JPS6225606B2 - - Google Patents

Info

Publication number
JPS6225606B2
JPS6225606B2 JP54168894A JP16889479A JPS6225606B2 JP S6225606 B2 JPS6225606 B2 JP S6225606B2 JP 54168894 A JP54168894 A JP 54168894A JP 16889479 A JP16889479 A JP 16889479A JP S6225606 B2 JPS6225606 B2 JP S6225606B2
Authority
JP
Japan
Prior art keywords
zeolite
silica
crystalline aluminosilicate
diglycolamine
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54168894A
Other languages
Japanese (ja)
Other versions
JPS5692114A (en
Inventor
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP16889479A priority Critical patent/JPS5692114A/en
Publication of JPS5692114A publication Critical patent/JPS5692114A/en
Publication of JPS6225606B2 publication Critical patent/JPS6225606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、構造内に有機窒素陽イオンを包含す
る新規な結晶性アルミノシリケートゼオライトの
製造方法に関する。更に詳しくは、有機窒素陽イ
オン源としてジグリコールアミンを含む原料混合
物を用いることを特徴とする結晶性アルミノシリ
ケートゼオライトの製造方法に関する。 普通、モレキユラーシーブとして知られるゼオ
ライトはシリカとアルミナが酸素を共有して三次
元網目構造を有し、アルミニウムとけい素原子と
の合計に対する酸素原子の比は2に相当する。こ
れらのSiO4四面体の陰電気性は通常、アルカリ
金属陽イオン特にナトリウム又はカリウムにより
平衡がとられている。ゼオライトは初め天然に存
在することで見出されたが、その後シリカ、アル
ミナ及びアルカリ金属の混合物を100℃以上の温
度で水熱処理することにより合成できるようにな
り、さらに各原料の組成比又は水熱処理条件を変
えることにより、天然品と類似の構造を有するゼ
オライト又は天然にはこれまで存在しなかつた多
くのゼオライトが合成されるに至つた。 最近バーラーらはゼオライトの合成の際、アル
カリ金属の一部を有機性窒素化合物とするゼオラ
イトの製造方法を発表した。このゼオライトは構
造内に原料に用いた有機性窒素陽イオンを包含す
ることが特徴的で、テトラメチルアンモニウム化
合物を用いる場合エリオナイト、オフレタイト、
ゼオライトΩなどの混合物が得られたと発表して
いる。その後、有機性窒素化合物を用いるゼオラ
イトの製造方法がいくつか発明されているが、得
られるゼオライトは用いる有機性窒素化合物の種
類、用いる原料の組成比及び水熱処理条件により
それぞれ異なることが判明した。例えば、ベンジ
ルトリメチルアンモニウム塩ではエリオナイトゼ
オライトが、水酸化テトラメチルアンモニウムで
は条件によりモルデナイト又はZSM−8ゼオラ
イトが、テトラメチルアンモニウム化合物では
ZSM−4が、またテトラプロピルアンモニウム
化合物ではZSM−5が製造できる。この内上述
のような第4級アンモニウムカチオンを含む有機
性窒素化合物を用いて合成されるゼオライトにつ
いてはモービルオイル社がZSMゼオライトと称
し、これまで有機性窒素化合物の種類等をかえる
ことによりZSM−34までの種類を明らかにして
いる。ZSMシリーズのゼオライトはその構造が
類似したものが多いが、基本的に重要なものは
ZSM−5と称されるゼオライトであり、その構
造は10員酸素環から成り立ち、その細孔は、8員
酸素環型ゼオライトであるエリオナイト、オフレ
タイト、Aゼオライトなどの小孔径ゼオライトの
約5Åと12員酸素環型ゼオライトであるX及びY
ゼオライトの約10Åの中間に位置し、長軸が約6
Å〜約9Å、短軸が約5Åの楕円型を有している
と考えられている。したがつて吸着性は分子サイ
ズが5Å以下の直鎖炭化水素ばかりでなくわずか
に枝分れした炭化水素などを吸着できるが、Yゼ
オライトが吸着する側鎖が2〜3以上の大きな分
子サイズを有する炭化水素などを吸着できない特
異な形状選択性を示す。この為、このゼオライト
を触媒として使用すれば、通常のゼオライト触媒
が活性を示す分解・異性化、アルキル化、不均化
などの転化反応のほか、炭化水素油中のろう分を
選択的に分解する接触脱ろう反応に、さらにはア
ルコールの脱水、メタノール等含酸素化合物から
のオレフイン及び芳香族化合物の製造用触媒とし
て使用できる等広い用途を有している。ZSM−
5ゼオライトは以上のように転化反応触媒として
すぐれた性能を備えているが、反応混合物の一つ
として使用する第4級有機性窒素化合物は極めて
高価であり、結果的に製品を高価なものとしてい
る。最近、これに代る安価な有機性窒素化合物と
して炭素数が2〜10の第1、第2、及び第3アミ
ン、又はモノエタノールアミン、モノプロパノー
ルアミンを用いて特定な反応条件下でZSM−5
ゼオライトを製造する方法が提案されている。 発明者は工業的に安価で、かつ触媒的に活性で
ある新規なゼオライトの製造方法につき、種々の
検討と努力を重ねた結果、工業的に硫化水素の吸
収液として知られる安価で容易に入手できるジグ
リコールアミンを有機性窒素化合物として用いる
ことにより、ジグリコールアミノ陽イオンを構造
内に包含するZSM−5と類似の構造と、触媒性
能を有する新規ゼオライトを高純度で製造できる
