JPS62256618A - Manufacture of fiber reinforced synthetic resin molded product - Google Patents

Manufacture of fiber reinforced synthetic resin molded product

Info

Publication number
JPS62256618A
JPS62256618A JP10129886A JP10129886A JPS62256618A JP S62256618 A JPS62256618 A JP S62256618A JP 10129886 A JP10129886 A JP 10129886A JP 10129886 A JP10129886 A JP 10129886A JP S62256618 A JPS62256618 A JP S62256618A
Authority
JP
Japan
Prior art keywords
molded product
synthetic resin
reinforcing fiber
flat particles
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10129886A
Other languages
Japanese (ja)
Inventor
Kazuo Nishikawa
和夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP10129886A priority Critical patent/JPS62256618A/en
Publication of JPS62256618A publication Critical patent/JPS62256618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent a molded product from getting such deformations as surface distortion, external waviness and the like by injecting from a gate provided in the mold into a cavity a liquid synthetic resin material containing reinforcing fiber and flat particles carrying a specific ratio against said reinforcing fiber. CONSTITUTION:Inorganic fibers or metal fibers such as milled glass fiber and the like are used for reinforcing fiber, while flake glass, mica and the like are used as flat particles. The ratio of flat particles is 20-50wt% against reinforcing fiber. As the ratio is larger than said %, the absolute quantity of reinforcing fiber should be lessened in order to prevent an increasing viscosity to make it difficult to get a desired strength or impact resistance, while a small % makes it difficult to get sufficient effect to minimize anisotropy. Both the raw liquids mixed with a mixing head 4 is further mixed in a static mixer 7, and injected into a cavity 10 through a runner 8 and a following gate 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は繊維強化合成樹脂成形品の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing fiber-reinforced synthetic resin molded articles.

(従来技術) 強化した合成樹脂成形品を得るにあたって、ガラス繊維
を混入した液状の合成樹脂材料を用いて射出成形するこ
とは一般によく行なわれている。
(Prior Art) In order to obtain a reinforced synthetic resin molded article, injection molding is generally performed using a liquid synthetic resin material mixed with glass fibers.

例えば、R−RIM(補強・反応射出成形)によるポリ
ウレタン成形の場合、イソシアネート系のA液とポリオ
ール系のB液とミルドガラス繊維とを混合した状態で成
形型に設けたゲートからキャビティに射出すると、上記
ミルドガラス繊維で強化した発泡ポリウレタン成形品が
得られ、自動車のバンパーなどの成形に利用できる。こ
の場合、成形材料のゲートやキャビティでの流れ方向に
繊維が配向し易く、成形品はこの流れ方向においては繊
維により線膨張係数が低く抑えられ、その方向での強化
効果が高くなるが、これと直交する方向においては強化
効果が小さいという異方性が一般に生ずる。
For example, in the case of polyurethane molding using R-RIM (reinforced reaction injection molding), if a mixture of isocyanate-based liquid A, polyol-based liquid B, and milled glass fiber is injected into the cavity through a gate provided in the mold. A foamed polyurethane molded product reinforced with the above-mentioned milled glass fibers is obtained and can be used for molding automobile bumpers and the like. In this case, the fibers tend to be oriented in the flow direction at the gate or cavity of the molding material, and the linear expansion coefficient of the molded product is kept low by the fibers in this flow direction, increasing the reinforcing effect in that direction. Generally, an anisotropy occurs in which the reinforcing effect is small in the direction orthogonal to the direction.

(発明の目的) 上記従来の単に繊維を混入する方式では、上記の異方性
が射出後の成形収MJ挙動にも表われ、流れ方向での収
縮が小さい反面、それと直交する方向での収縮が大とな
り、成形品の変形、反り等の原因となっている。この現
象は成形材料の流れが早く複雑になり易いゲート付近で
著しく、つまり、ゲート巾方向での大きな収縮がその近
傍の製品部にも影響を与え、特に薄肉品の成形において
は表面に歪ないしはうねりとして目視できる程度に表わ
れるという問題があるものであり、本発明はかかる問題
を解決する繊維強化合成樹脂成形品の製造法を提供しよ
うとするものである。
(Objective of the invention) In the conventional method of simply mixing fibers, the above anisotropy also appears in the molding yield MJ behavior after injection, and while the shrinkage in the machine direction is small, the shrinkage in the direction perpendicular to the machine direction is small. becomes large, causing deformation and warping of the molded product. This phenomenon is noticeable near the gate where the molding material flows quickly and tends to become complicated. In other words, large shrinkage in the gate width direction also affects the product parts in the vicinity, and especially when molding thin-walled products, the surface may be distorted or There is a problem in that the waviness is visible to the naked eye, and the present invention aims to provide a method for manufacturing a fiber-reinforced synthetic resin molded article that solves this problem.

