JPS62256596A - High definition television signal system - Google Patents

High definition television signal system

Info

Publication number
JPS62256596A
JPS62256596A JP61100613A JP10061386A JPS62256596A JP S62256596 A JPS62256596 A JP S62256596A JP 61100613 A JP61100613 A JP 61100613A JP 10061386 A JP10061386 A JP 10061386A JP S62256596 A JPS62256596 A JP S62256596A
Authority
JP
Japan
Prior art keywords
signal
frames
fields
signals
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61100613A
Other languages
Japanese (ja)
Other versions
JPH0567118B2 (en
Inventor
Tadashi Kasezawa
正 加瀬沢
Hiroshi Ito
浩 伊藤
Seiji Yao
八尾 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61100613A priority Critical patent/JPS62256596A/en
Publication of JPS62256596A publication Critical patent/JPS62256596A/en
Publication of JPH0567118B2 publication Critical patent/JPH0567118B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the resolution by thinning every other frame of 525 signals of 60 fields/60 frames/sec to convert them to 525 successive scan signals of 30 frames/30 fields/sec and subjecting them to signal processing. CONSTITUTION:In the image pickup transmission side, 525 successive scan signals of 30 fields/30 frames/sec have a high band component YH of a luminance signal Y subjected to two-dimensional amplitude modulation and have the frequency shifted into 4.2MHz transmission band and are multiplexed and are converted to 525 interlace NTSC-TV signals of 60 fields/30 frames/sec and are transmitted. In the reception side, they are converted to 525 successive scan video signals of 30 fields/30 frames/sec, and signals YL, C', and YH' are separated in a three-dimensional frequency area in case of a still picture and are separated in a two-dimensional frequency area in case of animation to demodulate them to signals Y, I, and Q, and they are converted to RBG signal and are converted to 525 successive scan video signals of 60 fields/60 frames/ sec and are projected. Thus, vertical and horizontal resolutions are considerably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高精細テレビジョン信号方式に関し、詳しく
は、現行NTSC方式テレビジョン信号と完全交信性を
有する高精細テレビジョン信号方式〔従来の技術〕 従来、NTSCテレビジョン信号方式と完全に交信性の
ある高精細テレビジョン信号(以下、「TV倍信号とい
う)方式として、電子通信学会技術報告0888−61
 「完全交信性を有する高精細TV方式の提案」に述べ
られた方式がある。第4図(a)〜(0)はその方式に
よる一例を、3次元周波数領域にて示した図である。こ
の例では、輝度信号の高域成分Ylf (高精細情報)
を第4図(a)、(c)のYa’に示すように周波数変
換して現行のテレビジョン信号の伝送帯域内に周波数シ
フトし、輝度信号に多重化して伝送している。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-definition television signal system, and more specifically, a high-definition television signal system that has full compatibility with the current NTSC system television signal [prior art] ] Conventionally, the Institute of Electronics and Communication Engineers Technical Report 0888-61 has been used as a high-definition television signal (hereinafter referred to as "TV double signal") system that is fully compatible with the NTSC television signal system.
There is a system described in ``Proposal of high-definition TV system with complete communication performance''. FIGS. 4(a) to 4(0) are diagrams showing an example of this method in a three-dimensional frequency domain. In this example, the high frequency component Ylf of the luminance signal (high definition information)
As shown by Ya' in FIGS. 4(a) and 4(c), the signal is frequency-converted and frequency-shifted within the transmission band of the current television signal, and the signal is multiplexed with the luminance signal and transmitted.

また、他のTV信号方式としてテレビジョン学会技術報
告TEnstos−4rアイビジヨンについて」に述べ
られた方式がある。この方式の原理図を第5図に示す。
Further, as another TV signal system, there is a system described in the Technical Report of the Television Society of Japan ``On the TEnstos-4r EyeVision''. A diagram of the principle of this method is shown in FIG.

アイビジョン方式における撮像は525本、30フィー
ルド/30フレーム/秒の順次走査にて行つ。この信号
は、一旦フレームメモリに書き込まれ、これをインクレ
ースで、読み出すことによりアイビジョンNTSC信号
(525本、60フィールド/30フレーム/秒の順次
走査)となる。
Imaging in the eye vision system is performed by sequential scanning of 525 lines and 30 fields/30 frames/sec. This signal is once written in the frame memory, and by reading it out in increments, it becomes an eye vision NTSC signal (525 lines, sequential scanning at 60 fields/30 frames/second).

この信号は、従来のNTSC受像機との両立性を保つよ
うに構成される。アイビジョン受像機は2フレームメモ
リを備え、一旦アイビジョンNTSC信号を1フレーム
分書き込んだ後、2倍の速度で読み出しその間に、他の
フレームメモリに次の1フレーム分の信号を書き込むと
いう繰り返しで陰極線管上に走査線525本、60フィ
ールド/60フレーム/秒の順次走査の映像を表示する
This signal is configured to be compatible with conventional NTSC receivers. The iVision receiver is equipped with a 2-frame memory, and once the iVision NTSC signal is written for one frame, it is read out at twice the speed, and in the meantime, the signal for the next frame is written to the other frame memory, which is repeated. An image of 525 scanning lines and sequential scanning at 60 fields/60 frames/sec is displayed on a cathode ray tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前者の方式では、動画像入力の場合、第4図の3次元周
波数領域において、輝度信号YL 、  高精細情報Y
H,色信号Cのf軸方向の帯域が広がり、それぞれの信
号を帯域制限しない限り、受信側での各成分への分離は
厳密には不可能である。そのため、動特性の劣化を引き
起こす等の問題点がある。
In the former method, in the case of moving image input, in the three-dimensional frequency domain shown in Fig. 4, the luminance signal YL, high-definition information Y
The bands of the H and color signals C in the f-axis direction are widened, and unless the respective signals are band-limited, it is strictly impossible to separate them into each component on the receiving side. Therefore, there are problems such as deterioration of dynamic characteristics.

