JPS6225643Y2 - - Google Patents

Info

Publication number
JPS6225643Y2
JPS6225643Y2 JP348581U JP348581U JPS6225643Y2 JP S6225643 Y2 JPS6225643 Y2 JP S6225643Y2 JP 348581 U JP348581 U JP 348581U JP 348581 U JP348581 U JP 348581U JP S6225643 Y2 JPS6225643 Y2 JP S6225643Y2
Authority
JP
Japan
Prior art keywords
capacity
compressors
outside air
detector
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP348581U
Other languages
Japanese (ja)
Other versions
JPS57118258U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP348581U priority Critical patent/JPS6225643Y2/ja
Publication of JPS57118258U publication Critical patent/JPS57118258U/ja
Application granted granted Critical
Publication of JPS6225643Y2 publication Critical patent/JPS6225643Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は冷房装置、詳しくは複数台の圧縮機を
備え、凝縮器を外気と熱交換する空気熱交換器と
し、前記圧縮機を、冷房負荷により発停して容量
制御するごとくした冷房装置に関する。
[Detailed description of the invention] The present invention is a cooling system, more specifically, it is equipped with a plurality of compressors, the condenser is an air heat exchanger that exchanges heat with outside air, and the compressor is turned on and off depending on the cooling load to increase the capacity. The present invention relates to a cooling device that is controlled.

従来、此種装置は冷房負荷による複数台の圧縮
機を発停して容量制御を行なうのであるが、この
ように容量制御を行なう場合、圧縮機モータが起
動されるごとに多大な起動電流が流れるため、消
費電力が無駄に増大することとなる問題があつ
た。
Conventionally, this type of equipment controls capacity by starting and stopping multiple compressors depending on the cooling load, but when performing capacity control in this way, a large amount of starting current is generated each time the compressor motor is started. There was a problem in that the power consumption increased unnecessarily.

そのため、コンピユータ室をもつた建物におけ
る冷房のごとく、昼夜、季節を問わず年中冷房を
行なうとき、前記起動電流による無駄な消費電力
が積算され、年間供給電力当りの年間冷房能力の
比、所謂SEERが低下する問題があつた。
Therefore, when air conditioning is performed all year round, day and night, regardless of the season, such as in a building with a computer room, the wasted power consumption due to the starting current is accumulated, and the ratio of annual cooling capacity per annual supply power, so-called There was a problem where SEER decreased.

しかして、以上のごとく圧縮機を発停させて容
量制御する場合の問題を解決するには、圧縮機に
容量制御機構を設けて、圧縮機を発停によらずに
前記容量制御機構の動作により、容量制御すべく
成すことが考えられるが、斯くすると、冬季のご
とく外気温度の低いとき容量制御して冷房運転を
行なう場合、凝縮器における外気の冷却能力が過
大となつて高圧が低下し、しかも、圧縮機の容量
を低容量に制御する程高圧の低下が大きくなつて
運転できなくなる問題がある。ところで、この問
題の対策として、例えば凝縮器に付設するフアン
を複数台として、その運転台数を減少したり、フ
アン回転数を減速したりして、凝縮器からの放熱
量を減少させるごとく成すことが考えられるが、
圧縮機容量と凝縮器での放熱量とを正確にマツチ
ングさせることはむつかしく、特に、25%容量や
50%容量などの低容量制御時には、充分な高圧上
昇が得られず、前記した高圧低下の問題を根本的
には解決できないのである。
Therefore, in order to solve the problem of capacity control by starting and stopping the compressor as described above, a capacity control mechanism is provided in the compressor, and the capacity control mechanism operates without depending on starting and stopping the compressor. Therefore, it is conceivable to control the capacity, but in this way, when performing cooling operation by controlling the capacity when the outside air temperature is low, such as in winter, the cooling capacity of the outside air in the condenser becomes excessive and the high pressure decreases. Moreover, there is a problem that the lower the capacity of the compressor is controlled, the greater the drop in high pressure becomes, making it impossible to operate. By the way, as a countermeasure to this problem, the amount of heat radiated from the condenser can be reduced by, for example, installing multiple fans attached to the condenser, reducing the number of fans in operation, or slowing down the rotational speed of the fans. is possible, but
It is difficult to accurately match the compressor capacity and the heat dissipation amount in the condenser, especially at 25% capacity or
When controlling a low capacity such as 50% capacity, a sufficiently high pressure increase cannot be obtained, and the problem of the high pressure drop described above cannot be fundamentally solved.

因みに、圧縮機を100%容量で運転している場
合、外気温度が7.2℃で高圧値が9.5Kg/cm2のと
き、凝縮器風量を半分にすると高圧値を14Kg/cm2
迄昇圧できるが、圧縮機を25%容量で運転してい
る場合には、外気温度が7.2℃で高圧値が6.8Kg/
cm2のとき、凝縮器風量を半分にしても高圧値は
8.0Kg/cm2になるに過ぎず、十分な高圧上昇が得
られないのである。
By the way, when the compressor is operating at 100% capacity, when the outside temperature is 7.2℃ and the high pressure value is 9.5Kg/ cm2 , if the condenser air volume is halved, the high pressure value will be 14Kg/ cm2.
However, when the compressor is operated at 25% capacity, the high pressure value is 6.8 kg/
cm 2 , the high pressure value remains even if the condenser air volume is halved.
The pressure is only 8.0Kg/cm 2 , and a sufficiently high pressure increase cannot be obtained.

しかして、本考案は以上の問題に鑑み考案した
もので、目的とする所は、冬季など外気温度が低
くとも圧縮機の制御された容量値に拘わらず、高
圧を所定値以上に確保できると共に、年間供給電
力に対する年間能力の比(SEER)も高めること
ができる冷房装置を提供する点にある。
The present invention was devised in view of the above problems, and its purpose is to be able to maintain high pressure above a predetermined value, regardless of the controlled capacity of the compressor, even when the outside temperature is low, such as in winter. Another object of the present invention is to provide a cooling device that can also increase the ratio of annual capacity to annual power supply (SEER).

即ち、本考案は、複数台の圧縮機の各々に、外
気と熱交換する空冷凝縮器をそれぞれ接続して形
成した複数の系統を蒸発器に接続して冷媒回路を
形成すると共に、前記蒸発器に冷房負荷を接続し
た冷房装置において、前記各圧縮機を部分容量制
御及び発停制御可能に構成すると共に、前記冷房
負荷を検出する負荷検出器と外気温度を検出する
外気温度検出器とを、外気温度検出器で検出した
外気温度が設定温度より高いとき前記負荷検出器
により前記各圧縮機を部分容量制御し、外気温度
検出器で検出した外気温度が設定温度より低いと
き前記負荷検出器により前記各圧縮機を発停制御
するごとく制御回路に設けたことを特徴とするも
のである。
That is, the present invention connects a plurality of air-cooled condensers that exchange heat with outside air to each of a plurality of compressors to form a refrigerant circuit, and connects a plurality of systems to an evaporator to form a refrigerant circuit. In the cooling device, each compressor is configured to be capable of partial capacity control and start/stop control, and a load detector for detecting the cooling load and an outside temperature detector for detecting outside air temperature are provided. When the outside air temperature detected by the outside air temperature detector is higher than the set temperature, the load detector controls the partial capacity of each compressor, and when the outside air temperature detected by the outside air temperature detector is lower than the set temperature, the load detector The present invention is characterized in that a control circuit is provided to control the start and stop of each of the compressors.

以下本考案装置の実施例を図面に基づいて説明
する。
Embodiments of the device of the present invention will be described below based on the drawings.

第1図に示したものは、建物B内に形成された
コンピユータ室a1など複数室a1,a2,a3…から成
る冷房領域Aの冷房を行なうもので、該冷房領域
Aの中には、前記コンピユータ室a1のごとく、夏
季、中間期だけでなく冬期においても、要するに
昼夜を問わず、年中冷房負荷を発生する室をもつ
ているのである。
The system shown in Fig. 1 cools a cooling area A consisting of multiple rooms a 1 , a 2 , a 3 . . . such as a computer room a 1 formed in a building B. The computer room A1 has a room that generates a cooling load all year round, not only in the summer and intermediate seasons, but also in the winter, in other words, day and night.

第1図において、1,2は、それぞれ2気筒を
一対とする8気筒形の圧縮機であり、また、3,
4は外気と熱交換する空気熱交換器から成る空冷
凝縮器で、凝縮器3には、4台のモータM1
M2,M3,M4によつて駆動される4台の室外フア
ンF1,F2,F3,F4が対設され、凝縮器4には同
じく4台のモータM5,M6,M7,M8によつて駆動
される4台の室外フアンF5,F6,F7,F8が対設
されている。
In FIG. 1, 1 and 2 are eight-cylinder compressors each having a pair of two cylinders, and 3,
4 is an air-cooled condenser consisting of an air heat exchanger that exchanges heat with outside air, and the condenser 3 includes four motors M 1 ,
Four outdoor fans F 1 , F 2 , F 3 , F 4 driven by M 2 , M 3 , M 4 are installed in opposition, and the condenser 4 also has four motors M 5 , M 6 . , M 7 , and M 8 , four outdoor fans F 5 , F 6 , F 7 , and F 8 are arranged opposite to each other.

5,6は膨張弁、7は2系統の冷媒管を配設し
た水用の蒸発器であり、該蒸発器7には、水入口
管8と水出口管9とを接続している。
5 and 6 are expansion valves, and 7 is a water evaporator provided with two systems of refrigerant pipes.A water inlet pipe 8 and a water outlet pipe 9 are connected to the evaporator 7.

そして、前記圧縮機1、凝縮器3、膨張弁5、
蒸発器7の1系統の冷媒管が冷媒配管10によ
り、また、前記圧縮機2、凝縮器4、膨張弁6、
蒸発器7の他の1系統の冷媒管が冷媒配管11に
よりそれぞれ連結されて、2系統の冷凍回路を形
成している。また、前記蒸発器7の水入口管8と
水出口管9とは、前記冷房領域Aの各室a1,a2
a3…に設置される冷却コイルc1,c2,c3…に連結
されて、冷水回路を形成している。
The compressor 1, condenser 3, expansion valve 5,
One system of refrigerant pipes of the evaporator 7 is connected to the refrigerant pipe 10, and the compressor 2, the condenser 4, the expansion valve 6,
The other refrigerant pipes of the evaporator 7 are connected by refrigerant pipes 11 to form two refrigerating circuits. Further, the water inlet pipe 8 and water outlet pipe 9 of the evaporator 7 are connected to each room a 1 , a 2 ,
It is connected to the cooling coils c 1 , c 2 , c 3 . . . installed in a 3 . . . to form a chilled water circuit.

そして、前記冷水回路における冷房領域Aから
蒸発器7に戻る水入口管8内の水温、即ち冷房負
荷を検出する負荷検出器th1を設けて、該検出器
th1の動作により、前記圧縮機1,2を冷房負荷
に応じて発停して容量制御すべくしている。即
ち、前記両圧縮機1,2全体の容量を、前記水温
が第1設定値より低いときには、両圧縮機1,2
を2台とも停止する0%容量に、また、前記水温
が第1設定値以上で第2設定値より低いときに
は、圧縮機1,2の1台を停止し、他の1台を運
転する50%容量に、さらに、前記水温が第2設定
値以上のときには、圧縮機1,2の2台をともに
運転する100%容量に容量制御すべくしている。
A load detector th 1 is provided to detect the water temperature in the water inlet pipe 8 returning from the cooling area A to the evaporator 7 in the chilled water circuit, that is, the cooling load.
By the operation of th 1 , the compressors 1 and 2 are started and stopped according to the cooling load to control the capacity. That is, when the water temperature is lower than the first set value, the overall capacity of both compressors 1 and 2 is reduced.
When the water temperature is equal to or higher than the first set value and lower than the second set value, one of the compressors 1 and 2 is stopped and the other one is operated. % capacity, and when the water temperature is equal to or higher than a second set value, the capacity is controlled to 100% capacity where both compressors 1 and 2 are operated.

また、前記各圧縮機1,2には、それぞれ容量
制御機構13,14を設けて、冷房負荷を検出す
る前記検出器th1の動作により容量制御すべく成
すのである。そして前記各圧縮機1,2の発停に
よる容量制御と、前記容量制御機構13,14の
動作による容量制御とを切換可能とするのであ
り、かつ、前記検出器th1とは別に、外気温度の
検出器th2を設けて、該外気温度の検出器th2で検
出した外気温度が設定温度より高い場合には、前
記検出器th1により前記各圧縮機1,2ごとの容
量制御機構13,14を動作させて容量制御し、
また、外気温度が低い場合には、前記検出器th1
により前記各圧縮機1,2を発停させて容量制御
するというように、それぞれ切換えるごとく成す
のである。
Further, each of the compressors 1 and 2 is provided with a capacity control mechanism 13 and 14, respectively, so that the capacity is controlled by the operation of the detector th1 that detects the cooling load. It is possible to switch between capacity control by starting and stopping the compressors 1 and 2 , and capacity control by operating the capacity control mechanisms 13 and 14. A detector th 2 is provided, and when the outside air temperature detected by the outside air temperature detector th 2 is higher than the set temperature, the capacity control mechanism 13 of each of the compressors 1 and 2 is activated by the detector th 1. , 14 to control the capacity,
In addition, when the outside temperature is low, the detector th 1
This is done by switching the compressors 1 and 2 on and off to control the capacity.

前記各圧縮機1,2の容量制御機構13,14
は、各圧縮機1,2における2気筒を1組とする
4つの組の内、各3つの組のものを個々にアンロ
ードし得るごとくアンロード用電磁弁SV1
SV2,SV3,SV4,SV5,SV6を設けてなり、前記
検出器th1の動作により、前記各電磁弁SV1〜SV6
を開閉制御して圧縮機1,2の容量を、冷房負荷
に応じて25%容量、50%容量、75%容量及び100
%容量に容量制御すべく成すのである。詳しく
は、各圧縮機1,2の容量を、前記水温が前記第
1設定値例えば12℃以上で、前記第2設定値例え
ば13℃より低いときには、電磁弁SV1,SV2
SV3,SV4,SV5,SV6をすべて励磁して25%容量
に、また、前記水温が第2設定値以上で第3設定
値例えば14℃より低いときには、電磁弁SV1
SV4のみを消磁して50%容量に、また、前記水温
が第3設定値以上で第4設定値例えば15℃より低
いときには、電磁弁SV1,SV2,SV4,SV5を消磁
して75%容量に、更に、前記水温が第4設定値以
上のときには、電磁弁SV1,SV2,SV3,SV4
SV5,SV6をともに消磁して100%容量に、それぞ
れ容量制御すべく成すのである。
Capacity control mechanisms 13 and 14 for each of the compressors 1 and 2
are unloading solenoid valves SV 1 , so that each of the three sets out of the four sets of two cylinders in each compressor 1 and 2 can be individually unloaded.
SV 2 , SV 3 , SV 4 , SV 5 , and SV 6 are provided, and each of the electromagnetic valves SV 1 to SV 6 is activated by the operation of the detector th 1 .
The capacity of compressors 1 and 2 is controlled to open and close to 25% capacity, 50% capacity, 75% capacity and 100% capacity depending on the cooling load.
This is done to control the capacity to % capacity. Specifically, the capacity of each compressor 1, 2 is determined by the solenoid valves SV 1 , SV 2 ,
When SV 3 , SV 4 , SV 5 , and SV 6 are all energized to 25% capacity, and when the water temperature is higher than the second set value and lower than the third set value, for example, 14°C, the solenoid valves SV 1 ,
Only SV 4 is demagnetized to 50% capacity, and when the water temperature is higher than the third set value and lower than the fourth set value, for example 15°C, solenoid valves SV 1 , SV 2 , SV 4 , and SV 5 are demagnetized. When the water temperature is equal to or higher than the fourth set value, the solenoid valves SV 1 , SV 2 , SV 3 , SV 4 ,
Both SV 5 and SV 6 are demagnetized to 100% capacity, and each capacity is controlled.

そして、外気温度を検出する前記検出器th2
設定温度は、例えば10℃とするのであつて、10℃
に設定するのは、容量制御機構13,14の動作
による容量制御により冷房運転するとき、冷房負
荷が低下して、圧縮機1,2の容量が50%、25%
のごとく小さく制御された状態でも、冷凍回路の
高圧値を所圧値以上に保持し得るためである。
The set temperature of the detector th 2 that detects the outside air temperature is, for example, 10°C.
is set to 50% and 25% when the cooling load decreases and the capacity of the compressors 1 and 2 is set to 50% and 25%, respectively, when the cooling operation is performed by capacity control by the operation of the capacity control mechanisms 13 and 14.
This is because the high pressure value of the refrigeration circuit can be maintained at a predetermined pressure value or higher even when the pressure is controlled to be small.

次に、以上のごとく2つの前記各容量制御に切
換える電気回路を第2図により説明する。
Next, an electric circuit for switching between the two capacity controls described above will be explained with reference to FIG. 2.

即ち、2つの電源線路間に、外気温度の前記検
出器th2と補助リレーR9との直列回路と、圧縮機
2のモータ用リレーRC2及びリレーR6の常開端子
R6−aの直列回路と圧縮機1のモータ用リレー
RC1との並列回路にリレーR2の常開端子R2−aを
直列に接続した回路とを接続すると共に、冷房負
荷の前記検出器th1に、前記アンロード用電磁弁
SV1……SV6及び8台の前記室外フアンF1……F8
のモータM1……M8用リレーR1,R2,R3,R4
R5,R6,R7,R8を接続した回路を接続するので
ある。
That is, between the two power supply lines, there is a series circuit of the outside temperature detector th 2 and the auxiliary relay R 9 , and a normally open terminal of the motor relay RC 2 and relay R 6 of the compressor 2.
R6 -a series circuit and compressor 1 motor relay
A circuit in which normally open terminal R 2 -a of relay R 2 is connected in series is connected to the parallel circuit with RC 1, and the unloading solenoid valve is connected to the cooling load detector th 1 .
SV 1 ...SV 6 and the 8 outdoor fans F 1 ...F 8
Motor M 1 ... Relay for M 8 R 1 , R 2 , R 3 , R 4 ,
The circuit connecting R 5 , R 6 , R 7 , and R 8 is connected.

前記検出器th1は、前記水温の第1,2,3,
4設定値で作動するスイツチS1,S2,S3,S4を備
え、該スイツチS1の高温側端子H1に前記リレー
R1,R2,R3,R4の並列回路を接続すると共に、
スイツチS1,S2の各高温側端子H1,H2に補助リ
レーR9の常開接点R9−a、常閉接点R9−bを介
して前記リレーR5,R6,R7,R8の並列回路を接
続する、また、前記スイツチS2,S3,S4の各低温
側端子L2,L3,L4に前記電磁弁SV1,SV4
SV2,SV5,SV3,SV6の各並列回路を接続して、
該各並列回路の電磁弁SV1……SV6にはそれぞれ
補助リレーR9の常開端子R9−aを直列に接続す
るのである。
The detector th 1 detects the first, second, third, and third of the water temperature.
It is equipped with switches S 1 , S 2 , S 3 , and S 4 that operate at four set values, and the relay is connected to the high temperature side terminal H 1 of the switch S 1 .
Connect the parallel circuits of R 1 , R 2 , R 3 , R 4 and
The above-mentioned relays R 5 , R 6 , R 7 are connected to the high-temperature side terminals H 1 , H 2 of switches S 1 , S 2 via normally open contacts R 9 -a and normally closed contacts R 9 -b of auxiliary relay R 9 . , R8 are connected in parallel , and the solenoid valves SV1 , SV4 ,
Connect each parallel circuit of SV 2 , SV 5 , SV 3 , SV 6 ,
The normally open terminal R 9 -a of the auxiliary relay R 9 is connected in series to the solenoid valves SV 1 ...SV 6 of each of the parallel circuits.

尚、HPS1,HPS2は高圧圧力開閉器である。 Note that HPS 1 and HPS 2 are high pressure switches.

しかして以上の構成において、夏季、中間期の
ごとく外気温度が前記検出器th2の設定温度より
高い状態で、前記冷房領域Aの冷房運転を行なう
場合、前記検出器th2の閉動作により補助リレー
R9が励磁されて、各容量制御機構13,14の
電磁弁SV1……SV6に直列接続された常開端子R9
−aは閉状態に保持される。
However, in the above configuration, when performing cooling operation in the cooling area A when the outside air temperature is higher than the set temperature of the detector th 2 , such as in the summer or mid-season, the closing operation of the detector th 2 provides assistance. relay
R9 is energized, and the normally open terminal R9 is connected in series to the solenoid valves SV1 ... SV6 of each capacity control mechanism 13, 14.
-a is held closed.

斯くて、前記水温が前記第4設定値(15℃)以
上のときには、検出器th1の各スイツチS1……S4
はいずれも高温側に切換つた状態となり、スイツ
チS1,S2を介して前記各リレーR1……R8に通電
され各モータM1……M8が駆動して各フアンF1
…F8が作動すると共に、リレーR2,R6の励磁に
よりリレーRC1,RC2が励磁されて、圧縮機1,
2がともに運転される。
Thus, when the water temperature is equal to or higher than the fourth set value (15°C), each switch S 1 ... S 4 of the detector th 1 is activated.
are all switched to the high temperature side, and the relays R 1 ... R 8 are energized via the switches S 1 and S 2 , and the motors M 1 ... M 8 are driven to drive the fans F 1 ...
... F8 is activated, and relays RC1 and RC2 are energized by the excitation of relays R2 and R6 , and the compressors 1 and 2 are energized.
2 are operated together.

そして、前記容量制御機構13,14の各電磁
弁SV1……SV6は、いずれも消磁され、圧縮機
1,2はともに全容量で運転され、圧縮機1,2
全体の容量は100%容量に容量制御される。
Then, the electromagnetic valves SV 1 ...SV 6 of the capacity control mechanisms 13 and 14 are all demagnetized, and the compressors 1 and 2 are both operated at full capacity.
The overall capacity is controlled to 100% capacity.

また、前記水温が前記第4設定値より低く第3
設定値14℃以上のときには、検出器th1の各スイ
ツチS1……S4の内、スイツチS4のみ低温側端子L4
に切換動作して、前記容量制御機構13,14の
各電磁弁SV3,SV6のみが励磁され、圧縮機1,
2全体の容量は75%容量に容量制御される。
Further, the water temperature is lower than the fourth set value and the third set value is lower than the fourth set value.
When the set value is 14°C or higher, among the switches S 1 ... S 4 of detector th 1 , only switch S 4 is connected to the low temperature side terminal L 4
As a result, only the solenoid valves SV 3 and SV 6 of the capacity control mechanisms 13 and 14 are energized, and the compressors 1 and 1 are energized.
The overall capacity of 2 is controlled to 75% capacity.

また、前記水温が前記第3設定値より低く第2
設定値(13℃)以上のときには、検出器th1の各
スイツチS1……S4の内、スイツチS4,S3が低温側
端子L4,L3に切換動作して、前記容量制御機構
13,14の各電磁弁SV3,SV2,SV6,SV5のみ
が励磁され、圧縮機1,2全体の容量は50%容量
に容量制御される。
Further, the water temperature is lower than the third set value and the second set value is lower than the third set value.
When the temperature is above the set value (13°C), switches S 4 and S 3 of the switches S 1 ... S 4 of the detector th 1 switch to the low temperature side terminals L 4 and L 3 to control the capacity. Only the electromagnetic valves SV 3 , SV 2 , SV 6 , and SV 5 of the mechanisms 13 and 14 are excited, and the overall capacity of the compressors 1 and 2 is controlled to 50% capacity.

また、前記水温が前記第2設定値より低く第1
設定値(12℃)以上のときには、検出器th1の各
スイツチS1……S4の内、スイツチS4,S3,S2が低
温側端子L4,L3,L2に切換動作して、前記各リ
レーR1……R8にはスイツチS1を介して通電され
る。斯くて、各フアンF1……F8及び圧縮機1,
2は通電され作動状態に保持されながら、前記容
量制御機構13,14の各電磁弁SV3,SV2
SV1,SV6,SV5,SV4がともに励磁され、圧縮機
1,2全体の容量は25%容量に容量制御される。
Further, the water temperature is lower than the second set value and the first set value is lower than the second set value.
When the temperature is above the set value (12℃), switches S 4 , S 3 , and S 2 of each switch S 1 ... S 4 of detector th 1 switch to low temperature side terminals L 4 , L 3 , and L 2. Then, each of the relays R1 ... R8 is energized via the switch S1 . Thus, each fan F 1 ... F 8 and compressor 1,
The solenoid valves SV 3 , SV 2 , and
SV 1 , SV 6 , SV 5 , and SV 4 are all excited, and the overall capacity of the compressors 1 and 2 is controlled to 25% capacity.

そして、以上のごとく圧縮機1,2を容量制御
するとき、冷凍回路の高圧が所圧値より低下する
場合には、前記高圧圧力開閉器HPS1,HPS2が開
動作して、各4台のフアンF1…F4,F5…F8
内、各2台宛のフアンF3,F4,F7,F8が停止
し、各凝縮器3,4の凝縮能力が半減して、高圧
値が所圧値以上に回復されるのである。
When the capacity of the compressors 1 and 2 is controlled as described above, if the high pressure of the refrigeration circuit drops below the specified pressure value, the high pressure switches HPS 1 and HPS 2 are opened, and each of the four compressors Of the fans F1 ... F4 , F5 ... F8 , the fans F3 , F4 , F7 , F8 for each two units stopped, and the condensing capacity of each condenser 3 and 4 was reduced by half. , the high pressure value is restored above the predetermined pressure value.

また、前記水温が前記第1設定値より低くなる
と、各検出器th1の各スイツチS1…S4がいずれも
低温側端子L4,L3,L2,L1に切換動作して、前
記各リレーR1……R8が消磁され各フアンF1……
F8が停止すると共に、圧縮機1,2がともに停
止される。
Further, when the water temperature becomes lower than the first set value, each switch S1 ... S4 of each detector th1 is switched to the low temperature side terminal L4 , L3 , L2 , L1 , Each of the relays R 1 ...R 8 is demagnetized and each fan F 1 ...
When F 8 is stopped, both compressors 1 and 2 are stopped.

つぎに、中間期から冬季に入り外気温度が検出
器th2の設定温度より低くなつた状態で、前記冷
房領域Aのコンピユータ室a1など冷房を必要とす
る室の冷房運転を行なう場合、前記検出器th2
開動作により、補助リレーR9が消磁されて、各
容量制御機構13,14は、各電磁弁SV1……
SV6がいずれも常時非通電の状態に保持される。
Next, in a state where the outside air temperature has become lower than the set temperature of the detector th 2 from the intermediate season to the winter season, when performing cooling operation of a room that requires cooling, such as the computer room a 1 of the cooling area A, the above-mentioned Due to the opening operation of the detector th2 , the auxiliary relay R9 is demagnetized, and each capacity control mechanism 13, 14 operates each solenoid valve SV1 ...
Both SVs 6 are kept de-energized at all times.

斯くて、前記水温が前記第2設定値(13℃)以
上のときには、検出器th1のスイツチS1,S2を介
して前記各リレーR1……R8に通電され各モータ
M1……M8が駆動して各フアンF1…F8が作動する
と共に、リレーR2,R6の励磁により、リレー
RC1,RC2が励磁されて、圧縮機1,2がともに
運転される100%容量に容量制御される。
Thus, when the water temperature is equal to or higher than the second set value (13°C), the relays R1 ... R8 are energized via the switches S1 , S2 of the detector th1 , and each motor is energized.
M 1 ...M 8 is driven and each fan F 1 ... F 8 is activated, and relays R 2 and R 6 are energized to activate the relays.
RC 1 and RC 2 are excited, and the capacity is controlled to 100% capacity where both compressors 1 and 2 are operated.

また、前記水温が前記第2設定値より低く、第
1設定値(12℃)以上のときには、スイツチS2
高温側端子H2が開いてリレーR5……R8が消磁さ
れ、各フアンF5…F8が停止すると共に圧縮機2
が停止する一方、スイツチS1の高温側端子H2
閉じてリレーR1…R4が励磁され、各フアンF1
F4が駆動すると共に圧縮機1のみ駆動する50%
容量に容量制御される。
Furthermore, when the water temperature is lower than the second set value and higher than the first set value (12°C), the high temperature side terminal H2 of the switch S2 is opened, relays R5 ... R8 are demagnetized, and each fan is demagnetized. F 5 ... When F 8 stops, compressor 2
stops, while the high temperature side terminal H2 of switch S1 closes, relays R1 ... R4 are energized, and each fan F1 ...
50% when F 4 is driven and only compressor 1 is driven
Capacity is controlled by capacity.

また、前記水温が前記第1設定値より低いとき
には、スイツチS1,S2の各高圧側端子H1,H2
開いて、各リレーR1……R8が消磁され、各フア
ンF1……F8が停止すると共に、圧縮機1,2が
ともに停止される0%容量に容量制御される。
Further, when the water temperature is lower than the first set value, the high voltage side terminals H 1 and H 2 of the switches S 1 and S 2 are opened, each relay R 1 ... R 8 is demagnetized, and each fan F 1 ...When F 8 is stopped, both compressors 1 and 2 are stopped, and the capacity is controlled to 0% capacity.

以上のごとく、外気温度が設定温度に低下する
迄は、前記各圧縮機1,2ごとの容量制御機構1
3,14の動作による容量制御を行なうので、圧
縮機1,2の各モータの起動される回数を極めて
少なくでき、多大の起動電流による消費電力の無
駄な増大をほゞなくすることができ、しかも、外
気温度が設定温度から低下したとき、各圧縮機
1,2の発停による容量制御に切換えるので、冷
房負荷が小さくとも高圧が所定値より低下するこ
とを防止でき、年間を通じて常に安定に冷房領域
Aの冷房を行なえながら、前記SEERの値も十分
に向上できるのである。
As described above, until the outside air temperature drops to the set temperature, the capacity control mechanism 1 for each of the compressors 1 and 2
Since capacity control is performed by the operation of compressors 3 and 14, the number of times that the motors of compressors 1 and 2 are started can be reduced significantly, and unnecessary increases in power consumption due to large starting currents can be almost completely eliminated. Moreover, when the outside air temperature drops below the set temperature, capacity control is switched to starting and stopping compressors 1 and 2, so that even if the cooling load is small, the high pressure can be prevented from dropping below a predetermined value. Cooling of cooling area A can be performed stably all year round, while the SEER value can be sufficiently improved.

尚、以上の説明では、圧縮機1,2は、8気筒
形のものを用いたが、8気筒以外の多気筒形のも
のを使用できることは勿論、多気筒形に限らず、
圧縮機1,2ごとに、発停によらずに容量制御可
能な各種のもの、例えば圧縮機モータの極数を変
えるようにしたものなど使用できる。斯く各種の
ものを使用する場合には、前記容量制御機構1
3,14は、使用圧縮機に対応したものとするこ
とは云う迄もない。
In the above explanation, the compressors 1 and 2 are of the 8-cylinder type, but it is of course possible to use a multi-cylinder type other than the 8-cylinder type, and the compressors are not limited to the multi-cylinder type.
For each of the compressors 1 and 2, it is possible to use various types of compressors whose capacity can be controlled without depending on whether they are turned on or off, such as one in which the number of poles of the compressor motor is changed. When using such various types, the capacity control mechanism 1
It goes without saying that 3 and 14 correspond to the compressor used.

また、以上の説明では、圧縮機に2台を用いた
が、3台以上の複数台を用いてもよい。
Further, in the above description, two compressors are used, but three or more compressors may be used.

また、前記冷房負荷の検出器th1は、蒸発器7
の水入口管8内の水温を検出すべくしたが、該水
温に限定されるものでなく、例えば、水出口管9
内の水温でもよい。
Further, the cooling load detector th 1 is the evaporator 7
Although the water temperature in the water inlet pipe 8 is to be detected, the water temperature is not limited to the above water temperature. For example, the water temperature in the water outlet pipe 9 is detected.
It may be the internal water temperature.

また、前記蒸発器7は水用としたが、空気用と
して冷房領域Aとの間に、ダクトにより冷却空気
の導通路を形成すべくしたものでもよい。
Further, although the evaporator 7 is used for water, it may be used for air, and a duct may be used to form a cooling air passage between the evaporator and the cooling area A.

以上のごとく本考案は、複数台の圧縮機1,2
の各々に、外気と熱交換する空冷凝縮器3,4を
それぞれ接続して形成した複数の系統を蒸発器7
に接続して冷媒回路を形成すると共に、前記蒸発
器7に冷房負荷を接続した冷房装置において、前
記各圧縮機1,2を部分容量制御及び発停制御可
能に構成すると共に、前記冷房負荷を検出する負
荷検出器th1と外気温度を検出する外気温度検出
器th2とを、外気温度検出器th2で検出した外気温
度が設定温度より高いとき前記負荷検出器th1
より前記各圧縮機1,2を部分容量制御し、外気
温度検出器th2で検出した外気温度が設定温度よ
り低いとき前記負荷検出器th1により前記各圧縮
機1,2を発停制御するごとく制御回路に設けた
のであるから、外気温度が設定温度に低下する迄
は、圧縮機1,2ごとの容量制御機構13,14
の動作による容量制御を行なえ、圧縮機1,2の
起動回数を激減できて、多大な起動電流による消
費電力の無駄な増大をなくすることができ、しか
も、外気温度が設定温度より低下する状態になる
と、各圧縮機1,2の発停による容量制御に切換
えることにより、冷房負荷が小さくとも高圧が所
圧値より低下することを防止でき、年間を通じて
冷房負荷によらず常に安定に冷房運転を行なえな
がら、SEERの値も十分に向上できるのである。
As described above, the present invention has a plurality of compressors 1 and 2.
A plurality of systems are formed by connecting air-cooled condensers 3 and 4 for heat exchange with outside air to each of the evaporators 7 and 7.
In the cooling system in which the evaporator 7 is connected to form a refrigerant circuit and a cooling load is connected to the evaporator 7, each of the compressors 1 and 2 is configured to be capable of partial capacity control and start/stop control, and the cooling load is The load detector th 1 detects the outside air temperature , and the outside air temperature sensor th 2 detects the outside air temperature. A control circuit is provided so that partial capacity control of compressors 1 and 2 is performed, and when the outside air temperature detected by outside air temperature detector th 2 is lower than the set temperature, the load detector th 1 controls the start/stop of each of the compressors 1 and 2. Therefore, until the outside air temperature drops to the set temperature, the capacity control mechanisms 13 and 14 for each compressor 1 and 2 are activated.
Capacity control can be performed by the operation of By switching to capacity control by starting and stopping each compressor 1 and 2, it is possible to prevent the high pressure from falling below the specified pressure value even when the cooling load is small, and to ensure stable cooling operation throughout the year regardless of the cooling load. While doing so, it is possible to sufficiently improve the SEER value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す冷媒配管と冷水
配管との各系統図、第2図は電気回路図である。 1,2…圧縮機、3,4…凝縮器、13,14
…容量制御機構、th1…負荷検出器、th2…外気温
度検出器。
FIG. 1 is a system diagram of refrigerant piping and cold water piping showing an embodiment of the present invention, and FIG. 2 is an electric circuit diagram. 1, 2... Compressor, 3, 4... Condenser, 13, 14
… Capacity control mechanism, th 1 … load detector, th 2 … outside air temperature detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数台の圧縮機1,2の各々に、外気と熱交換
する空冷凝縮器3,4をそれぞれ接続して形成し
た複数の系統を蒸発器7に接続して冷媒回路を形
成すると共に、前記蒸発器7に冷房負荷を接続し
た冷房装置において、前記各圧縮機1,2を部分
容量制御及び発停制御可能に構成すると共に、前
記冷房負荷を検出する負荷検出器th1と外気温度
を検出する外気温度検出器th2とを、外気温度検
出器th2で検出した外気温度が設定温度より高い
とき前記負荷検出器th1により前記各圧縮機1,
2を部分容量制御し、外気温度検出器th2で検出
した外気温度が設定温度より低いとき前記負荷検
出器th1により前記各圧縮機1,2を発停制御す
るごとく制御回路に設けたことを特徴とする冷房
装置。
A plurality of systems are formed by connecting air-cooled condensers 3 and 4 that exchange heat with outside air to each of the plurality of compressors 1 and 2, respectively, and are connected to the evaporator 7 to form a refrigerant circuit. In the cooling device in which a cooling load is connected to the cooling device 7, each of the compressors 1 and 2 is configured to be capable of partial capacity control and on/off control, and a load detector TH1 detects the cooling load and detects outside air temperature. When the outside air temperature detected by the outside air temperature sensor th 2 is higher than the set temperature, the load detector th 1 sets the compressor 1,
2 is provided in a control circuit such that partial capacity control is performed on the compressors 1 and 2, and when the outside air temperature detected by the outside air temperature detector th 2 is lower than the set temperature, the load detector th 1 controls the start/stop of each of the compressors 1 and 2. A cooling device featuring:
JP348581U 1981-01-14 1981-01-14 Expired JPS6225643Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP348581U JPS6225643Y2 (en) 1981-01-14 1981-01-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP348581U JPS6225643Y2 (en) 1981-01-14 1981-01-14

Publications (2)

Publication Number Publication Date
JPS57118258U JPS57118258U (en) 1982-07-22
JPS6225643Y2 true JPS6225643Y2 (en) 1987-06-30

Family

ID=29801916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP348581U Expired JPS6225643Y2 (en) 1981-01-14 1981-01-14

Country Status (1)

Country Link
JP (1) JPS6225643Y2 (en)

Also Published As

Publication number Publication date
JPS57118258U (en) 1982-07-22

Similar Documents

Publication Publication Date Title
US6141978A (en) Method and apparatus for eliminating unnecessary defrost cycles in heat pump systems
JP2004205194A (en) Refrigeration and air conditioning systems
JPS6225643Y2 (en)
JPS602505Y2 (en) air conditioner
JP3439004B2 (en) Air conditioning system, air conditioner and air conditioning method
JPS5839338Y2 (en) Refrigeration/heating equipment
JPS6021718Y2 (en) air conditioner
JPS6240288Y2 (en)
JPH10111031A (en) Multi-stage compression heat pump air conditioner
JPS5856529Y2 (en) Refrigeration equipment
JPH0518647A (en) Defrost device for cooling device having two-dimensional refrigeration cycle
JP3142897B2 (en) Cooling and heating system with heat storage function
JP2508812B2 (en) Heat storage type air conditioner
JP2001227779A (en) Heat storage type refrigerating air conditioner
JPH0571845A (en) Water cooler and dehumidifier
JPH0533889Y2 (en)
JPS5848988Y2 (en) Defrosting device for heat pump air conditioner
JPH0216074Y2 (en)
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPH045970Y2 (en)
JPH058459Y2 (en)
JPS5835953Y2 (en) Multi-room air conditioner
JPS5914678Y2 (en) air conditioner
JPH0129477Y2 (en)
JPS6023648Y2 (en) air conditioner