(発明の構成) 本発明の繊維強化合成樹脂成形品の製造法は、成形型に
設けたゲートからキャビティ内に強化用繊維とこの強化
用繊維に対する割合が20〜50重量%の偏平粒子とを
含有する液状の合成樹脂材料を射出するようにしている
ことを特徴とする。
(Structure of the Invention) The method for producing a fiber-reinforced synthetic resin molded article of the present invention includes introducing reinforcing fibers and flat particles having a proportion of 20 to 50% by weight relative to the reinforcing fibers into a cavity through a gate provided in a mold. It is characterized in that the liquid synthetic resin material contained therein is injected.

この場合、合成樹脂材料の主成分としては上記インシア
ネート系溶液とポリオール系溶液とからなるウレタン材
料、あるいはナイロン材料、熱可塑性合成樹BFiを溶
融したものなど反応により、あるいは加熱により5さら
には冷却により硬化するものを用いることができる。
In this case, the main component of the synthetic resin material is a urethane material made of the above-mentioned incyanate solution and a polyol solution, a nylon material, a melted thermoplastic synthetic resin BFi, etc. by reaction or by heating. It is possible to use a material that is hardened by.

強化用繊維としては、上記ミルドガラス繊維などの無機
質繊維、金属繊維などを利用することができる。
As the reinforcing fibers, inorganic fibers such as the above-mentioned milled glass fibers, metal fibers, etc. can be used.

偏平粒子としては、フレークガラスやマイカなどを利用
することができる。また、偏平粒子は、その平均厚さが
5〜10μ、平均粒径が強化用繊維の平均長さの172
以下、例えば平均粒径の最大値が50〜300μ、1個
の粒子における最小粒径が最大粒径の1/2以上のもの
が好ましく、さらにはマイカよりも割れにくい、つまり
耐衝撃性の点で有利なフレークガラスが好ましい。すな
わち、偏平粒子は上記異方性を小さくする作用を呈する
ものであり、あまり大きくなる゛と増粘効果が大きくな
り、また、耐衝撃性の点でも好ましくないものである。
As the flat particles, flake glass, mica, etc. can be used. In addition, the flat particles have an average thickness of 5 to 10 μm and an average particle size of 172 μm, which is the average length of the reinforcing fibers.
Below, for example, it is preferable that the maximum value of the average particle size is 50 to 300μ, and the minimum particle size of one particle is 1/2 or more of the maximum particle size, and furthermore, it is more difficult to break than mica, that is, in terms of impact resistance. Flake glass is preferred. That is, the flat particles have the effect of reducing the above-mentioned anisotropy, and if they are too large, the thickening effect becomes large, and this is also undesirable in terms of impact resistance.

さらに、最小粒径と最大粒径の差が大きいと、上記異方
性低減効果が小さくなる。
Furthermore, if the difference between the minimum grain size and the maximum grain size is large, the anisotropy reduction effect described above will be reduced.

次に、偏平粒子の割合を強化用繊維の20〜50重量%
とじたとは、それよりも大きな割合にすると、増粘を抑
えるためには強化用繊維の絶対量を少なくする必要が生
じ、所望の強度あるいは耐衝撃性を得るのが難しくなる
ためであり、また、上記の割合が少ないと異方性を小さ
くする効果を十分に得るのが難しくなるためである。
Next, the proportion of flat particles is 20 to 50% by weight of the reinforcing fibers.
This is because if the ratio is larger than that, the absolute amount of reinforcing fibers will need to be reduced in order to suppress thickening, making it difficult to obtain the desired strength or impact resistance. This is because if the above ratio is small, it becomes difficult to sufficiently obtain the effect of reducing anisotropy.