また、後者の方式では、525本、30フィールド/3
0フレーム/秒の順次走査で撮像し、525本、60フ
ィールド/60フレーム/秒の順次走査の映像を表示す
るので、垂直解像度は向上するが、水平解像度に関して
は現行方式と同等であるため、水平解像度の向上が望ま
れる。
In addition, in the latter method, 525 lines, 30 fields/3
The vertical resolution is improved because it captures images with a sequential scan rate of 0 frames/second and displays images with 525 lines and 60 fields/60 frames/second sequential scans, but the horizontal resolution is the same as the current method. Improvement in horizontal resolution is desired.

この発明は上記のような問題点を解消するためになされ
たもので、入力信号が静止画像であれ、動画像であれ、
垂直解像度及び水平解像度の両者を向上させることがで
き、かつ、現行NTSCTV信号方式と完全交信性を有
する高精細TV信号方式を得ることを目的とする。
This invention was made to solve the above problems, and whether the input signal is a still image or a moving image,
It is an object of the present invention to obtain a high-definition TV signal system that can improve both vertical resolution and horizontal resolution and has complete compatibility with the current NTSC TV signal system.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る高精細TV信号方式は、送信側では52
5本/30フィールド/30フレーム/秒の順次走査R
BG信号を輝度信号Y、I信号およびQ信号に変換し、
Y信号から高域成分Ynをとり出して垂直空間周波数が
525 / 2本、水平空間周波数が色副搬送波周波数
fsoの1/2もしくはその近傍の周波数、時間空間周
波数が15Hzである搬送波で3次元振幅変調を施し、
また、■。
The high-definition TV signal system according to this invention has 52
5 lines/30 fields/30 frames/sec sequential scanning R
Convert the BG signal to a luminance signal Y, I signal and Q signal,
The high-frequency component Yn is extracted from the Y signal, and the vertical spatial frequency is 525/2 lines, the horizontal spatial frequency is 1/2 of the color subcarrier frequency fso or a frequency near it, and the temporal and spatial frequency is 15 Hz. Apply amplitude modulation,
Also ■.

Q信号から変換した色信号Cを垂直空間周波数が525
74本、時間空間周波数が15Hzである搬送波で2次
元振幅変調を施し、これらの変調信号YH’ 、 O’
および輝度信号の低域成分YLを多重化し、この多重化
信号を525本/60フィールド/30フレーム/秒の
インタレースNTSC信号に変換する。
The vertical spatial frequency of the color signal C converted from the Q signal is 525.
74 carrier waves with a temporal and spatial frequency of 15 Hz are subjected to two-dimensional amplitude modulation, and these modulated signals YH', O'
and the low frequency component YL of the luminance signal, and converts this multiplexed signal into an interlaced NTSC signal of 525 lines/60 fields/30 frames/sec.

また、受信側では、受信した上記NTSC信号を、52
5本/30フィールド/30フレーム/秒の順次走査信
号に変換し、この変換信号からYL 、 O’、 YH
’信号を、静止画像の場合には3次元周波数項域で、ま
た、動画像の場合には2次元周波数頭域でそれぞれ分離
してとり出し、このYn’信号およびC′倍信号、それ
ぞれ復調し、復調した信号YHとYL倍信号ら輝度信号
Yを再生し、また復調した色信号Cから1信号およびC
信号を再生し、ついでこれらの信号を525本、30フ
ィールド/30フレーム/秒の順次走査映像信号に変換
し、この信号を525本、60フィールド/60フレー
ム/秒の順次走査NTSC信号に変換する。
Also, on the receiving side, the received NTSC signal is
It is converted into a sequential scanning signal of 5 lines/30 fields/30 frames/sec, and from this converted signal YL, O', YH
Separate and extract the 'signal in the three-dimensional frequency domain in the case of a still image, or in the two-dimensional frequency domain in the case of a moving image, and demodulate the Yn' signal and C'-fold signal, respectively. Then, the luminance signal Y is reproduced from the demodulated signal YH and the YL multiplied signal, and the 1 signal and C are reproduced from the demodulated color signal C.
Regenerate the signals, then convert these signals to 525 lines, 30 fields/30 frames/second progressively scanned video signals, and convert the signals to 525 lines, 60 fields/60 frames/second progressively scanned NTSC signal. .

〔作用〕[Effect]

この発明に係る高精細TV信号方式は、送信側において
は、525本、30フィールド/30フレーム/秒の順
次走査映像信号を原信号とし、3次元(垂直−水平一時
間)振幅変調して輝度信号の高域成分YH倍信号4.2
MHzの伝送帯域内の所定の周波数領域内に周波数シフ
トし、また、色信号Cを2次元(垂直一時間)振幅変調
して所定の周波数領域に周波数シフトし、これらの各信
号YL、 YH’、 O’を多重化して525本、30
フレーム/30フィールド/秒の順次走査RBG信号と
し、この信号を525本、60フィールド/30フレー
ム/秒のインクレースNTSC信号に変換する。
In the high-definition TV signal system according to the present invention, on the transmitting side, a 525-line, 30-field/30-frame/sec sequentially scanned video signal is used as an original signal, and three-dimensional (vertical-horizontal one-hour) amplitude modulation is performed to increase the brightness. High frequency component of signal YH times signal 4.2
The frequency is shifted to a predetermined frequency range within the MHz transmission band, and the color signal C is two-dimensionally (vertically temporally) amplitude modulated to be frequency shifted to a predetermined frequency range, and each of these signals YL, YH' , O' is multiplexed to 525 lines, 30
A progressive scanning RBG signal of frames/30 fields/second is converted to an incremental NTSC signal of 525 lines and 60 fields/30 frames/second.