ことを見出し、本発明を達成した。 即ち、本発明は、シリカ源、アルミナ源、アル
カリ金属源、水およびジグリコールアミンを含む
原料混合物を結晶性アルミノシリケートが生成す
る温度、圧力条件下に置くことを特徴とする合成
結晶性アルミノシリケートゼオライトを製造する
方法に存する。 次に本発明によるゼオライトの製法及びこれを
触媒として使用する転化反応について説明する。
シリカ源としてはシリカ、シリカゾル、シリカゲ
ル、ケイ酸ナトリウム及びケイ酸など通常ゼオラ
イトの合成において用いるものが使用でき、好ま
しくはコロイド状シリカがよい。アルミナ源とし
てはアルミナゲル、アルミナゾル、アルミナ、ア
ルミン酸ナトリウム、硫酸アルミニウムなどが使
用できるが、水溶性のアルミン酸ナトリウムが取
り扱い上好適である。有機性窒素化合物として用
いるジグリコールアミンは正式には2−(2−ア
ミノエトキシ)エタノール、
NH2CH2CH2OCH2CH2OHの分子式を示す第1ア
ミンであり、エーテル構造を有することからアル
コールアミンとは区別される。このほか当然のこ
とながら、ジグリコールアミンを生成する前駆体
が使用できる。アルカリ金属は、通常ナトリウム
を用い水酸化ナトリウム、ケイ酸ナトリウム、ア
ルミン酸ナトリウムから選ばれた1種以上のナト
リウム源が使用できる。 次に、これら出発原料の組成比は下記のような
割合(モル比)で調合する。
The present invention relates to a method for producing a novel crystalline aluminosilicate zeolite containing organic nitrogen cations within its structure. More specifically, the present invention relates to a method for producing crystalline aluminosilicate zeolite, which is characterized by using a raw material mixture containing diglycolamine as an organic nitrogen cation source. Zeolites, commonly known as molecular sieves, have a three-dimensional network structure in which silica and alumina share oxygen, and the ratio of oxygen atoms to the total of aluminum and silicon atoms is equivalent to 2. The negative electrical properties of these SiO 4 tetrahedra are usually balanced by alkali metal cations, especially sodium or potassium. Zeolite was first discovered as a naturally occurring material, but later it became possible to synthesize it by hydrothermally treating a mixture of silica, alumina, and alkali metals at temperatures above 100°C. By changing the heat treatment conditions, zeolites with structures similar to natural products or many zeolites that have not previously existed in nature have been synthesized. Recently, Barrer et al. announced a method for producing zeolite in which part of the alkali metal is replaced by an organic nitrogen compound. This zeolite is characterized by containing organic nitrogen cations used as raw materials in its structure, and when tetramethylammonium compounds are used, erionite, offretite,
They announced that they had obtained a mixture of zeolite Ω and other substances. Since then, several methods for producing zeolite using organic nitrogen compounds have been invented, but it has been found that the zeolites obtained differ depending on the type of organic nitrogen compound used, the composition ratio of the raw materials used, and the hydrothermal treatment conditions. For example, benzyltrimethylammonium salt uses erionite zeolite, tetramethylammonium hydroxide uses mordenite or ZSM-8 zeolite depending on the conditions, and tetramethylammonium compounds use erionite zeolite.