(発明の効果) 従って、本発明によれば、強化用繊維に併せて偏平粒子
を混入して射出成形をするようにしたから、成形収縮の
際の異方性が抑えられ、所望の強度ないしは耐衝撃性を
確保しつつ、成形品に而歪み、うねり等の変形が生ずる
ことを防止することができる。
(Effects of the Invention) Therefore, according to the present invention, since flat particles are mixed with reinforcing fibers and injection molding is performed, anisotropy during molding shrinkage can be suppressed, and the desired strength or strength can be achieved. While ensuring impact resistance, it is possible to prevent deformations such as distortion and waviness from occurring in the molded product.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図には反応射出成形装置1の全体構成が示されてい
る。同図において、2はイソシアネート原液を貯留した
A液タンク、3はポリオール系原液を貯留したB液タン
クであり、それぞれ原液はミキシングヘッド4との間で
循環するようになっている。そして、このミキシングヘ
ッド4は、上型5と下型6(いずれも型温度70℃)と
からなに接続されている。
FIG. 1 shows the overall structure of a reaction injection molding apparatus 1. As shown in FIG. In the figure, 2 is a liquid A tank that stores an isocyanate stock solution, and 3 is a B liquid tank that stores a polyol stock solution, and the stock solutions are circulated between them and the mixing head 4. The mixing head 4 is connected to an upper mold 5 and a lower mold 6 (both mold temperatures are 70° C.).

上記スタテックミキサ7は第2図にも示されており、2
手に分岐した分岐通路7a、7aが複数の細径路7bを
介してランナ8に通じており、ミキシングヘッド4で混
合された上記両部液はスタテックミキサ7でさらに混合
され、液状の合成樹脂成形材料としてランナ8およびこ
れに続くゲート9を介しキャビティ10へ射出されるよ
うになっている。
The static mixer 7 is also shown in FIG.
Branch passages 7a, 7a branched into the runners 8 through a plurality of narrow passages 7b, and both liquids mixed in the mixing head 4 are further mixed in the static mixer 7 to form a liquid synthetic resin. The molding material is injected into a cavity 10 via a runner 8 and a gate 9 following it.

次に、上記液状の合成樹脂成形材料についての具体的な
実施例を説明する。
Next, specific examples of the liquid synthetic resin molding material will be described.

一実施例1− 二の実施例のRIM原料は次のとおりである。Example 1- The RIM raw materials of the second example are as follows.

発泡剤(フロン−11)       2触媒1(ジブ
チルチンジラウレート)0.1触媒2(トリエチレンジ
アミン)    2上記RIM原料に添加するフィラー
の種類および量(成形品中の重量%)は次のとおりであ
る。
Blowing agent (Freon-11) 2 Catalyst 1 (dibutyltin dilaurate) 0.1 Catalyst 2 (triethylene diamine) 2 The type and amount (% by weight of the molded product) of the filler added to the above RIM raw material are as follows. .

本実施例で得た成形品のゲート9付近の面歪み(ウネリ
の高低差)は第3図に示すとおりである。
The surface distortion (height difference in undulations) near the gate 9 of the molded product obtained in this example is as shown in FIG.

すなわち、最大ウネリ量は90μであり、目視では成形
品表面の異常は感じられない。
That is, the maximum amount of waviness was 90μ, and no abnormality was detected on the surface of the molded product by visual inspection.

一実施例2− この実施例のRTMg料は次のとおりである。Example 2- The RTMg charge for this example is as follows.

発泡剤(フロン−11)       3エチレングリ
コール        10触媒1(ジブチルチンジラ
ウレート)0.15触媒2(トリエチレンジアミン)1
.5上記RIM原料に添加するフィラーの種類および量
(成形品中の重量%)は次のとおりである。
Blowing agent (Freon-11) 3 Ethylene glycol 10 Catalyst 1 (Dibutyltin dilaurate) 0.15 Catalyst 2 (Triethylenediamine) 1
.. 5 The type and amount (% by weight of the molded product) of the filler added to the above RIM raw material are as follows.

(平均繊維長さ180μ) 本実施例で得た成形品のゲート9付近の面歪みは、最大
ウネリ量が100μであり、実施例1と同様に目視では
成形品表面の異常は感じられない6−実施例3− この実施例のRIM原料は次のとおりである。
(Average fiber length 180μ) The maximum amount of surface distortion near the gate 9 of the molded product obtained in this example is 100μ, and as in Example 1, no abnormality on the surface of the molded product can be detected by visual inspection. -Example 3- The RIM raw materials of this example are as follows.

29%) (分子量5000) エチレングリコール        10触W(ジブチ
ルチンジラウレート>    0.2発泡剤(フロン−
11)       3上記RIMM料に添加するフィ
ラーの種類および量(成形品中の重量%)は次のとおり
である。
29%) (molecular weight 5000) Ethylene glycol 10 tbw (dibutyl tin dilaurate > 0.2 blowing agent (fluorocarbon)
11) 3 The type and amount (weight % in the molded product) of the filler added to the above RIMM material are as follows.