また、受信側においては、受信した上記信号を、525
本、30フィールド/30フレーム/秒の順次走査信号
に変換し、この変換信号から静止画像のときには3次元
(水平−垂直一時間)周波数領域で分離したYL、 O
’、 Yll’信号を、また、動画像の場合は2次元(
水平−垂直)周波数領域で分離したYL、 O’、 Y
H’信号をとり出してYu’およびC′倍信号それぞれ
YH,C信号に復調し、復調信号YHとYL倍信号ら輝
度信号Yを再生し、また、C信号から工信号とC信号を
再生し、これらのY。
In addition, on the receiving side, the received signal is
This is converted into a sequential scanning signal of 30 fields/30 frames/second, and from this converted signal, YL, O, which is separated in a three-dimensional (horizontal-vertical hour) frequency domain when it is a still image, is obtained.
', Yll' signals, and in the case of moving images, two-dimensional (
(horizontal-vertical) YL, O', Y separated in the frequency domain
Takes out the H' signal and demodulates the Yu' and C' multiplied signals into YH and C signals respectively, reproduces the luminance signal Y from the demodulated signal YH and the YL multiplied signal, and also reproduces the luminance signal and C signal from the C signal. And these Y.

I、C信号を525本、30フィールド/307レーム
/秒の順次走査RBG信号に変換し、この信号を525
本、60フィールド/60フレーム/秒の順次走査RB
G信号に変換する。
The I and C signals are converted into 525 lines, 30 fields/307 frames/sec progressive scanning RBG signal, and this signal is
Book, 60 fields/60 frames/sec progressive scan RB
Convert to G signal.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の送信側の構成を示すブロ
ック回路図、第2図は受信側の構成を示すブロック図、
第3図は各信号の周波数配置を示す図である。第1図に
おいて、(1a)はR信号入力端子、(1b)はG信号
入力端子、(1c)はB信号入力端子で、入力されるT
’V信号は、525本、30フィールド/30フレーム
/秒の順次走査信号であり、入力されたR、G、E信号
はA/D変換器(8a)* (8b)t (8c)にそ
れぞれ与えられる。A/D変換器(8a)、 (8b)
s (lc)にて標本化されたRGB信号は、YIQ変
換回路(5)に与えられ、輝度信号Y、I信号およびC
信号に変換される。輝度信号Yは4.2M庵の低域輝度
信号通過フィルタ(6a)に与えられ、低域成分YLは
、YL O’Yn’多重回路(9)に与えられる。
FIG. 1 is a block circuit diagram showing the configuration of the transmitting side of an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of the receiving side,
FIG. 3 is a diagram showing the frequency arrangement of each signal. In Figure 1, (1a) is an R signal input terminal, (1b) is a G signal input terminal, and (1c) is a B signal input terminal.
'The V signal is a sequential scanning signal of 525 lines and 30 fields/30 frames/second, and the input R, G, and E signals are sent to A/D converters (8a) * (8b) t (8c), respectively. Given. A/D converter (8a), (8b)
The RGB signal sampled at s (lc) is given to the YIQ conversion circuit (5), and the luminance signal Y, I signal and C
converted into a signal. The luminance signal Y is given to a 4.2M low-pass luminance signal passing filter (6a), and the low-pass component YL is given to a YL O'Yn' multiplex circuit (9).

また、輝度信号Yは4.2〜6 MHzの高精細信号通
過フィルタ(6b)に与えられ、その高域成分YHは、
変調器(7a)にて変調される。変調器(7a)には入
力端子(1d)より、色信号副搬送周波数fsoの1/
2の周波数の水平変調波が与えられており、変調器(7
a)の出力は4.2 MHzの低域通過フィルタ(6C
)を介して変調器(7b)に与えられる。変調器(7b
)には入力端子(is)より525/2本の垂直変調波
が与えられており、変調器(7b)の出力は変調器(7
c〕を介してYtO’Yn’多重回路(9)に与えられ
る。変調器(7c)には、入力端子(1f)より、15
1の時間変調波が与えられている。
In addition, the luminance signal Y is given to a high-definition signal passing filter (6b) of 4.2 to 6 MHz, and its high frequency component YH is
It is modulated by a modulator (7a). The modulator (7a) receives 1/1 of the color signal subcarrier frequency fso from the input terminal (1d).
A horizontal modulation wave with a frequency of 2 is given, and a modulator (7
The output of a) is passed through a 4.2 MHz low-pass filter (6C
) to the modulator (7b). Modulator (7b
) is given 525/2 vertical modulation waves from the input terminal (is), and the output of the modulator (7b) is applied to the modulator (7b).
c] to the YtO'Yn' multiplex circuit (9). From the input terminal (1f), the modulator (7c) receives 15
1 time modulated wave is given.

また、工信号は、1.5MHzの低域通過フィルタ(6
d)を介して変調器(7d)に与えられており、変調器
(7d)には入力端子(1g)より、色副搬送周波数f
soと同じ周波数の水平変調波が与えられている。
In addition, the engineering signal is filtered through a 1.5 MHz low-pass filter (6
d) to the modulator (7d), and the modulator (7d) receives the color subcarrier frequency f from the input terminal (1g).
A horizontal modulation wave of the same frequency as so is given.

また、C信号は、1.5M)hの低域通過フィルタ(6
e)を介して変調器(7e)に与えられており、変調器
(7e)には入力端子(ih)より、frcと同じ周波
数の水平変調波が与えられている。変調器(7d)の出
力と変調器(7e)の出力は加算器(8a)に与えられ
加算される。加算器(8a)の出力即ち色信号Cは、変
調器(7f) 、 (7g)を介シテ、YLO’YH’
多重回路(9)ニ与えられる。変調器(7f)には入力
端子(11)より52574本の垂直変調波が、また、
変調器(7g)には入力端子(1j)より15田の時間
変調波がそれぞれ与えられており、色信号Cは、2次元
周波数変調された信号C′となってYLC’YH’多重
回路(9)に与えらレル。N’l’SO信号変換器αQ
はフレームメモリを有し、入力された525本、30フ
レーム/30フィールド/秒の順次走査信号を、lフレ
ームごとに2倍の速度で読み出す。D/A変換器(4a
)は読み出された信号をアナログ信号に変換し1出力端
子(2a)より525本、60フィールド/30フレー
ム/秒のインタレースNTSC!信号として出力される
In addition, the C signal is filtered through a 1.5M)h low-pass filter (6
A horizontal modulated wave having the same frequency as frc is applied to the modulator (7e) from an input terminal (ih). The output of the modulator (7d) and the output of the modulator (7e) are given to an adder (8a) and added together. The output of the adder (8a), that is, the color signal C, is transmitted through modulators (7f) and (7g) to YLO'YH'.
A multiplex circuit (9) is provided. The modulator (7f) receives 52574 vertically modulated waves from the input terminal (11), and
The modulator (7g) is given 15 time modulated waves from the input terminal (1j), and the color signal C becomes a two-dimensional frequency modulated signal C' and is sent to the YLC'YH' multiplex circuit ( 9) given to rel. N'l'SO signal converter αQ
has a frame memory and reads out 525 input sequential scanning signals of 30 frames/30 fields/sec at twice the speed every l frame. D/A converter (4a
) converts the read signal into an analog signal and outputs 525 lines from 1 output terminal (2a), 60 fields/30 frames/sec interlaced NTSC! Output as a signal.

第2図において、入力端子(1k)に供給された525
本/60フィールド/30フレーム/秒のインタレース
NTSC信号は、A/D変換器(8d)を介して高精、
1tlBTV信号変換器αυに入力され、525本/3
0フィールド/30フレーム/秒の順次走査信号に変換
されて3次元YLO’YH’分離回路(12a)と、2
次元YL O’YH’分離回路(12b)に与えられる
。8次元Yt、 O’Y1に’分離菌路(12a)にて
分離された低域輝度信号Yt、は、選択回路(15a)
の一方の入力に、変調されたYII’信号は選択回路(
15b)の一方の入力に、変調された色信号C′は選択
回路(150)の一方の入力に、それぞれ与えられる。
In Fig. 2, 525 supplied to the input terminal (1k)
The interlaced NTSC signal of 60 fields/30 frames/sec is processed with high precision through an A/D converter (8d).
Input to 1tlBTV signal converter αυ, 525 lines/3
It is converted into a sequential scanning signal of 0 fields/30 frames/sec and sent to a three-dimensional YLO'YH' separation circuit (12a) and 2
Dimension YL O'YH' is given to the separation circuit (12b). The low-range luminance signal Yt, which is separated in the 8-dimensional Yt, O'Y1 at the separation path (12a), is sent to the selection circuit (15a).
The modulated YII' signal is sent to one input of the selection circuit (
15b), and the modulated color signal C' is applied to one input of the selection circuit (150).

また、2次元Yt、O’YH’分離回路(12b)にて
分離されたYL倍信号、選択回路(15a)の他方の入
力に、変調されたYH’信号は選択回路(15b)の他
方の入力に、変調された色信号C′は選択回路(1sc
)の他方の入力に、それぞれ与えられる。選択回路(4
5a)の出力Yx、は加算器(8b)の一方の入力に与
えられ、選択回路(15b)の出力は復調器(’rh)
、 (’ri)、 (?j)を介して4.2〜6.0M
l−1zの高域通過フィルタ(6f)に与えられる。復
調器(7h)には、入力端子(11)より、15ルの時
間変調波が、また、復調器(71)には、入力端子(1
m)より、52572本の垂直変調波が、また、復調器
(7j)には、入力端子(1n)より、fs。
In addition, the YL multiplied signal separated by the two-dimensional Yt, O'YH' separation circuit (12b) and the modulated YH' signal are input to the other input of the selection circuit (15a). The modulated color signal C' is input to the selection circuit (1sc
), respectively. Selection circuit (4
The output Yx of 5a) is given to one input of the adder (8b), and the output of the selection circuit (15b) is fed to the demodulator ('rh).
, ('ri), (?j) via 4.2~6.0M
1-1z high-pass filter (6f). The demodulator (7h) receives the 15 time modulated waves from the input terminal (11), and the demodulator (71) receives the time modulated wave from the input terminal (11).
m), 52,572 vertically modulated waves are sent to the demodulator (7j), and fs is sent to the demodulator (7j) from the input terminal (1n).

の1/2の周波数の水平変調波がそれぞれ与えられてい
る。高域通過フィルタ(6f)の出力YHは、加算器(
8b)の他方の入力に与えられ、加算器(8b)の出力
Y信号は、RGB変換回路(至)に与えられる。
A horizontally modulated wave having a frequency of 1/2 of that is provided. The output YH of the high-pass filter (6f) is output from the adder (
8b), and the output Y signal of the adder (8b) is given to the RGB conversion circuit (to).

また、選択回路(150)の出力C′は復調器<7k)
、 (11)を介して、復調器(7m)及び(7n)に
与えられる。復調器(7k)には、入力端子(1o)よ
り、151の時間復調波が、また、復調器(71)には
、入力端子(1p)より52574本の垂直復調波が、
また、復調器(7m)には、入力端子(1q)よりf8
cと同じ周波数の水平復調波が・また、復調器(7n)
には、入力端子(1r)よりfs0と同じ周波数の水平
復調波が与えられている。復調器(7m)の出力■信号
は1.5M)−1xの低域通過フィルタ(6g)を介し
て、また、復調器(7n)の出力Q信号は1.5MHz
の低域通過フィルタ(6h)を介してそれぞれRGB変
換回路(至)に与えられる。
Also, the output C' of the selection circuit (150) is the demodulator <7k)
, (11) to the demodulators (7m) and (7n). The demodulator (7k) receives 151 time demodulated waves from the input terminal (1o), and the demodulator (71) receives 52574 vertical demodulated waves from the input terminal (1p).
Also, f8 is input to the demodulator (7m) from the input terminal (1q).
The horizontal demodulated wave with the same frequency as c is also demodulated by the demodulator (7n)
A horizontal demodulated wave having the same frequency as fs0 is applied from the input terminal (1r) to fs0. The output signal of the demodulator (7m) is passed through a 1.5M)-1x low-pass filter (6g), and the output Q signal of the demodulator (7n) is 1.5MHz.
are applied to the RGB conversion circuit (to) through the low-pass filter (6h).

RGB変換回路(至)は、これらの入力信号Y、I。The RGB conversion circuit (to) receives these input signals Y, I.

Qを525本、30フィールド/307L/−ム/秒の
順次走査信号R信号出力、G信号出力およびB信号出力
に変換し、倍走査変換器α→は、この信号を、525本
、60フィールド/60フレーム/秒の順次走査信号に
変換し、これらの信号はD/A変換器(4b)、 (4
c)* (4d)を介して出力端子(2b)。
Q is converted into 525 lines, 30 fields/307 L/-m/sec progressive scanning signals R signal output, G signal output and B signal output, and the double scanning converter α→ converts this signal into 525 lines, 60 fields. /60 frames/second progressive scanning signals, and these signals are passed through a D/A converter (4b), (4
c) * Output terminal (2b) via (4d).

(2c )e (2d)より出力される。(2c) e Output from (2d).

このように、送信側における撮像を525本。In this way, 525 images were captured on the transmitting side.

30フィールド/30フレーム/秒の順次走査にしたの
は、現行NTSC方式の映像信号の伝送帯域は4.2M
Hzに制限されており、また、上記撮像信号は525本
、30フィールド/30フレーム/秒の順次走査信号で
あるから、垂直方向に折返しひずみの生じない帯域はお
のずと制限されるため伝送可能な周波数領域は、第3図
(a)のμ−シ平面(水平−垂直2次元局波数領域)に
おける斜線部YLのごとくなる。フィルタ(6b)s 
(6c) 、変調器(7a)y (’rb)、 (7c
)で構成されているYH倍信号3次元振幅変調により、
信号Yuの領域を、第8図〜)および(C)に示したY
u’の領域に周波数シフトする。
The reason for sequential scanning at 30 fields/30 frames/second is that the current NTSC system video signal transmission band is 4.2M.
Hz, and since the above imaging signal is a sequential scanning signal of 525 lines and 30 fields/30 frames/second, the band in which aliasing distortion does not occur in the vertical direction is naturally limited, so the frequency that can be transmitted is limited. The area is like the shaded area YL in the μ-shi plane (horizontal-vertical two-dimensional local wave number area) in FIG. 3(a). Filter (6b)s
(6c), modulator (7a)y ('rb), (7c
) by YH double signal three-dimensional amplitude modulation,
The area of the signal Yu is shown in FIGS.
Shift the frequency to the u' region.

また、変調器(7f)、 (7g)で構成されている2
次元振幅変調により、色信号Cの領域を、第8図(a)
および(b)に示したC′の領域に周波数シフトする。
In addition, 2 units consisting of modulators (7f) and (7g)
By dimensional amplitude modulation, the area of color signal C is
and the frequency is shifted to the region C' shown in (b).

このときのf−ν平面(時間−垂直2次元周波数領域)
におけるYH’信号及びC′倍信号周波数領域を第8図
(C)に示す。このように多重化された525本、30
フィールド/30フレーム/秒の順次走査映像信号はN
TSC信号変信号変換器α力され、NTSC信号変信号
変換器α力された映像信号をフレームメモリに一旦書き
込み、インクレースにて2回読み出され、読み出された
信号の色副搬送波fsoの位相は現行NTSC信号と同
等で、f−ν平置上での色信号C′の周波数領域は第4
図(c)のごとくなっており既存のNTSC受像機にて
受信が可能である。
At this time, the f-ν plane (time-vertical two-dimensional frequency domain)
FIG. 8(C) shows the YH' signal and the C' multiplied signal frequency region. 525 lines multiplexed in this way, 30
Field/30 frames/second progressive scanning video signal is N
The video signal input to the TSC signal converter α and input to the NTSC signal converter α is once written into the frame memory, read out twice by the increment, and the color subcarrier fso of the read signal is The phase is the same as the current NTSC signal, and the frequency region of the color signal C' on the f-ν plane is the fourth
As shown in Figure (c), it can be received by existing NTSC receivers.

このようにして、525本、30フィールド/30フレ
ーム/秒の順次走査にて撮像された信号は、525本、
60フィールド/30フレーム/秒のインクレースされ
た高精細TV信号として伝送される。
In this way, the signals imaged by sequential scanning of 525 lines and 30 fields/30 frames/second are 525 lines,
It is transmitted as an incremented high-definition TV signal at 60 fields/30 frames/second.

つぎに、受信側においては、受信した525本。Next, on the receiving side, 525 received.

60フィールド730フレーム/秒インタレースTV信
号は、A/D変換器(8d)を介して笥精細TV信号変
換器αυのフレームメモリに一旦書き込まれ、525本
、30フィールド/30フレーム/秒の順次走査映像信
号として読み出される。一般に、映像信号が動画像であ
ると、時間軸方向に信号のスペクトルが広がるため、送
信側にて各々の信号を帯域制限しない限り時間周波数頭
域における各信号の分離は厳密には不可能である。そこ
でこの実施例では、上記複合映像信号が、静止画像の場
合は8次元周波数頭域にて、また、動画像の場合は2次
元周波数領域にて、YLC′YH′に分離する。選択回
路(15a)、 (15b)、 (15c)  はこの
選択を行うものである。選択回路(15b)で選択され
た信号YH’ ハ、復調’a (7h)、 (7i)、
 (7j) テ溝成すレテイル復調手段によって信号Y
Hに復調され、MJ算器(8b)で信号YLと加算され
て、輝度信号Yに再生される。また、信号C′は、復調
器(7k)、 <71)で色信号Cに復調され、さらに
、復調器(7m)e (7n)によって工信号およびQ
信号に復調される。このようにして得られた輝度信号Y
、I信号及びQ信号は几GB変換回路Q3にて、525
本、30フィールド/30フレーム/秒の順次走査映像
信号に変換される。倍走査変換器Q4)はフレームメモ
リを内蔵しており、RGB信号を1フレーム毎に2倍の
速度で2度読み出す。即ち525本、30フィールド/
30フレーム/秒の順次走査信号を、525本。
The 60 fields, 730 frames/second interlaced TV signal is once written into the frame memory of the high-definition TV signal converter αυ via the A/D converter (8d), and is sequentially processed at 525 lines, 30 fields/30 frames/second. It is read out as a scanning video signal. Generally, when the video signal is a moving image, the spectrum of the signal spreads in the time axis direction, so it is strictly impossible to separate each signal in the time-frequency range unless each signal is band-limited on the transmitting side. be. Therefore, in this embodiment, the composite video signal is separated into YLC'YH' in an 8-dimensional frequency domain in the case of a still image, and in a 2-dimensional frequency domain in the case of a moving image. The selection circuits (15a), (15b), and (15c) perform this selection. The signal YH' selected by the selection circuit (15b) is demodulated'a (7h), (7i),
(7j) Signal Y
The signal is demodulated to H, is added to the signal YL by the MJ calculator (8b), and is reproduced into the luminance signal Y. Further, the signal C' is demodulated into a color signal C by a demodulator (7k), <71), and is further demodulated into a color signal C and a color signal by a demodulator (7m) e (7n).
demodulated into a signal. Luminance signal Y obtained in this way
, I signal and Q signal are converted to 525 by the GB conversion circuit Q3.
This is converted into a progressively scanned video signal of 30 fields/30 frames/second. The double scanning converter Q4) has a built-in frame memory and reads out the RGB signals twice at twice the speed for each frame. That is, 525 lines, 30 fields/
525 sequential scanning signals at 30 frames/second.

60フィールド/60フレーム/秒の順次走査NTSC
信号に変換し、D/A変換器(4b)〜(4d)を介し
て出力する。
60 fields/60 frames/sec progressive scan NTSC
It is converted into a signal and outputted via D/A converters (4b) to (4d).

このようにこの実施例によれば、送信側において525
本、30フィールド/30フレーム/秒の順次走査にて
撮像し、受信側で525本、60フィールド/60フレ
ーム/秒の順次走査信号で映出するので垂直解像度が向
上する。
In this way, according to this embodiment, 525
The image is captured by sequential scanning at 30 fields/30 frames/sec, and the image is displayed on the receiving side using 525 sequential scanning signals at 60 fields/60 frames/sec, improving vertical resolution.

また、輝度信号の高域成分(高精細情報) YHを3次
元振副変調し現行の伝送帯域内に周波数シフトして伝送
し、受信側で復調するようにしたので水平解像度が向上
する。
In addition, the high-frequency component (high-definition information) YH of the luminance signal is three-dimensionally sub-modulated, frequency-shifted within the current transmission band, and transmitted, and demodulated on the receiving side, thereby improving horizontal resolution.

なお、上記実施例ではYH領領域信号をYa’領域にた
だ単に多重化したが、動画像の場合には、多重する前に
YH’領域に存在する信号をすべて阻止した状態で多重
してもよい。また、同様に色信号を0頭域に多重する前
に、C領域に存在する信号をすべて阻止してもよい。こ
のようにすることにより、動画像の場合のクロストーク
を避けることができる。
In the above embodiment, the YH area signal is simply multiplexed into the Ya' area, but in the case of moving images, multiplexing may also be performed with all signals present in the YH' area blocked before multiplexing. good. Similarly, all signals present in the C region may be blocked before the color signals are multiplexed into the 0-head region. By doing so, crosstalk in the case of moving images can be avoided.

また、上記実施例では、525本、30フィールド/3
0フレーム/秒の順次走査にて撮像されたテレビジョン
信号を対象としたが必ずしも上記撮像方式に限ることは
なく、たとえば、525本。
In addition, in the above embodiment, 525 lines, 30 fields/3
Although the target is a television signal imaged by sequential scanning at 0 frames/second, the imaging method is not necessarily limited to the above imaging method, and for example, 525 signals.

60フィールド/60フレーム/秒の順次走査にて撮像
し、1フレームおきに間引いた信号を対象としてもよい
The signal may be captured by sequential scanning at 60 fields/60 frames/sec and thinned out every other frame.

また、上記実施例ではYH倍信号変調する水平変調波を
、f8C/2に設定したが、この例に限られるものでは
な(、fso/2ないしその近傍の周波数であっても同
様の効果が得られる。
In addition, in the above embodiment, the horizontal modulation wave for YH double signal modulation is set to f8C/2, but it is not limited to this example (the same effect can be obtained even if the frequency is fso/2 or its vicinity). can get.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、撮像、送信側におい
て、525本、aOフィールド/30フレーム/秒の順
次走査信号を、輝度信号Yの高域成分YHを8次元振幅
変調して4.2 MHzの伝送帯域内に周波数シフトし
て多重化し、525本、60フィールド/30フレーム
/秒のインタレースNTSCTV信号に変換して伝送し
、受信側において、525本、30フィールド/30フ
レーム/秒の順次走査映像信号に変換したのち、YL、
 O’。
As described above, according to the present invention, on the imaging and transmitting sides, 525 aO fields/30 frames/second sequential scanning signals are subjected to eight-dimensional amplitude modulation of the high frequency component YH of the luminance signal Y. The frequency is shifted and multiplexed within the 2 MHz transmission band, converted into an interlaced NTSCTV signal of 525 lines, 60 fields/30 frames/second, and transmitted.On the receiving side, the signal is transmitted with 525 lines, 60 fields/30 frames/second. After converting to a sequentially scanned video signal of YL,
O'.

YH’信号を、静止画像の場合には3次元周波数領域で
分離し、また、動画像の場合には2次元周波数領域で分
離してY、■、Q信号に復調し、さらニRB G信号に
変換したのち525本、60フィールド/60フレーム
/秒の順次走査映像信号に変換して映出するようにした
ので、N ’[’ S OカラーTV信号方式と完全交
信性を有するとともに・垂直解像度および水平解像度が
大幅に向上する効果がある。
The YH' signal is separated in a three-dimensional frequency domain in the case of a still image, or in a two-dimensional frequency domain in the case of a moving image, and demodulated into Y, ■, and Q signals, and then further converted into RB, G signals. After converting to 525 lines, 60 fields/60 frames/second progressive scanning video signal for display, it has full communication with the N'['S O color TV signal system and vertical This has the effect of significantly improving resolution and horizontal resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による高精細テレビジョン信号方式の
送信側の一実施例を示すブロック回路図、第2図は同じ
く受信側の一実施例を示すブロック回路図、第8図(a
)〜(0)はこの実施例における各信号の周波数配置を
示す図、第4図は従来の高精細TV信号方式における各
信号の周波数配置を示す図、第5図は従来の高精細TV
信号方式の構成を示す図である。 (5) −・−Y IQ変換回路、(6a) 〜(6h
)−フィルタ、(7a) 〜(7g)−変調器、(7h
) 〜(7n)−復調器、(8aL(8b)・・・加算
器、(9)・・・YL O’ YH’多重回路、αQ・
・・NTSC信号変換器、αη・・・高精細TV信号変
換器、(12a)・8次元YLC’YH’分離回路、(
12b)・2次元YLC′YH′分離回路、曹・・・R
GB変換回路、a−i>・・・倍走査変換器、(X5a
)〜(15c)・・・選択回路。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a block circuit diagram showing an embodiment of the transmitting side of the high-definition television signal system according to the present invention, FIG. 2 is a block circuit diagram showing an embodiment of the receiving side, and FIG.
) to (0) are diagrams showing the frequency arrangement of each signal in this embodiment, Fig. 4 is a diagram showing the frequency arrangement of each signal in the conventional high-definition TV signal system, and Fig. 5 is a diagram showing the frequency arrangement of each signal in the conventional high-definition TV signal system.
FIG. 2 is a diagram showing the configuration of a signaling system. (5) -・-Y IQ conversion circuit, (6a) ~ (6h
) - filter, (7a) to (7g) - modulator, (7h
) ~(7n) - demodulator, (8aL(8b)...adder, (9)...YL O'YH' multiplex circuit, αQ・
...NTSC signal converter, αη...High-definition TV signal converter, (12a)・8-dimensional YLC'YH' separation circuit, (
12b) ・Two-dimensional YLC'YH' separation circuit, C...R
GB conversion circuit, ai>... double scanning converter, (X5a
) to (15c)...selection circuit. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)送信側では、525本、30フィールド/30フ
レーム/秒の順次走査RBG信号を輝度信号Y、I信号
、Q信号に変換し、この輝度信号Yの高域成分Y_Hを
垂直空間周波数が525/2本、水平空間周波数が色副
搬送波周波数fscの1/2もしくはその近傍の周波数
、時間空間周波数が15Hzである搬送波で3次元振幅
変調を施し、上記I信号およびQ信号を色信号Cに変換
し、この色信号Cを垂直空間周波数が525/4本、時
間空間周波数が15Hzである搬送波で2次元振幅変調
を施し、これらの変調信号Y_H′、C′および上記輝
度信号Yの低域成分Y_Lを多重化し、この多重化信号
を525本、60フィールド/30フレーム/秒のイン
タレースNTSC信号に変換する信号処理を施し、 また、受信側では、受信した上記NTSC信号を、52
5本、30フィールド/30フレーム/秒の順次走査信
号に変換し、この変換信号から、Y_L、C′、Y_H
′信号を、静止画像の場合には3次元周波数領域(水平
−垂直−時間周波数領域)で、また、動画像の場合には
2次元周波数領域(水平−垂直周波数領域)でそれぞれ
分離し、このYH′信号およびC′信号をそれぞれY_
H信号およびC信号に復調し、このY_H信号と上記変
換信号中のY_L信号を加算して輝度信号Yを再生し、
上記C信号からI、Q信号を再生し、これらのY、I、
Q信号をR、B、G信号に変換し、この変換信号を52
5本、60フィールド/60フレーム/秒の順次走査R
BG信号に変換する信号処理を施すことを特徴とする高
精細テレビジョン信号方式。
(1) On the transmitting side, the 525-line, 30-field/30-frame/second sequential scanning RBG signal is converted into luminance signals Y, I signal, and Q signal, and the high frequency component Y_H of this luminance signal Y is converted to a vertical spatial frequency. 525/2, three-dimensional amplitude modulation is performed using a carrier wave whose horizontal spatial frequency is 1/2 of the color subcarrier frequency fsc or its vicinity, and whose temporal and spatial frequency is 15 Hz, and the above I signal and Q signal are converted into a color signal C. This color signal C is subjected to two-dimensional amplitude modulation with a carrier wave having a vertical spatial frequency of 525/4 lines and a temporal spatial frequency of 15 Hz, and these modulated signals Y_H', C' and the low level of the luminance signal Y are The area component Y_L is multiplexed, and signal processing is performed to convert this multiplexed signal into an interlaced NTSC signal of 525 lines and 60 fields/30 frames/sec.In addition, on the receiving side, the received NTSC signal is
5 lines, 30 fields/30 frames/second sequential scanning signal, and from this converted signal, Y_L, C', Y_H
' Separate the signal in the three-dimensional frequency domain (horizontal-vertical-time frequency domain) in the case of still images, and in the two-dimensional frequency domain (horizontal-vertical frequency domain) in the case of moving images. YH' signal and C' signal respectively
demodulate into an H signal and a C signal, add this Y_H signal and the Y_L signal in the converted signal to reproduce the luminance signal Y,
Regenerate the I and Q signals from the C signal, and reproduce these Y, I,
Convert the Q signal to R, B, G signals, and convert this converted signal into 52
5 lines, 60 fields/60 frames/sec sequential scanning R
A high-definition television signal system that is characterized by performing signal processing to convert it into a BG signal.
(2)撮像した映像信号が525本、60フィールド/
60フレーム/秒の順次走査信号であり、この信号を、
1フレームおきに間引いて525本、30フレーム/3
0フィールド/秒の順次走査信号に変換して信号処理を
施すようにした特許請求の範囲第1項記載の高精細テレ
ビジョン信号方式。
(2) 525 captured video signals, 60 fields/
It is a progressive scanning signal of 60 frames/second, and this signal is
Thinned every other frame to 525 lines, 30 frames/3
2. The high-definition television signal system according to claim 1, wherein the signal is converted into a progressive scanning signal of 0 fields/second and subjected to signal processing.
JP61100613A 1986-04-28 1986-04-28 High definition television signal system Granted JPS62256596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61100613A JPS62256596A (en) 1986-04-28 1986-04-28 High definition television signal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61100613A JPS62256596A (en) 1986-04-28 1986-04-28 High definition television signal system

Publications (2)

Publication Number Publication Date
JPS62256596A true JPS62256596A (en) 1987-11-09
JPH0567118B2 JPH0567118B2 (en) 1993-09-24

Family

ID=14278692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61100613A Granted JPS62256596A (en) 1986-04-28 1986-04-28 High definition television signal system

Country Status (1)

Country Link
JP (1) JPS62256596A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171387A (en) * 1983-03-18 1984-09-27 Hitachi Ltd Method for constituting television signal
JPS6132681A (en) * 1984-07-25 1986-02-15 Hitachi Ltd Signal processing circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171387A (en) * 1983-03-18 1984-09-27 Hitachi Ltd Method for constituting television signal
JPS6132681A (en) * 1984-07-25 1986-02-15 Hitachi Ltd Signal processing circuit

Also Published As

Publication number Publication date
JPH0567118B2 (en) 1993-09-24

Similar Documents

Publication Publication Date Title
US4558347A (en) Progressive scan television system employing vertical detail enhancement
JP2588636B2 (en) Method and apparatus for compatibility between NTSC and HD television screen signals
US5001551A (en) NISC compatible two-channel transmission apparatus for enhanced definition television
US5227879A (en) Apparatus for transmitting an extended definition TV signal having compatibility with a conventional TV system
JPH07121108B2 (en) Television system
JPS62256596A (en) High definition television signal system
JPH02257195A (en) Tv signal processor
JPH04240982A (en) Television signal transmitter-receiver
JP2692157B2 (en) Television signal processing method and television signal processing device
JPS6397086A (en) Transmitting device for high definition television signal
JPS62256597A (en) High definition television signal system
JPS62256595A (en) High definition television signal system
JP2905234B2 (en) Image signal band compression transmission device and band compression image signal reception device
JPS63232587A (en) Image transmitter for tv signal
JPS63123295A (en) Television signal device
JPH01140871A (en) Method and device for picture transmission
JPH0748848B2 (en) Television signal multiplex system
JPH04253489A (en) Transmission/reception system for television signal and transmission/reception device
JPH05300475A (en) Tv transmission and reception system
JPH04339486A (en) Transmitting/receiving equipment for television signal
JPH0556456A (en) Picture signal transmission method
JPH03248694A (en) Television signal transmission system
JPH06350975A (en) Method for constituting television signal
JPS647555B2 (en)
JPH06178272A (en) Image transmission reception system for television signal