ZSM-4 can be produced, and ZSM-5 can be produced using a tetrapropylammonium compound. Of these, zeolite synthesized using an organic nitrogen compound containing a quaternary ammonium cation as described above is called ZSM zeolite by Mobil Oil. Up to 34 types have been identified. Many of the ZSM series zeolites have similar structures, but the fundamentally important ones are
This zeolite is called ZSM-5, and its structure consists of a 10-membered oxygen ring, and its pores are approximately 5 Å smaller than those of small-pore zeolites such as erionite, offretite, and A zeolite, which are 8-membered oxygen ring zeolites. X and Y, which are 12-membered oxygen ring type zeolites
It is located in the middle of about 10 Å of zeolite, and the long axis is about 6
It is believed that it has an elliptical shape with a diameter of about 9 Å and a minor axis of about 5 Å. Therefore, Y zeolite can adsorb not only straight chain hydrocarbons with a molecular size of 5 Å or less, but also slightly branched hydrocarbons, but Y zeolite can adsorb large molecular sizes of 2 to 3 or more side chains. It exhibits unique shape selectivity that prevents it from adsorbing hydrocarbons. Therefore, if this zeolite is used as a catalyst, in addition to conversion reactions such as decomposition, isomerization, alkylation, and disproportionation that are active with ordinary zeolite catalysts, it can also selectively decompose wax content in hydrocarbon oil. It has a wide range of uses, including catalytic dewaxing reactions, such as dehydration of alcohols, and use as a catalyst for the production of olefins and aromatic compounds from oxygen-containing compounds such as methanol. ZSM−
As mentioned above, zeolite has excellent performance as a conversion reaction catalyst, but the quaternary organic nitrogen compound used as one of the reaction mixtures is extremely expensive, resulting in an expensive product. There is. Recently, as an alternative inexpensive organic nitrogen compound, ZSM- 5
A method of producing zeolite has been proposed. The inventor has made various studies and efforts to find a new method for producing zeolite that is industrially inexpensive and catalytically active, and has developed a method for producing zeolite that is inexpensive and easily available industrially as an absorbent for hydrogen sulfide. We discovered that it is possible to produce a new zeolite with high purity, which has a structure similar to ZSM-5 that includes diglycolamine cations and catalytic performance, by using diglycolamine as an organic nitrogen compound. Achieved invention. That is, the present invention provides a synthetic crystalline aluminosilicate, which is characterized in that a raw material mixture containing a silica source, an alumina source, an alkali metal source, water, and diglycolamine is placed under temperature and pressure conditions that produce crystalline aluminosilicate. The invention consists in a method of producing zeolite. Next, a method for producing zeolite according to the present invention and a conversion reaction using the same as a catalyst will be explained.
As the silica source, those commonly used in the synthesis of zeolites such as silica, silica sol, silica gel, sodium silicate and silicic acid can be used, and colloidal silica is preferred. As the alumina source, alumina gel, alumina sol, alumina, sodium aluminate, aluminum sulfate, etc. can be used, but water-soluble sodium aluminate is suitable for handling. Diglycolamine used as an organic nitrogen compound is formally known as 2-(2-aminoethoxy)ethanol,
It is a primary amine with the molecular formula of NH 2 CH 2 CH 2 OCH 2 CH 2 OH, and is distinguished from alcohol amines because it has an ether structure. In addition, of course, precursors that produce diglycolamine can be used. As the alkali metal, sodium is usually used, and one or more sodium sources selected from sodium hydroxide, sodium silicate, and sodium aluminate can be used. Next, the composition ratios of these starting materials are prepared as follows (molar ratio).