本実施例で得た成形品のゲート9付近の面歪みは、最大
ウネリ量が70μであり、実施例1と同様に目視では成
形品表面の異常は感じられない。
Regarding the surface distortion near the gate 9 of the molded product obtained in this example, the maximum amount of waviness was 70μ, and as in Example 1, no abnormality on the surface of the molded product was detected by visual inspection.

しかして、上記実施例1で得られる成形品と同程度の1
g膨張係数を従来方式で得るには、ミルドガラス繊維(
平均繊維長さ240μ)を成形品中で10重量%となる
ようにRIM原料に添加する必要があるが、その場合の
成形品のゲート付近の面歪みは第4図に示すとおりであ
る。すなわち。
Therefore, the molded product obtained in Example 1 has a
To obtain the g-expansion coefficient using the conventional method, milled glass fiber (
It is necessary to add fibers having an average fiber length of 240 μm to the RIM raw material so that the amount in the molded product is 10% by weight. In this case, the surface strain near the gate of the molded product is as shown in FIG. Namely.

最大ウネリ量は250μとなり、目視でも成形品の表面
の異常が明瞭に感じられる。因に、ガラス繊維等のフィ
ラーを添加しないRI M原料による成形品のゲート付
近の面歪みは第6図に示す如く。
The maximum amount of waviness was 250μ, and abnormalities on the surface of the molded product were clearly felt even by visual inspection. Incidentally, the surface distortion in the vicinity of the gate of a molded product made of RIM raw materials without the addition of fillers such as glass fibers is as shown in FIG.

最大ウネリ量が30μであった。The maximum amount of undulation was 30μ.

従って、第3図乃至第5図に示す結果から、上記実施例
1のフレークガラスの添加が成形品表面のウネリ抑制に
大きな効を奏することがわかる。
Therefore, from the results shown in FIGS. 3 to 5, it can be seen that the addition of the flake glass of Example 1 has a great effect on suppressing waviness on the surface of the molded product.

また、この実施例1においてフレークガラスの添加によ
ってもRIM原料の流動、成形に特に支障はなく、さら
に、成形品の耐衝撃性もガラス繊維を混入した従来例の
ものと同程度であった。
Further, in this Example 1, the addition of glass flakes did not particularly impede the flow and molding of the RIM raw material, and furthermore, the impact resistance of the molded product was comparable to that of the conventional example in which glass fiber was mixed.

一方、上記実施例2で得られる成形品と同程度の線膨張
係数を従来方式で得るには、ミルドガラス繊維(平均繊
維長さ180μ)を成形品中で25重量%となるように
RIM原料に添加する必要があるが、その場合の成形品
のゲート付近の面歪みは、最大ウネリ量で300μとな
り、目視でも成形品の表面の異常が感じられた。
On the other hand, in order to obtain a linear expansion coefficient similar to that of the molded product obtained in Example 2 using the conventional method, milled glass fibers (average fiber length 180μ) are added to the RIM raw material so that it accounts for 25% by weight in the molded product. However, in this case, the surface distortion near the gate of the molded product was 300μ at the maximum amount of waviness, and abnormality on the surface of the molded product was felt even by visual inspection.

