JPS62257733A - Plasma device - Google Patents

Plasma device

Info

Publication number
JPS62257733A
JPS62257733A JP61101533A JP10153386A JPS62257733A JP S62257733 A JPS62257733 A JP S62257733A JP 61101533 A JP61101533 A JP 61101533A JP 10153386 A JP10153386 A JP 10153386A JP S62257733 A JPS62257733 A JP S62257733A
Authority
JP
Japan
Prior art keywords
plasma
chambers
plasma generation
chamber
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61101533A
Other languages
Japanese (ja)
Inventor
Seiichi Nakamura
誠一 中村
Satoru Nakayama
中山 了
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61101533A priority Critical patent/JPS62257733A/en
Publication of JPS62257733A publication Critical patent/JPS62257733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve working efficiency largely by branching a waveguide so that microwave outlets are directed toward the reverse side and arranging both exciting coils so as to be positioned on the same axis in each microwave outlet. CONSTITUTION:The insides of plasma formation chambers 1, 1 are supplied with a gas through gas supply systems 1g, and DC voltage is applied to exciting coils 4, 4 while microwaves are introduced through a waveguide 2 and branch pipes 2a, 2a to generate plasma. A divergent magnetic field toward reaction chambers 3, 3 shaped by coils 4, 4 is projected to the peripheries of samples 5, 5 in the chambers 3, 3 regarding plasma generated, a raw material gas SiH4, O2 or N2 fed from a supply system 3g is plasma-decomposed, and the film of SiO2, Si3N4, etc. is evaporated and formed on the surfaces of the samples 5, 5. When the formation of the film is completed, base plates 6, 6 are shifted into a load locking chamber, the samples are exchanged and the base plates are returned into the chambers 3 again, and the process is repeated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造のためのCVD(Chemi
calνapor Deposition)装置、エツ
チング装置、スハッタリング装五等として用いられる電
子サイクロトロン共鳴を利用したプラズマ装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to CVD (Chemistry) for manufacturing semiconductor devices.
The present invention relates to a plasma device that utilizes electron cyclotron resonance and is used as a cal-capor deposition device, an etching device, a shuttering device, and the like.

〔従来技術〕[Prior art]

電子サイクトロン共鳴を利用したプラズマ装置は低ガス
圧で活性度の高いプラズマを生成出来、イオンエネルギ
の広範囲な選択が可能であり、また大きなイオン電流が
とれ、イオン流の指向性。
Plasma devices that utilize electron cyclotron resonance can generate highly active plasma at low gas pressure, allow for a wide range of ion energy selections, and can generate large ion currents and improve the directionality of the ion flow.

均一性に優れるなどの利点があり、高築禎半導体装置の
製造に欠せぬものとしてその研究、開発が進められてい
る。
It has advantages such as excellent uniformity, and its research and development are progressing as it is indispensable for manufacturing high-quality semiconductor devices.

第2図はプラズマCVD装置として構成した従来の電子
サイクロトロン共鳴利用のプラズマ装置の縦断面図であ
り、31はプラズマ生成室を示している。プラズマ生成
室3Iは周囲壁を2重構造にして冷却水の通流室31a
を備え、また上部壁中央には石英ガラス板31bにて封
止したマイクロ波導入口31cを、更に下部壁中央には
前記マイクロ波導入口31cと対向する位置にプラズマ
引出口31dを夫々備えており、前記マイクロ波導入口
31cには導波管32の一端が接続され、またプラズマ
引出口31dに臨ませて反応室33を配没し、更に周囲
にはプラズマ生成室31及びこれに接続した導波管32
の一端部にわたってこれらを囲繞する態様でこれらと同
心状に励磁コイル34を配設しである。
FIG. 2 is a longitudinal cross-sectional view of a conventional plasma device utilizing electron cyclotron resonance configured as a plasma CVD device, and numeral 31 indicates a plasma generation chamber. The plasma generation chamber 3I has a double structure around the surrounding wall and has a cooling water circulation chamber 31a.
A microwave inlet 31c sealed with a quartz glass plate 31b is provided in the center of the upper wall, and a plasma outlet 31d is provided in the center of the lower wall at a position opposite to the microwave inlet 31c. One end of a waveguide 32 is connected to the microwave inlet 31c, and a reaction chamber 33 is disposed facing the plasma outlet 31d, and a plasma generation chamber 31 and a waveguide connected thereto are located around the microwave inlet 31c. 32
An excitation coil 34 is disposed concentrically with these in such a manner as to surround them over one end.

導波管32の他端部は図示しないマグネトロンに接続さ
れており、また反応室33内にはプラズマ引出口31d
と対向させて半導体ウェーハ等である試料35用の載置
台36が設置され、反応室33の下部壁には排気系37
に連なる排気口33aを開口せしめである。31e、3
1fは冷却水の給水系、排水系、31g。
The other end of the waveguide 32 is connected to a magnetron (not shown), and a plasma outlet 31d is provided in the reaction chamber 33.
A mounting table 36 for a sample 35 such as a semiconductor wafer or the like is installed opposite to the reaction chamber 33, and an exhaust system 37 is installed on the lower wall of the reaction chamber
The exhaust port 33a connected to the exhaust port 33a is opened. 31e, 3
1f is the cooling water supply system and drainage system, 31g.

33gはガス供給系を夫々示している。33g indicates a gas supply system.

而してこのようなプラズマCVD装置にあっては、載置
台36上に試料35を載置しておき、プラズマ生成室3
1内に1次ガス供給系31gを通じてガスを導入する一
方、IAIJ blコイル34に直流電圧を印加すると
共に導波管32を通じてマイクロ波を導入し、プラズマ
生成室31内にプラズマを生成させ、生成させたプラズ
マを励磁コイル34にて形成される、プラズマ引出口3
1d前方の反応室33側に向うに従って磁束密度が低下
する発散磁界によって反応室33内の試料35に向けて
投射せしめ、反応室33内のガスをプラズマ分解し、試
料35表面にシリコン酸化膜等の半導体膜を蒸着せしめ
るようになっている。
In such a plasma CVD apparatus, the sample 35 is placed on the mounting table 36, and the plasma generation chamber 3
1 through the primary gas supply system 31g, a DC voltage is applied to the IAIJ bl coil 34, and microwaves are introduced through the waveguide 32 to generate plasma in the plasma generation chamber 31. The generated plasma is formed by the excitation coil 34 through the plasma outlet 3
A diverging magnetic field whose magnetic flux density decreases toward the reaction chamber 33 side in front of 1d is projected toward the sample 35 in the reaction chamber 33, plasma decomposes the gas in the reaction chamber 33, and forms a silicon oxide film etc. on the surface of the sample 35. A semiconductor film is deposited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところでこのような装置によって多数の試料に半導体膜
を蒸着形成する場合、当然試料数に応じて、プラズマ装
置を増設することとなるが、プラズマ装置を個々独立に
増設することは設備上の無駄が多く、又設置スペースに
も無駄を生し易い。
By the way, when forming semiconductor films on a large number of samples using such an apparatus, it is natural to install additional plasma apparatuses according to the number of samples, but adding plasma apparatuses individually is wasteful in terms of equipment. In addition, the installation space tends to be wasted.

本発明者は、前述した如きプラズマ装置の複数個を可及
的にコンパクトに、無駄なく、しかも個々の能力を何ら
犠牲にすることなく組合せるべ(実験、研究した結果、
マイクロ波をマグネトロンからプラズマ生成室に導入す
る導波管の兼用化、或いは反応室の兼用化によって全体
の構成の簡略化が図れることに着目し、第3図に示す如
きプラズマ装置を案出した。
The inventor of the present invention sought to combine a plurality of plasma devices as described above as compactly as possible, without wasting any waste, and without sacrificing any of the individual capabilities (as a result of experiments and research).
We focused on the fact that the overall configuration could be simplified by using a waveguide that introduced microwaves from a magnetron into a plasma generation chamber, or a reaction chamber, and devised a plasma device as shown in Figure 3. .

第3図は本発明者が本発明を想到する過程で案出したプ
ラズマ装置の縦断面図であり、マイクロ波の導波管42
の一端部を2分岐して、夫々互いに反対側に延在させた
後、直角に同方向に屈曲して平行に延在させ、プラズマ
生成室41.41の上部壁中央に設けた石英ガラス板4
1bにて封止されたマイクロ波導入口41cに夫々接続
し、一方各プラズマ住成室41.41の下部壁中央に形
成したプラズマ引出口41d、41dに臨ませて配設す
べき反応室43は両プラズマ引出口41d、41dの双
方にわたって臨み得る大きさの単一構造に構成し、反応
室43内には各プラズマ引出口41d、41dに臨むよ
うに試料45゜45用の2個の載置台46,46を配設
し、また反応室43の下部室の中央には排気系47に連
なる単一の排気口43aを開口せしめである。他の構成
は前記第2図に示した装置と略同じであり、説明を省略
する。
FIG. 3 is a longitudinal cross-sectional view of a plasma device devised by the inventor in the process of conceiving the present invention, and shows a microwave waveguide 42.
A quartz glass plate is provided at the center of the upper wall of the plasma generation chamber 41, 41, with one end branched into two, each extending in opposite directions, bent at right angles in the same direction and extending in parallel. 4
The reaction chambers 43 should be connected to the microwave inlets 41c sealed at 1b, respectively, and should be disposed facing the plasma outlet ports 41d, 41d formed at the center of the lower wall of each plasma housing chamber 41.41. The reaction chamber 43 has a single structure large enough to face both plasma outlet ports 41d and 41d, and two mounting stands for samples 45°45 are provided in the reaction chamber 43 so as to face each plasma outlet port 41d and 41d. 46, 46 are arranged, and a single exhaust port 43a connected to an exhaust system 47 is opened in the center of the lower chamber of the reaction chamber 43. The other configurations are substantially the same as the device shown in FIG. 2, and their explanation will be omitted.

而してこのようなプラズマ装置にあっては、ガス供給系
31gを通じてプラズマ生成室4L41に、またガス供
給系33gを通じて反応室43にガスを供給し、各励磁
コイル44.44に直流電圧を印加しつつ導波管42、
分岐管42a、42bを通じてマイクロ波を供給し、各
プラズマ生成室41.41内でプラズマを発生させ、こ
のプラズマを励磁コイル44.44にて形成される発散
磁界により反応室43の試料45.45周辺に向けて投
射し、試料45.45表面に蒸着を行うようになってい
る。
In such a plasma apparatus, gas is supplied to the plasma generation chamber 4L41 through the gas supply system 31g and to the reaction chamber 43 through the gas supply system 33g, and a DC voltage is applied to each excitation coil 44.44. while the waveguide 42,
Microwaves are supplied through the branch pipes 42a and 42b to generate plasma in each plasma generation chamber 41.41, and this plasma is applied to the sample 45.45 in the reaction chamber 43 by the divergent magnetic field formed by the excitation coil 44.44. It is designed to project toward the periphery and perform vapor deposition on the surface of the sample 45.45.

ところがこのような構成にあっては両励磁コイル44.
44が平行に配設されることとなるため、両励磁コイル
44にて形成される磁界が相互に干渉し合って、プラズ
マのイオン密度が均一性を欠き試料45.45表面に形
成される膜厚がばらつき、膜質の低下を免れ得ないとい
う問題があることが解った。
However, in such a configuration, both excitation coils 44.
44 are arranged in parallel, the magnetic fields formed by both excitation coils 44 interfere with each other, resulting in uneven plasma ion density and a film formed on the surface of the sample 45. It was found that there was a problem in that the thickness varied and the film quality inevitably deteriorated.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは軸方向の両側に形成される磁界の有
効利用を図って全体の構成の簡略化、効率化を図り、生
産性に優れ作業能率も高いプラズマ装置を提供するにあ
る。
The present invention has been made in view of the above circumstances, and its purpose is to simplify and improve the efficiency of the overall configuration by effectively utilizing the magnetic fields formed on both sides in the axial direction, thereby increasing productivity. The purpose of the present invention is to provide a plasma device that is excellent and has high work efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るプラズマ装置は、2個のプラズマ生成室と
、各プラズマ生成室に連設される2個の試料室と、磁界
を形成する励磁コイルとを備え、前記励磁コイルが同一
軸心線上に位置するように両プラズマ生成室を配置し、
この各プラズマ生成室夫々にマイクロ波用導波管を分岐
接続せしめる。
A plasma device according to the present invention includes two plasma generation chambers, two sample chambers connected to each plasma generation chamber, and an excitation coil that forms a magnetic field, the excitation coils being arranged on the same axis. Arrange both plasma generation chambers so that they are located at
Microwave waveguides are branched and connected to each of the plasma generation chambers.

〔作用〕[Effect]

本発明はこれによって導波管の短縮化が図れ、また軸方
向の両側に形成される各磁界を夫々他のプラズマ生成室
に利用し得ることとなる。
According to the present invention, the waveguide can be shortened, and each magnetic field formed on both sides in the axial direction can be used for each other plasma generation chamber.

〔実施例〕〔Example〕

以下本発明をプラズマCVD装置に通用した実施例を示
す図面に基づき具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically explained below based on drawings showing embodiments applicable to a plasma CVD apparatus.

第1図は本発明に係るプラズマ装置(以下本発明装置と
いう)の縦断面図であり、図中1.1はプラズマ生成室
、2は導波管、3,3は試料室たる反応室、4は励磁コ
イルを示している。
FIG. 1 is a longitudinal sectional view of a plasma device according to the present invention (hereinafter referred to as the device of the present invention), in which 1.1 is a plasma generation chamber, 2 is a waveguide, 3, 3 is a reaction chamber which is a sample chamber, 4 indicates an excitation coil.

プラズマ生成室l、1はステンレス鋼製であって、周囲
壁は二重構造に構成されて冷却水の通水室1a。
The plasma generation chamber 1, 1 is made of stainless steel, and the surrounding wall has a double structure to form a cooling water passage chamber 1a.

1aを備え、−側壁の中央には石英ガラス板1b、 l
bにて封止したマイクロ波導入口1c、 lcを備え、
またこれと対向する他側壁の中央には引出電極(図示せ
ず)を設けたプラズマ引出口1d、ldが開口せしめら
れており、両プラズマ生成室1.1はそのマイクロ波導
入口1c、 lcを向い合せにした状態で対置されてい
る。前記マイクロ波導入口1c、 lcには導波管2を
T字形に分岐して互いに反対側に延在させた分岐管2a
、2aの端部が夫々接続せしめられ、また各プラズマ引
出口1d、 ldに臨ませて、反応室3.3が配設され
、そして各プラズマ生成室1,1とこれに接続した導波
管2の分岐管2a 、 2a端邪にわたって、励磁コイ
ル4.4が周設されている。プラズマ生成室1.1及び
これに連設された反応室3.3はプラズマ生成室1.1
間の中点に対して線対称をなすよう横列配置せしめられ
ている。
1a, - in the center of the side wall a quartz glass plate 1b, l
Equipped with microwave inlets 1c and lc sealed at b,
In addition, plasma extraction ports 1d and ld equipped with extraction electrodes (not shown) are opened in the center of the other side wall facing this, and both plasma generation chambers 1.1 have microwave introduction ports 1c and lc. They are placed opposite each other. The microwave inlets 1c and lc are provided with branch pipes 2a, which are branched waveguides 2 into a T-shape and extend in opposite directions.
, 2a are connected to each other, and a reaction chamber 3.3 is disposed facing each plasma outlet 1d, ld, and each plasma generation chamber 1, 1 and a waveguide connected thereto are connected to each other. An excitation coil 4.4 is disposed around the two branch pipes 2a and the ends of the 2a. The plasma generation chamber 1.1 and the reaction chamber 3.3 connected thereto are the plasma generation chamber 1.1.
They are arranged in rows so as to be symmetrical about the midpoint between them.

導波管2の他端部は図示しないマグネトロンに連結され
ており、このマグネトロンで発生したマイクロ波を導波
管2、分岐管2a、2aを通じて夫々のプラズマ生成室
1,1に導入するようになっている。一方反応室3.3
はプラズマ引出口1d、 ldと対向する反対側の壁に
は排気系7に連なる排気口3a+38を備え、また内部
には試料5,5用の載置台6.6が配設されている。載
置台6,6は静電吸着によるチャック機能を備えており
、試料5.5をその前面に保持し図示しない移動手段に
てプラズマ引出口ld、 ldと対向する位置と反応室
3.3に遠投配置されたロードロック室(図示せず)と
の間を往復移動せしめられ、成膜を終了した試料を新た
な試料と交換するようになっている。
The other end of the waveguide 2 is connected to a magnetron (not shown), and microwaves generated by the magnetron are introduced into the plasma generation chambers 1, 1 through the waveguide 2 and branch pipes 2a, 2a. It has become. On the other hand, reaction chamber 3.3
The plasma extraction port 1d is provided with an exhaust port 3a+38 connected to the exhaust system 7 on the opposite wall facing ld, and a mounting table 6.6 for the samples 5 and 5 is provided inside. The mounting tables 6, 6 are equipped with a chuck function using electrostatic adsorption, and hold the sample 5.5 in front of them, and move the sample 5.5 to a position facing the plasma extraction ports ld, ld and to the reaction chamber 3.3 using a moving means (not shown). The sample is moved back and forth between a load-lock chamber (not shown) in which a long-distance cast is provided, and the sample on which film formation has been completed is exchanged with a new sample.

励磁コイル4,4は夫々プラズマ生成室1.1導波管2
の分岐管2a 、 2aにわたってこれらと同心であっ
て、且つ相互に同一軸心線上に位置するよう配設され図
示しない直流電源に接続されるようになっており、これ
によってプラズマ生成室1,1内にマイクロ波の導入に
よってプラズマが生成されるよう磁界を形成すると共に
、プラズマを反応室3側に向けて投射すべく反応室3,
3側に向けて磁束密度が低下する発散磁界を形成するよ
う構成されてL)る。
Excitation coils 4, 4 are connected to plasma generation chamber 1.1 waveguide 2, respectively.
The branch pipes 2a, 2a are arranged concentrically with these and on the same axis with each other, and are connected to a DC power source (not shown), whereby the plasma generation chambers 1, 1 A magnetic field is formed so that plasma is generated by introducing microwaves into the reaction chamber 3, and the plasma is projected toward the reaction chamber 3 side.
L) is configured to form a diverging magnetic field in which the magnetic flux density decreases toward the third side.

なお励磁コイル4.4については夫々プラズマ生成室1
.1に対して個別に設置する代わりに両プラズマ生成室
1.1にわたるように長尺の単一コイルで構成してもよ
いことは勿論である。
The excitation coils 4 and 4 are connected to the plasma generation chamber 1, respectively.
.. Of course, instead of being installed individually for each plasma generation chamber 1.1, a single long coil may be used so as to span both plasma generation chambers 1.1.

その他図中1e、ifは通水室1aに対する給水系。In addition, 1e and if in the figure are water supply systems for the water flow chamber 1a.

排水系、Ig、3gは夫々ガス供給系を示している。The drainage system, Ig, and 3g indicate the gas supply system, respectively.

而して上述の如く構成した本発明装置にあっては、ガス
供給系1gを通じてプラズマ生成室1.1内にガスを供
給し、励磁コイル4.4に直流電圧を印加すると共に、
導波管2、分岐管2a、2aを通じてマイクロ波を導入
してプラズマを発生させ、発生させたプラズマを励磁コ
イル4.4にて形成される反応室3.3へ向かう発散磁
界にて反応室3,3の試料5,5周辺に投射し、供給系
3gから供給された原料ガスである5i)14 、02
又はN2をプラズマ分解し、試料5.5表面にSiO2
、5i3 N、等の膜を蒸着形成せしめるようになって
いる。膜形成が終了すると載置台6,6を図示しないロ
ードロンク室に移動し、試料を交換して再び反応室3内
に戻し、上述した過程を反復して蒸着を行う。
In the apparatus of the present invention configured as described above, gas is supplied into the plasma generation chamber 1.1 through the gas supply system 1g, and a DC voltage is applied to the excitation coil 4.4.
Plasma is generated by introducing microwaves through the waveguide 2 and the branch pipes 2a, 2a, and the generated plasma is directed to the reaction chamber 3.3 formed by the excitation coil 4.4 with a divergent magnetic field to the reaction chamber. 5i) 14,02 which is the raw material gas projected around the samples 5 and 5 of 3 and 3 and supplied from the supply system 3g
Or by plasma decomposing N2, SiO2 is deposited on the surface of sample 5.5.
, 5i3 N, etc. are formed by vapor deposition. When the film formation is completed, the mounting tables 6, 6 are moved to a loading chamber (not shown), the sample is replaced, and the sample is returned to the reaction chamber 3, and the above-mentioned process is repeated to perform vapor deposition.

両励磁コイル4,4は同一軸心線上にあって、夫々反応
室3.3側に向けて発散磁界を形成するから磁界の乱れ
がなく、プラズマイオンを均一な密度で反応室3.3側
に移送出来、試料5.5表面上に形成される膜品質も均
一となる。
Both excitation coils 4, 4 are on the same axis and each form a divergent magnetic field toward the reaction chamber 3.3 side, so there is no disturbance of the magnetic field and the plasma ions are distributed at a uniform density to the reaction chamber 3.3 side. The quality of the film formed on the surface of the sample 5.5 is also uniform.

なお上述の実施例はプラズマCVD装置として構成した
場合につき説明したが、何らこれに限るものではなく例
えばエツチング装置、スパッタリング装置等として構成
してもよいことは勿論である。
Although the above-mentioned embodiment has been described with reference to the case where it is configured as a plasma CVD apparatus, it is needless to say that the present invention is not limited to this and may be configured as, for example, an etching apparatus, a sputtering apparatus, or the like.

〔効果〕〔effect〕

以上の如く本発明装置にあっては、マイクロ波をプラズ
マ生成室に導く導波管をそのマイクロ波引出口が反対側
を向くように分岐し、各マイクロ波引出口夫々に両励磁
コイルが同一軸心線上に位置するようにしてプラズマ生
成室を臨ませたから、単一の導波管を利用して2基のプ
ラズマ生成室を稼働せしめることが出来、しかも、両プ
ラズマ生成室の励磁コイルは同一軸心線上に位置するか
らその軸方向の両側に形成される各発散磁界をともに利
用し得て、無駄がな(コンパクトな設備で生産、或いは
加工能率を大幅に高め得るなど本発明は優れた効果を奏
するものである。
As described above, in the device of the present invention, the waveguide that guides microwaves to the plasma generation chamber is branched such that the microwave outlet faces the opposite side, and both excitation coils are connected to each microwave outlet. Since the plasma generation chambers are positioned on the axis and facing the plasma generation chambers, it is possible to operate two plasma generation chambers using a single waveguide, and the excitation coils of both plasma generation chambers can be operated using a single waveguide. Since they are located on the same axis, the divergent magnetic fields formed on both sides of the same axis can be used together, and there is no waste (production with compact equipment or machining efficiency can be greatly improved, etc.). It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るプラズマ装置の縦断面図、第2図
は従来装置の縦断面図、第3図は本発明装置に至る過程
で案出されたプラズマ装置の縦断面図である。
FIG. 1 is a vertical cross-sectional view of a plasma device according to the present invention, FIG. 2 is a vertical cross-sectional view of a conventional device, and FIG. 3 is a vertical cross-sectional view of a plasma device devised in the process leading to the device of the present invention.

Claims (1)

【特許請求の範囲】 1、マイクロ波を利用した電子サイクロトロン共鳴によ
りプラズマを生成するプラズマ生成室と、生成したプラ
ズマを投射する試料を配した試料室とを有するプラズマ
装置において、2個のプラズマ生成室と、各プラズマ生
成室に連設される2個の試料室と、磁界を形成すべく前
記プラズマ生成室の周囲に配設された励磁コイルとを備
え、前記励磁コイルが同一軸心線上に位置するように両
プラズマ生成室を配置し、各プラズマ生成室夫々にマイ
クロ波用導波管を分岐接続せしめたことを特徴とするプ
ラズマ装置。 2、前記2個のプラズマ生成室及び2個の試料室は横に
連設配置されている特許請求の範囲第1項記載のプラズ
マ装置。 3、前記励磁コイルは両プラズマ生成室にわたって一連
に形成されている特許請求の範囲第1項記載のプラズマ
装置。
[Claims] 1. In a plasma device having a plasma generation chamber that generates plasma by electron cyclotron resonance using microwaves, and a sample chamber in which a sample to which the generated plasma is projected is arranged, two plasma generation a chamber, two sample chambers connected to each plasma generation chamber, and an excitation coil disposed around the plasma generation chamber to form a magnetic field, the excitation coils being on the same axis. 1. A plasma device characterized in that both plasma generation chambers are arranged so as to be located at the same position, and a microwave waveguide is branched and connected to each plasma generation chamber. 2. The plasma apparatus according to claim 1, wherein the two plasma generation chambers and the two sample chambers are arranged side by side. 3. The plasma device according to claim 1, wherein the excitation coil is formed in series across both plasma generation chambers.
JP61101533A 1986-04-30 1986-04-30 Plasma device Pending JPS62257733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101533A JPS62257733A (en) 1986-04-30 1986-04-30 Plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101533A JPS62257733A (en) 1986-04-30 1986-04-30 Plasma device

Publications (1)

Publication Number Publication Date
JPS62257733A true JPS62257733A (en) 1987-11-10

Family

ID=14303088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101533A Pending JPS62257733A (en) 1986-04-30 1986-04-30 Plasma device

Country Status (1)

Country Link
JP (1) JPS62257733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282947A (en) * 2007-05-10 2008-11-20 Fuji Electric Holdings Co Ltd Plasma generator, plasma processor, and plasma processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282947A (en) * 2007-05-10 2008-11-20 Fuji Electric Holdings Co Ltd Plasma generator, plasma processor, and plasma processing method

Similar Documents

Publication Publication Date Title
JP4012466B2 (en) Plasma processing equipment
KR102417934B1 (en) Thin Film Deposition Apparatus
US5891252A (en) Plasma processing apparatus
JP3555966B2 (en) Multi-zone plasma processing method
US7952048B2 (en) Plasma source with discharge inducing bridge and plasma processing system using the same
US5505780A (en) High-density plasma-processing tool with toroidal magnetic field
US9595425B2 (en) Antenna, dielectric window, plasma processing apparatus and plasma processing method
US8409400B2 (en) Inductive plasma chamber having multi discharge tube bridge
KR20200028041A (en) In plasma etching processes, process window expansion using coated parts
TWI745528B (en) Methods and apparatus for low temperature silicon nitride films
TWM561905U (en) Dual-channel showerhead with improved profile
US20030230385A1 (en) Electro-magnetic configuration for uniformity enhancement in a dual chamber plasma processing system
JP2018533192A (en) Process chamber for periodic and selective material removal and etching
JP2001181848A (en) Plasma treatment equipment
JP2020520532A (en) Plasma source for rotating susceptors
JP7096348B2 (en) Magnetically induced plasma sources for semiconductor processes and equipment
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JPS62257733A (en) Plasma device
JPS61189642A (en) Plasma reactor
JPH03197682A (en) Ecr plasma cvd device
JPS61241930A (en) Plasma chemical vapor deposition device
KR100883561B1 (en) Plasma reactor having vacuum process chamber coupled with magnetic flux channel
JPS63133617A (en) Plasma processing device
KR102014887B1 (en) Radical generator for suppling radical optionally
JPH0680640B2 (en) Plasma equipment