【表】 (ここでOH-はジグリコールアミンによる
OH-は含まないものとし、RN+はジグリコールア
ミノ陽イオンを示す。) この混合物を通常80〜200℃、好ましくは120〜
170℃の温度にて、約0.5〜30日間密閉容器内で加
熱する。反応終了後生成する結晶物は過後、過
剰のアルカリを水洗除去した後乾燥する。本発明
で得られるゼオライトは十分な水洗後においても
反応原料に用いたジグリコールアミンの陽イオン
を包含しており、これは包含されているナトリウ
ムイオンと同様、構造内に配位されていると考え
られる。またその構造はジグリコールアミンを用
い、かつ前述の組成比で合成する限り同一であ
り、X線回折像より他のゼオライトと区別され
る。SiO2/Al2O3比を70とし調合した時得られた
ゼオライトのX線回折格子のデータを表1に示
す。表1の回折データは銅のKアルフア・ダブレ
ツトの照射による標準のX線回折技術によつて得
られたもので、ピークの高さI及びθがブラツグ
角である2θの函数としてレコーダーに記録され
る。I/I0は相対強度であり、最強のピークを示
す2θ=23.2を100とした時の相対値である。 本発明で製造したゼオライトはそのまま又はア
ルミナ、シリカ、シリカアルミナのような別の担
体物質と混合することにより転化用触媒として使
用できる。更に合成時の状態において存在する有
機性陽イオンを400〜800℃の範囲の温度で加熱
し、分解させると共に、存在するアルカリ金属を
公知の方法を用いて1種以上の他の陽イオンで交
換すればより好ましい触媒が調製される。代表的
な陽イオンとしては、周期律表A族の水素イオ
ン又はこの前駆体であるアンモニウムイオン、
A族のマグネシウム、カルシウム、バリウム、B
族の亜鉛、カドミニウ、A族のすず、鉛、B
のクロム、族の鉄、コバルト、ニツケル、パラ
ジウム、白金及び希土類さらにこれらの混合物の
陽イオンである。このようにして製造したゼオラ
イトはこれまでの他のゼオライト触媒と同様その
活性点はゼオライトの固体酸性に起因するものと
交換した金属陽イオンの水素化−脱水素活性に基
づくものであるため、ゼオライト触媒が通常使用
される分解、異性化、アルキル化、不均化等の炭
化水素の転化反応に使用できると共に、このゼオ
ライトの形状選択性故にろう分を選択的に分解す
る接触脱ろう反応に有効である。また、この触媒
はシリカ、アルミナ比が20以上と大きいため疎水
性であり、アルコールの脱水及びアルコールなど
の含酸素化合物からオレフイン又は芳香族を生成
させる触媒としても使用できる。 次に本発明を実施例により具体的に説明する
が、本発明はその要旨を超えない限り以下に限定
されるものではない。 実施例 1 コロイド状シリカ(100ml中にシリカ23.3gを
含有)436.6mlに水275ml、ジグリコールアミン
63.6gを加え撹拌した。ここに、水100mlにアル
ミン酸ナトリウム4.485gと水酸化ナトリウム
13.648gを溶解した溶液を加え30分撹拌する。得
られたシリカ・アルミナ比70に調合したゲル状混
合物を内容積2のステンレス製圧力容器に入れ
160℃で7日間加熱した。得られた結晶生成物は
2の水で洗浄し、130℃で乾燥後、秤量した所
86gであつた。この結晶物の化学分析結果は表2
に示したが、ジグリコールアミンに相当する窒素
と炭素を与えまたシリカ・アルミナ比は30.0であ
つた。X線回折分析によれば回折パターンは表1
に示すものであり、他に異質のゼオライトは認め
られず、純度100%のジグリコールアミノ陽イオ
ン含有ゼオライトであつた。 実施例 2 シリカ・アルミナ比を29に調合するほかは実施
例1と同様な方法でゼオライトを製造する。シリ
カアルミナ比25のゼオライトが77g合成でき、そ
のX線回折パターンは、表1とすべて一致し他に
不純物は認められなかつた。 実施例 3 実施例1で製造したゼオライト50gを5N塩化
アンモニウム水溶液と共に100℃、3時間冷却器
付ガラス製フラスコ内で加熱し、冷却後過した
ら再び塩化アンモニウム水溶液を加え同じ操作を
3回行い、ゼオライト中のアルカリ金属をアンモ
ニウムイオンと交換し除去した。その後液に塩
素イオンが認められなくなるまで十分水洗し、
130℃で乾燥、550℃で3時間焼成し、アンモニウ
ムイオンを水素イオンに変換すると共に、ゼオラ
イト中の有機性窒素陽イオンを分解し水素イオン
とした。この得られたH型ゼオライトは錠剤成形
機で成形後12〜32メツシユに粒度をそろえC6
化水素の転化反応に供した。原料油は2.2−ジメ
チルブタン32.02モル%、2−メチルペンタン
34.35モル%、n−ヘキサン32.83モルを含む分子
サイズの異なるC6炭化水素混合油であり、反応
条件は温度290℃、圧力25Kg/cm2ゲージ、
LHSV1.5h-1、水素対炭化水素モル比7で行つ
た。得られた結果は表3に示すように、反応生成
物はメタンからペンタンまでの分解生成物のほ
か、原料油中には存在しない炭素数7〜9までの
パラフイン、ナフテン、及び芳香族が生成しこの
触媒が、分解、異性化、アルキル化、芳香族化の
反応活性を有していることを示している。また反
応性は分子サイズの最も小さいn−ヘキサンで最
も高く、次にメチル基を一つ有するメチルペンタ
ンでメチル基二つを有する2,2−ジメチルペン
タンは全く反応していない。細孔径が9Å以上の