さらに、上記実施例3で得られる成形品と同程度の線膨
張係数を従来方式で得るには、ミルドガラス繊維(平均
繊維長さ120μ)を成形品中で12重量%となるよう
にRI M原料に添加する必要があるが、その場合の成
形品のゲート付近の而歪みは、最大ウネリ量で150μ
となり、目視でも成形品の表面の異常が感じられた。
Furthermore, in order to obtain a coefficient of linear expansion comparable to that of the molded product obtained in Example 3 using the conventional method, milled glass fibers (average fiber length 120μ) were added to the molded product by RIM so that the amount was 12% by weight. It is necessary to add it to the raw material, but in that case the distortion near the gate of the molded product is 150μ at the maximum amount of waviness.
An abnormality was felt on the surface of the molded product even by visual inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応射出成形装置の全体構成図、第2図はミキ
シングヘッドからキャビティに至る合成樹脂材料の流動
系路を示す図、第3図乃至第5図は実施例、偏平粒子を
混入しない従来例およびフィラーを混入しない従来例の
それぞれゲート付近の成形品表面ウネリを示す走査線図
である。 1・・・・・・反応射出成形装置、2・・・・・・A液
タンク、3・・・・・・B液タンク、5・・・・・・上
型、6・・・・・・下型、9・・・・・・ゲート、IO
・・・・・・キャビティ。 草 1 図 第 2 図
Figure 1 is an overall configuration diagram of the reaction injection molding apparatus, Figure 2 is a diagram showing the flow path of the synthetic resin material from the mixing head to the cavity, and Figures 3 to 5 are examples, in which flat particles are not mixed. FIG. 6 is a scanning line diagram showing undulations on the surface of a molded product near a gate in a conventional example and a conventional example in which no filler is mixed. 1... Reaction injection molding device, 2... Liquid A tank, 3... Liquid B tank, 5... Upper mold, 6...・Lower mold, 9...Gate, IO
······cavity. Grass 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)成形型に設けたゲートからキャビティ内に強化用
繊維を混入した液状の合成樹脂材料を射出して繊維強化
合成樹脂成形品を得る方法において、上記強化用繊維に
対し20〜50重量%の偏平粒子を含有する合成樹脂材
料にて射出成形することを特徴とする繊維強化合成樹脂
成形品の製造法。
(1) In a method for obtaining a fiber-reinforced synthetic resin molded product by injecting a liquid synthetic resin material mixed with reinforcing fibers into a cavity from a gate provided in a mold, 20 to 50% by weight of the above-mentioned reinforcing fibers is used. 1. A method for producing a fiber-reinforced synthetic resin molded article, which comprises injection molding a synthetic resin material containing flat particles.
(2)偏平粒子はフレークガラスである特許請求の範囲
第1項に記載の繊維強化合成樹脂成形品の製造法。
(2) The method for producing a fiber-reinforced synthetic resin molded article according to claim 1, wherein the flat particles are glass flakes.
JP10129886A 1986-04-30 1986-04-30 Manufacture of fiber reinforced synthetic resin molded product Pending JPS62256618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10129886A JPS62256618A (en) 1986-04-30 1986-04-30 Manufacture of fiber reinforced synthetic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10129886A JPS62256618A (en) 1986-04-30 1986-04-30 Manufacture of fiber reinforced synthetic resin molded product

Publications (1)

Publication Number Publication Date
JPS62256618A true JPS62256618A (en) 1987-11-09

Family

ID=14296914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10129886A Pending JPS62256618A (en) 1986-04-30 1986-04-30 Manufacture of fiber reinforced synthetic resin molded product

Country Status (1)

Country Link
JP (1) JPS62256618A (en)

Similar Documents

Publication Publication Date Title
US4163824A (en) Fiber foam and process
US7294302B2 (en) Method for controlling thickness of skin layer of composite resin molded product
JPS6183215A (en) Inner mold releasing agent for reaction injection molding
JPS627515A (en) Manufacture of molded article
DE4337569A1 (en) Process for the CFC-free production of cellular polyurethane moldings
JP2020517765A (en) Pultruded products, their manufacture and use
JPH06239951A (en) Reaction injection molding method
JPH0337931Y2 (en)
EP0154275B1 (en) Process for the manufacture of molded articles on the basis of polyaddition products of polyisocyanate, having urea groups
DE19634392A1 (en) Foaming polyurethane formulations with good flow behavior and a process for producing foamed polyurethane moldings
EP3634729B1 (en) Molding compound having randomly oriented filaments and methods for making and using same
JPS62256618A (en) Manufacture of fiber reinforced synthetic resin molded product
JP2013522405A (en) Process for preparing long fiber reinforced polyurethane containing particulate filler
EP0310896B1 (en) Process for the preparation of mouldings or films
DE19521315A1 (en) Process and device for the production of PUR sandwich moldings
DE10259267A1 (en) isocyanate adducts
US6893599B2 (en) Method for making a reinforced, polymeric article in a reaction injection molding system and mold for use therein
JPS6083820A (en) Reaction injection molding
JPH02269726A (en) Production of polyurethane urea and its molding
JPS60122127A (en) Molding method of r-rim
JPH02169214A (en) Reinforcing reaction injection molding method
JPH072902B2 (en) Reinforced resin molded product
JPS61171720A (en) Production of polyurethane
JPH04226523A (en) Self-toughening polyurethane composition
JPH01178421A (en) Reaction injection molding containing reinforcing material