g)) was expressed by the formula, and the yield of the total crystalline polymer (t) was determined from the formula. The residual chlorine in the produced polymer is represented by (c)), the M concentration of the produced polymer is represented by (6), and the bulk specific gravity is represented by (1).

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

実施例2 重合時間を6時間にした以外は実施例1と同様にして実
験を行なった。得られた結果は第1表に示す通りである
Example 2 An experiment was conducted in the same manner as in Example 1 except that the polymerization time was changed to 6 hours. The results obtained are shown in Table 1.

実施例3 実施例1における100℃で1時間の加熱処理を80℃
で2時間行なった以外は実施例1と同様にして実験を行
なった。重合に際しては実施例1と同様にして実験を行
なった。得られた結果は第1表に示す通りである。
Example 3 Heat treatment at 100°C for 1 hour in Example 1 was changed to 80°C
The experiment was conducted in the same manner as in Example 1, except that the experiment was conducted for 2 hours. During polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

比較例1 実施例1で得られた固体組成物を加熱処理することなく
そのまま触媒成分として用いた。重合に際しては実施例
1と同様にして実験を行なった。得られた結果は第1表
に示す通りである。
Comparative Example 1 The solid composition obtained in Example 1 was used as it was as a catalyst component without being heat-treated. During polymerization, an experiment was conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の理解を助けるだめの模式的図面である
FIG. 1 is a schematic drawing to aid in understanding the invention.

Claims (1)

【特許請求の範囲】[Claims] (1)( I )(a)ジアルコキシマグネシウム、(b
)芳香族ジカルボン酸のジエステル、(c)芳香族炭化
水素および(d)チタンハロゲン化物を接触させて得ら
れる固体組成物を(e)常温で液体の脂肪族炭化水素共
存下で加熱処理して得ら れる触媒成分: (II)一般式SiRm(OR′)_4_−_m(式中R
は水素、アルキル基またはアリール基であり、R′はア
ルキル基またはアリール基であり、mは0 ≦m≦4である。)で表わされるケイ素化 合物;および (III)有機アルミニウム化合物 よりなることを特徴とするオレフィン類重合用触媒。
(1) (I) (a) Dialkoxymagnesium, (b
) A solid composition obtained by contacting a diester of an aromatic dicarboxylic acid, (c) an aromatic hydrocarbon, and (d) a titanium halide is heat-treated in the presence of (e) a liquid aliphatic hydrocarbon at room temperature. Catalyst component obtained: (II) General formula SiRm(OR')_4_-_m (in the formula R
is hydrogen, an alkyl group or an aryl group, R' is an alkyl group or an aryl group, and m is 0≦m≦4. ); and (III) an organoaluminum compound.
JP10208886A 1986-05-06 1986-05-06 Catalyst for olefin polymerization Expired - Fee Related JPH0830085B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10208886A JPH0830085B2 (en) 1986-05-06 1986-05-06 Catalyst for olefin polymerization
PCT/JP1987/000278 WO1987006945A1 (en) 1986-05-06 1987-05-06 Catalyst for polymerizing olefins
US07/150,650 US4829037A (en) 1986-05-06 1987-05-06 Catalyst for polymerization of olefins
EP87902763A EP0268685B2 (en) 1986-05-06 1987-05-06 Catalyst for polymerizing olefins
DE8787902763T DE3777339D1 (en) 1986-05-06 1987-05-06 CATALYST FOR THE POLYMERIZATION OF OLEFINS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208886A JPH0830085B2 (en) 1986-05-06 1986-05-06 Catalyst for olefin polymerization

Publications (2)

Publication Number Publication Date
JPS62257905A true JPS62257905A (en) 1987-11-10
JPH0830085B2 JPH0830085B2 (en) 1996-03-27

Family

ID=14318021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208886A Expired - Fee Related JPH0830085B2 (en) 1986-05-06 1986-05-06 Catalyst for olefin polymerization

Country Status (1)

Country Link
JP (1) JPH0830085B2 (en)

Also Published As

Publication number Publication date
JPH0830085B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US4829037A (en) Catalyst for polymerization of olefins
JPH0417206B2 (en)
JPS62158704A (en) Catalyst for polymerization of olefin
JPS633010A (en) Catalyst for polymerization of olefin
JPH0425286B2 (en)
JPS61126109A (en) Catalyst component and catalyst for polymerization of olefin
JP2571057B2 (en) Solid catalyst component for olefin polymerization
JPS62257905A (en) Catalyst for olefin polymerization
JPS63301A (en) Catalyst for polymerization of olefin
JPS62169803A (en) Catalyst for polymerization of olefin
JPS62252404A (en) Catalyst for polymerization of olefin
JPS62121703A (en) Catalyst component and catalyst for polymerization of olefin
JPS62292805A (en) Catalyst for polymerization of olefin
JPS62177003A (en) Catalytic component for olefin polymerization and catalyst therefrom
JPS62184005A (en) Catalyst for olefin polymerization
JPS6250309A (en) Catalyst component and catalyst for polymerization of olefin
JPS62132905A (en) Catalyst for olefin polymerization
JPS6356506A (en) Catalyst for polymerization of olefins
JP2617901B2 (en) Method for producing solid catalyst component for olefin polymerization
JPS6357610A (en) Catalyst for polymerization of olefin
JPS62164702A (en) Catalyst component and catalyst for polymerization of olefin
JPS61141707A (en) Catalyst component and catalyst for polymerization of olefin
JPS62508A (en) Catalyst component for polymerization of olefin
JPS62129302A (en) Catalyst for polymerizing olefin
JPS62179511A (en) Catalyst for olefin polymerization

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees