JPS62257021A - Calibration of ultrasonic flowmeter - Google Patents

Calibration of ultrasonic flowmeter

Info

Publication number
JPS62257021A
JPS62257021A JP10179086A JP10179086A JPS62257021A JP S62257021 A JPS62257021 A JP S62257021A JP 10179086 A JP10179086 A JP 10179086A JP 10179086 A JP10179086 A JP 10179086A JP S62257021 A JPS62257021 A JP S62257021A
Authority
JP
Japan
Prior art keywords
value
flow rate
probe
piping
actually measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10179086A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishikawa
俊幸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10179086A priority Critical patent/JPS62257021A/en
Publication of JPS62257021A publication Critical patent/JPS62257021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the measuring accuracy of the flow rate of a fluid, by calibrating an actually measured flow rate on the basis of the actually measured value and a planning value of the inner diameter of fluid flow piping and the actually measured value and planning value of the mount angle of the transmitting and receiving probe mounted on the aforementioned piping. CONSTITUTION:An upstream side probe 2 and a downstream side probe 3 are arranged to the wall of fluid flow piping 1 in opposed relationship so as to cross the pipe axis of the piping 1 at a required angle theta and alternately transmit ultrasonic pulses cyclically by a flow amount operator 4 and an apparent flow rate Qd' is operated on the basis of respective propagation times t1r, t2r required before pulses are inputted to the opposed probes. This value Qd' is multiplied by a flow rate correction value alpha represented by formula (wherein Dr and Dd are the actually measured value and planning value of the inner diameter of the piping and thetar and thetad are the actually measured value and planning value of a probe mount angle) by a flow rate correction operator to obtain a true flow amount Qr.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、川音a流量計の較正方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for calibrating a Kawano-a flowmeter.

r従来の技ifi」 大口径管路中のガス等の流体流量の測定には、従来一般
に差圧式流量計が用いられていたが、大口径の絞り機構
の製作費が高価であることから、最近では超音波流量計
が多(用いられるようになってきた。
Conventional Techniques Ifi'' Conventionally, differential pressure flowmeters have been used to measure the flow rate of fluids such as gas in large-diameter pipes, but because the production cost of large-diameter throttle mechanisms is high, Recently, ultrasonic flowmeters have come into widespread use.

流体流通用配管内を流通する流体の流量を超音波流量計
によって測定するには、第2図に示す如く、流体流通用
配管lの管軸と所要の角度θをもって交差する如く、配
管lの壁に対向配設された上流側プローブ2から下流側
プローブ3へ、あるいは下流側プローブ3から上流例プ
ローブ2へ交互に閤期的Sこ超音波パルスを発信させて
、対向例のプローブにパルスが人力するまでの各伝播時
間t1.を嘗を測定し、この各伝播時間1++1*から
電気的演算によって流体の速度■を求め、さらにこの流
体速度〜lから断面平均jt+を速を演算し、配f1の
断面積を11)けて、最終的に流量を求めてい乙。
In order to measure the flow rate of the fluid flowing through the fluid distribution piping using an ultrasonic flow meter, as shown in Fig. Intermittent ultrasonic pulses are alternately transmitted from the upstream probe 2 facing the wall to the downstream probe 3, or from the downstream probe 3 to the upstream probe 2, and the pulses are sent to the opposing probe. Each propagation time t1. Measure the velocity of the fluid by electrical calculation from each propagation time 1++1*, calculate the cross-sectional average jt+ from the fluid velocity ~l, and multiply the cross-sectional area of the distribution f1 by 11). , I am finally looking for the flow rate.

「発明が解決しようとする間5点」 前記伝播時間t+、taは、各プローブ2.3間の距F
ILによって異なる値を示すために、各ブロー、’2.
3の設置に当っては、それ等の取付位置関係および寸法
を設計値通りになるように配慮しなければならない。
"5 points to be solved by the invention" The propagation time t+, ta is the distance F between each probe 2.3
In order to indicate different values depending on the IL, each blow, '2.
When installing 3, consideration must be given to ensure that their mounting position and dimensions match the design values.

しかしながら、現実には各プローブ2.3の取付位置関
係および寸法を:)計値通りにすることは、はとんど不
可能であるといっても過言ではない。
However, it is no exaggeration to say that in reality, it is almost impossible to make the mounting positional relationship and dimensions of each probe 2.3 exactly as measured values.

例えば、下記第12.に示す如く、設計上の値と、実際
」二の(直とはa1差がある。
For example, see Section 12 below. As shown in , there is a difference of a1 between the designed value and the actual value.

第1表 従ってスの流体流量を測定することはできない。Table 1 Therefore, it is not possible to measure the fluid flow rate in the bath.

「問題点を解決するための手段」 本発明は、かくの如き設置上の誤差に基づく超音波lん
9計による流体流ト111定誤差を解消すべくなしたも
のである。
"Means for Solving the Problems" The present invention has been made to eliminate the error in determining the fluid flow rate 111 caused by the ultrasonic meter due to the installation error as described above.

すなわち、本発明は、超音波流量計の送受信用プローブ
を取付けた流体流通用配管の内径および送受信用プロー
ブの取付角度の実測値と、前記配管の内1¥f」よび送
受イ8用プローブの取付角変の設計値とに基づき、下記
式により求めた補正値αによって実測流量を較正するこ
とを要旨とする。
That is, the present invention is based on the actual measured values of the inner diameter of the fluid circulation pipe to which the transmitting/receiving probe of the ultrasonic flowmeter is attached and the mounting angle of the transmitting/receiving probe, and the measurement of The gist is to calibrate the actually measured flow rate using the correction value α obtained from the following formula based on the design value of the installation angle variation.

ここで、Dr及びDdは、配管内径の実測値および設i
t fil!i、θr:6よびθ(j:よ、送受信用プ
ローブ取付用爪の実測値および設計値である。
Here, Dr and Dd are the actual measured value of the pipe inner diameter and the setting i.
tfil! i, θr: 6 and θ(j: y) are actual measured values and designed values of the transmitting/receiving probe mounting claw.

次に超高波流量計の測定原理から本発明の較正方法を説
明する (第2図参照)。
Next, the calibration method of the present invention will be explained based on the measurement principle of an ultrahigh wave flowmeter (see Fig. 2).

上流側プローブ2から下流側プローブ3へ超音波パルス
を発信したときの設計上(理論上)の伝播時間Ltd 
:!、+11式にて表さ孔る。
Design (theoretical) propagation time Ltd when transmitting an ultrasonic pulse from the upstream probe 2 to the downstream probe 3
:! , +11.

(1)式中、Cは静止流体中の超音波パルスの伝播速度
、各記号中のdは設計上の値を意味する。
(1) In formula (1), C is the propagation velocity of an ultrasonic pulse in a stationary fluid, and d in each symbol means a designed value.

また下流側プローブ3から上流側プローブ2へ超音波パ
ルスを発信したときの設計上(理論上)の伝播時間t+
dは、(2)式にて表される。
Also, the designed (theoretical) propagation time t+ when transmitting an ultrasonic pulse from the downstream probe 3 to the upstream probe 2
d is expressed by equation (2).

一方、設計上の線平均流速Vd と、設計上の断面平均
流速dとの関係は、(3)式のように表される。
On the other hand, the relationship between the designed linear average flow velocity Vd and the designed cross-sectional average flow velocity d is expressed as in equation (3).

V d  −d xk・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・+31(
3)式中、kは、断面平均流速dの線平均流速Vdへの
換算係数である。
V d −d xk・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・+31(
3) In the formula, k is a conversion coefficient of the cross-sectional average flow velocity d to the line average flow velocity Vd.

そ巳て設計上の流量Qdは、(4)式により求められる
The designed flow rate Qd is then determined by equation (4).

(4)式中、Ddは、配v1の設計上の内径である。(4) In the formula, Dd is the designed inner diameter of the distribution v1.

上記(1)式〜(4)式に基づいて、(5)式が求めら
れる。
Based on the above equations (1) to (4), equation (5) is obtained.

1       1−d      πDd”一方、各
プローブ2.3間の距uL、プローゾ取付角度θ、配管
lの白泥りが、設計値から外れたときの真の流量Qrお
よび見掛上の〆ん量QJ′は、それぞれ(6)式および
(7)式にて表される。
1 1-d πDd" On the other hand, when the distance uL between each probe 2.3, the Proso installation angle θ, and the white mud on the pipe l deviate from the design values, the true flow rate Qr and the apparent reduction amount QJ' is expressed by equations (6) and (7), respectively.

tIr       ttr (6)式、(7)氏の各記号中のrは実際上の値を8味
する。
tIr ttr In formulas (6) and (7), r in each symbol has an actual value of 8.

t タ各7’ローブ2.3の取付状態からそれぞれ(8
)式および(9)式が成立する。
t Each 7' lobe 2.3 from the installed state (8
) and (9) hold true.

従って、見(1)上の流量を何倍すれば、真の流量にな
るかという/itR?!正値αは、(6)式〜(9)式
に基づいて、0@式のように求められる。
Therefore, how many times should we multiply the flow rate in (1) to get the true flow rate? /itR? ! The positive value α is calculated as shown in 0@formula based on formulas (6) to (9).

「実施例」 次に超音波流量計の本発明における較正方法の実施例を
第1図に基づき説明する。
"Example" Next, an example of the calibration method of the present invention for an ultrasonic flowmeter will be described based on FIG.

第1図において、lは流体流通用配管、2および3は、
前記配管lの管軸と所要の角度θをもって交差する如く
、配管lの壁に対向配設された上流側プローブおよび下
流側プローブ、4は、上さ側プローブ2から下:A f
VIプローブ3へ、あるいは下流側プローブ3:1・ら
上流側プローブ2へ交互に周期的にhl l′Y波パル
スを発信させて、対向側のプローブにパルスが入力する
までの各伝播時間L1r+L1「に基づき、前記(7)
式による見掛上の流Hqd′を演算する流量演算器であ
る。
In FIG. 1, l is a fluid distribution pipe, 2 and 3 are
An upstream probe and a downstream probe 4 are arranged opposite to each other on the wall of the pipe 1 so as to intersect the pipe axis of the pipe 1 at a required angle θ, from the upper probe 2 to the lower part: A f
The hl l' Y wave pulse is alternately and periodically transmitted to the VI probe 3 or from the downstream probe 3:1 to the upstream probe 2, and each propagation time L1r + L1 until the pulse is input to the opposite probe. ``Based on (7) above.
This is a flow rate calculator that calculates the apparent flow Hqd' according to the formula.

5は、前記流量演算器4の出力゛である見掛上の流量Q
d′を、配をlの内径の実1り’I (A D r と
、δプ(6)式の真の’/& 量Q rに相当する出力
を得るためのfR12?i正演算器である。
5 is the apparent flow rate Q which is the output of the flow rate calculator 4.
d', the distribution is the real value of the inner diameter of l'I (A D r, and the true value of δP equation (6) '/& fR12?i positive operator to obtain the output corresponding to the quantity Q r It is.

なお、本発明では、誤差要因の補正のため、前記流量?
+li正演算器5への設定値として、配管lの内径の実
JII値Dr と、各プローブ2.3の取付角度の実測
値θrとを用いており、各プローブ2゜3間の距XI 
Lの実III値を用いていないが、それは、前記(8)
式、(9)式の関係が成立するからである。
In addition, in the present invention, in order to correct error factors, the flow rate ?
The actual JII value Dr of the inner diameter of the pipe l and the actual measured value θr of the mounting angle of each probe 2.3 are used as the setting values for the +li positive calculator 5, and the distance XI between each probe 2.3 is used.
Although the real III value of L is not used, it is based on the above (8)
This is because the relationship of equation (9) holds true.

また配¥flの内径の実測値Ddと、各プローブ2.3
の取付角度の実測値θrとから、の演算値を、前記流量
補正演算器5への設定値とするようにしてもよい。
In addition, the actual measured value Dd of the inner diameter of the arrangement fl and each probe 2.3
The calculated value may be set to the flow rate correction calculator 5 from the actual measurement value θr of the mounting angle.

さらに、各プローブ2,3の取付角度の実測値により求
めてもよい。
Furthermore, it may be determined by actually measured values of the mounting angles of the respective probes 2 and 3.

「発明の効果」 以上述べた如く、本発明の較正方法によれば、流体流通
用配管の内径および送受信用プローブの取付角度が設計
値とずれていても、極めて容易に真の流体流量に補正す
ることができるので、超音波流量計による流体流量の測
定精度を著しく向上できる。
"Effects of the Invention" As described above, according to the calibration method of the present invention, even if the inner diameter of the fluid distribution pipe and the mounting angle of the transmitting/receiving probe deviate from the designed values, the fluid flow rate can be very easily corrected to the true fluid flow rate. Therefore, the measurement accuracy of fluid flow rate using an ultrasonic flowmeter can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施例を示すブロック図、第2図
は超音波流量針の原理説明図である。 1・・・流体流通用配管、2・・・上流側プローブ、3
・・・下流側プローブ、4・・・流量演算器、5・・・
流量補正演算器 第1図
FIG. 1 is a block diagram showing an embodiment of the method of the present invention, and FIG. 2 is a diagram illustrating the principle of an ultrasonic flow needle. 1... Fluid distribution piping, 2... Upstream probe, 3
...Downstream probe, 4...Flow rate calculator, 5...
Flow rate correction calculator Figure 1

Claims (1)

【特許請求の範囲】 超音波流量計の送受信用プローブを取付けた流体流通用
配管の内径および送受信用プローブの取付角度の実測値
と、前記配管の内径および送受信用プローブの取付角度
の設計値とに基づき、下記式により求めた補正値αによ
って実測流量を較正することを特徴とする超音波流量計
の較正方法。 α=[(Dr)/(Dd)]^3×[(sin2θd)
/(sin2θr)]ここで、DrおよびDdは、配管
内径の実測値および設計値、θrおよびθdは、送受信
用プローブ取付角度の実測値および設計値。
[Claims] Actual measured values of the inner diameter of the fluid circulation pipe to which the transmitting/receiving probe of the ultrasonic flowmeter is attached and the mounting angle of the transmitting/receiving probe, and design values of the inner diameter of the pipe and the mounting angle of the transmitting/receiving probe. A method for calibrating an ultrasonic flowmeter, characterized in that the measured flow rate is calibrated using a correction value α obtained using the following formula. α=[(Dr)/(Dd)]^3×[(sin2θd)
/(sin2θr)] Here, Dr and Dd are the measured values and designed values of the pipe inner diameter, and θr and θd are the measured values and designed values of the transmitting/receiving probe mounting angle.
JP10179086A 1986-04-30 1986-04-30 Calibration of ultrasonic flowmeter Pending JPS62257021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10179086A JPS62257021A (en) 1986-04-30 1986-04-30 Calibration of ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10179086A JPS62257021A (en) 1986-04-30 1986-04-30 Calibration of ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPS62257021A true JPS62257021A (en) 1987-11-09

Family

ID=14309961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10179086A Pending JPS62257021A (en) 1986-04-30 1986-04-30 Calibration of ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPS62257021A (en)

Similar Documents

Publication Publication Date Title
JP5147844B2 (en) Process equipment with density measurement
RU2612945C1 (en) Process parameter measuring method using connecting platform for primary element
WO2017004887A1 (en) Method and apparatus for measuring time-difference-type ultrasonic flow
JP6078203B2 (en) Process variable measurement using a universal flow technology combined platform
US7506532B2 (en) Method for calibrating ultrasound clamp-on flowmeters
US20110022335A1 (en) Real-time non-stationary flowmeter
CN103808381A (en) Temperature influence eliminating method for time difference ultrasonic flowmeter
CN105403265A (en) Automatic zero drift-correction ultrasound water meter and correction method
JP5999725B2 (en) Mass flow meter
US4432243A (en) Flow calculator with velocity curve fitting circuit means
JP2002520583A (en) Multi-code flow meter
CN107782387B (en) Structure and installation method of flow measurement sensor based on time-of-flight method
US20030110853A1 (en) Critical gas flow measurement apparatus and method
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
JP2023511744A (en) Flow meter variable compensation method
US5965800A (en) Method of calibrating an ultrasonic flow meter
JPS62257021A (en) Calibration of ultrasonic flowmeter
CN210400480U (en) Multi-point measurement Pitotbar flowmeter
JP4949892B2 (en) Flow measurement method and flow measurement jig
JP3155814B2 (en) Flow measurement control system
JP3252187B2 (en) Flowmeter
Johnson et al. Ultrasonic water measurement in irrigation pipelines with disturbed flow
CN111473828B (en) Zero drift elimination method for commercial meter
RU2641505C1 (en) Information and measuring system for measurement of flow and quantity of gas
JPH0791996A (en) Ultrasonic flowmeter