モルデナイトやYゼオライトより調製した触媒で
は、通常カルボニウムイオンを生成しやすい、三
級の炭素を有する2,2−ジメチルブタンの反応
性が最も高いことからして、本発明のゼオライト
の反応性はゼオライトの細孔径がn−パラフイン
とメチル基一つを有する程度の大きさであること
から生ずる形状選択性を示すことが容易に推察で
きる。 実施例 4 実施例3で調製したH型ゼオライトはメタノー
ルの転化反応に供した。反応条件は温度310℃、
圧力常圧LHSV=1.5h-1であり、反応は窒素雰囲
気で行つた。結果は表4に示すように、310℃に
おいてメタノールは100%、水及び炭化水素に転
化し、生成物は炭素数10までの炭化水素であり、
C5 +留分中には芳香族69.6重量%、ナフテン5.0重
量%、オレフイン1.2重量%、パラフイン23.9重
量%を含有していた。
[Table] (Here, OH - is due to diglycolamine.
OH - shall not be included, and RN + indicates a diglycolamino cation. ) This mixture is usually heated at 80-200℃, preferably 120-200℃.
Heat in a closed container at a temperature of 170°C for approximately 0.5 to 30 days. After the reaction is completed, the resulting crystalline product is filtered, washed with water to remove excess alkali, and then dried. The zeolite obtained in the present invention contains the cations of diglycolamine used as a reaction raw material even after sufficient water washing, and these are thought to be coordinated within the structure in the same way as the included sodium ions. Conceivable. Moreover, its structure is the same as long as it is synthesized using diglycolamine and at the above-mentioned composition ratio, and it can be distinguished from other zeolites by its X-ray diffraction image. Table 1 shows the X-ray diffraction grating data of the zeolite obtained when the zeolite was prepared with a SiO 2 /Al 2 O 3 ratio of 70. The diffraction data in Table 1 were obtained by standard X-ray diffraction techniques with irradiation of a K-alpha doublet of copper and were recorded on a recorder as a function of peak heights I and 2θ, where θ is the Bragg angle. Ru. I/I 0 is a relative intensity, and is a relative value when 2θ=23.2, which shows the strongest peak, is taken as 100. The zeolites produced according to the invention can be used as conversion catalysts either as such or by mixing with other support materials such as alumina, silica, silica-alumina. Furthermore, the organic cations present in the synthesis state are heated at a temperature in the range of 400 to 800°C to decompose, and the alkali metals present are exchanged with one or more other cations using known methods. A more preferred catalyst is then prepared. Typical cations include hydrogen ions in group A of the periodic table or ammonium ions, which are its precursors.
Group A magnesium, calcium, barium, B
The cations are group zinc, cadmium, group A tin, lead, group B chromium, group iron, cobalt, nickel, palladium, platinum and rare earths as well as mixtures thereof. The zeolite produced in this way, like other zeolite catalysts, has active sites based on the hydrogenation-dehydrogenation activity of metal cations exchanged with those due to the solid acidity of the zeolite. It can be used in hydrocarbon conversion reactions such as decomposition, isomerization, alkylation, and disproportionation in which catalysts are usually used, and is also effective in catalytic dewaxing reactions that selectively decompose wax components due to the shape selectivity of this zeolite. It is. Furthermore, this catalyst has a high silica to alumina ratio of 20 or more, so it is hydrophobic, and can also be used as a catalyst for dehydrating alcohols and producing olefins or aromatics from oxygen-containing compounds such as alcohols. EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following unless it exceeds the gist thereof. Example 1 436.6 ml of colloidal silica (containing 23.3 g of silica in 100 ml), 275 ml of water, and diglycolamine
63.6g was added and stirred. Here, add 4.485 g of sodium aluminate and sodium hydroxide to 100 ml of water.
Add a solution containing 13.648g and stir for 30 minutes. The resulting gel mixture prepared at a silica/alumina ratio of 70 was placed in a stainless steel pressure vessel with an internal volume of 2.
Heated at 160°C for 7 days. The obtained crystalline product was washed with water in step 2, dried at 130℃, and weighed.
It was 86g. The chemical analysis results of this crystalline substance are shown in Table 2.
However, it gave nitrogen and carbon equivalent to diglycolamine, and the silica/alumina ratio was 30.0. According to X-ray diffraction analysis, the diffraction pattern is shown in Table 1.
No other foreign zeolite was observed, and the zeolite was 100% pure and contained diglycolamino cations. Example 2 Zeolite was produced in the same manner as in Example 1, except that the silica/alumina ratio was adjusted to 29. 77g of zeolite with a silica-alumina ratio of 25 was synthesized, and its X-ray diffraction pattern was consistent with Table 1, and no other impurities were observed. Example 3 50 g of the zeolite produced in Example 1 was heated with a 5N ammonium chloride aqueous solution at 100°C for 3 hours in a glass flask equipped with a condenser, and after cooling, the ammonium chloride aqueous solution was added again and the same operation was repeated three times. Alkali metals in zeolite were removed by replacing them with ammonium ions. After that, wash thoroughly with water until no chlorine ions are detected in the solution.
It was dried at 130°C and calcined at 550°C for 3 hours to convert ammonium ions into hydrogen ions and decompose organic nitrogen cations in the zeolite into hydrogen ions. The obtained H-type zeolite was molded using a tablet molding machine, the particle size was made uniform to 12 to 32 meshes, and the mixture was subjected to a conversion reaction of C6 hydrocarbons. Raw material oil is 2.2-dimethylbutane 32.02 mol%, 2-methylpentane
It is a C6 hydrocarbon mixed oil with different molecular sizes containing 34.35 mol% and 32.83 mol of n-hexane.The reaction conditions were a temperature of 290℃, a pressure of 25Kg/ cm2 gauge,
LHSV 1.5h -1 and hydrogen to hydrocarbon molar ratio of 7 were used. As shown in Table 3, the reaction products include decomposition products from methane to pentane, as well as paraffins, naphthenes, and aromatics with carbon atoms of 7 to 9, which are not present in the feedstock oil. This shows that this catalyst has reaction activities for decomposition, isomerization, alkylation, and aromatization. Furthermore, the reactivity is highest with n-hexane, which has the smallest molecular size, followed by methylpentane, which has one methyl group, and 2,2-dimethylpentane, which has two methyl groups, does not react at all. In catalysts prepared from mordenite or Y zeolite with a pore diameter of 9 Å or more, the reactivity of 2,2-dimethylbutane, which has tertiary carbon and which normally tends to generate carbonium ions, is the highest, and therefore the present invention It can be easily inferred that the reactivity of the zeolite exhibits shape selectivity resulting from the fact that the pore size of the zeolite is large enough to contain n-paraffin and one methyl group. Example 4 The H-type zeolite prepared in Example 3 was subjected to a methanol conversion reaction. The reaction conditions were a temperature of 310℃;
The pressure was normal pressure LHSV = 1.5 h -1 , and the reaction was carried out in a nitrogen atmosphere. The results are shown in Table 4. At 310°C, 100% of methanol is converted to water and hydrocarbons, and the products are hydrocarbons with up to 10 carbon atoms.
The C 5 + fraction contained 69.6% by weight of aromatics, 5.0% by weight of naphthenes, 1.2% by weight of olefins, and 23.9% by weight of paraffins.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 シリカ源、アルミナ源、アルカリ金属源、水
およびジグリコールアミンを含む原料混合物を結
晶性アルミノシリケートが生成する温度、圧力条
件下に置くことを特徴とする合成結晶性アルミノ
シリケートゼオライトを製造する方法。 2 原料混合物を加圧下、加熱して得た結晶性ア
ルミノシリケートゼオライトを次いで周期律表
AABAB、族及び希土類に属す
る1種以上の陽イオンでイオン交換することから
なる特許請求の範囲第1項記載の合成結晶性アル
ミノシリケートゼオライトを製造する方法。
[Claims] 1. Synthetic crystalline aluminosilicate, characterized in that a raw material mixture containing a silica source, an alumina source, an alkali metal source, water and diglycolamine is placed under temperature and pressure conditions that produce crystalline aluminosilicate. A method of producing silicate zeolite. 2 The crystalline aluminosilicate zeolite obtained by heating the raw material mixture under pressure is then added to the periodic table.
A method for producing a synthetic crystalline aluminosilicate zeolite according to claim 1, which comprises ion exchange with one or more cations belonging to the group A , A , B , A , B , and rare earths.
JP16889479A 1979-12-25 1979-12-25 Manufacture of synthetic crystalline aluminosilicate zeolite Granted JPS5692114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16889479A JPS5692114A (en) 1979-12-25 1979-12-25 Manufacture of synthetic crystalline aluminosilicate zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16889479A JPS5692114A (en) 1979-12-25 1979-12-25 Manufacture of synthetic crystalline aluminosilicate zeolite

Publications (2)

Publication Number Publication Date
JPS5692114A JPS5692114A (en) 1981-07-25
JPS6225606B2 true JPS6225606B2 (en) 1987-06-04

Family

ID=15876531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16889479A Granted JPS5692114A (en) 1979-12-25 1979-12-25 Manufacture of synthetic crystalline aluminosilicate zeolite

Country Status (1)

Country Link
JP (1) JPS5692114A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739357B2 (en) * 1983-10-28 1995-05-01 三菱化学株式会社 Method for isomerizing dimethylnaphthalene
JPH0735344B2 (en) * 1983-11-02 1995-04-19 三菱化学株式会社 Catalytic isomerization method of dimethylnaphthalenes containing methylnaphthalene
JP2617291B2 (en) * 1984-08-15 1997-06-04 智行 乾 Method for converting lower paraffinic hydrocarbons to aromatic hydrocarbons

Also Published As

Publication number Publication date
JPS5692114A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
US4377502A (en) Synthesis of crystalline aluminosilicate molecular sieves
US4148713A (en) ZSM-5 particle containing aluminum-free shells on its surface
KR100279195B1 (en) Zeolite SJJ-35
CA1064890A (en) Crystalline zeolite, synthesis and use thereof
US3972983A (en) Crystalline zeolite ZSM-20 and method of preparing same
EP0106478B1 (en) Crystalline gallosilicates, a process for producing them and their use as catalysts
EP0002899B1 (en) Method for preparing aluminosilicates and their use as catalyst supports and catalysts
US4021331A (en) Organic compound conversion by zeolite ZSM-20 catalysts
CA1120455A (en) Method for producing aluminosilicates, their use as a catalysts and supports and method for producing catalysts therefrom
JPS59207833A (en) Synthesis of zsm-12 zeolite
JPH0214286B2 (en)
JPS624326B2 (en)
EP0015702B1 (en) Crystalline zeolite, synthesis and use thereof
US4390457A (en) Synthesis of molecular sieves using 2-aminopyridine as a template
JPH0453807B2 (en)
JPS6341851B2 (en)
CA1141357A (en) Crystalline zeolitic material, synthesis and use thereof
EP0014023B1 (en) Method for producing crystalline aluminosilicates
US4323481A (en) Synthesis of molecular sieves using beta-diketones as organic templates
JPS6331406B2 (en)
US4105541A (en) Hydrocarbon conversion over zsm-38
JPS6215489B2 (en)
JPS6225606B2 (en)
JPS6077125A (en) Preparation and manufacture of acid strength of zsm-12
US5133951A (en) Process for making a crystalline galliosilicate with the offretite structure