JPS62255846A - Measuring method for fracture toughness value - Google Patents

Measuring method for fracture toughness value

Info

Publication number
JPS62255846A
JPS62255846A JP9979186A JP9979186A JPS62255846A JP S62255846 A JPS62255846 A JP S62255846A JP 9979186 A JP9979186 A JP 9979186A JP 9979186 A JP9979186 A JP 9979186A JP S62255846 A JPS62255846 A JP S62255846A
Authority
JP
Japan
Prior art keywords
test
test piece
fracture toughness
toughness value
yield stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9979186A
Other languages
Japanese (ja)
Inventor
Akiji Fujita
明次 藤田
Yorimasa Takeda
竹田 頼正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9979186A priority Critical patent/JPS62255846A/en
Publication of JPS62255846A publication Critical patent/JPS62255846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To exactly grasp a fracture toughness value of a material by a small amount of test pieces, by deriving by an experiment one of a compressive yield stress and a modulus of longitudinal elasticity which can obtain a data from a minute test piece and the breakdown energy amount. CONSTITUTION:A test piece 4 is placed between a pedestal 5 and the upper cover 6, and fixed firmly with a set-screw 2. Subsequently, it is placed on a steel ball 3 and set through a hole 6a of the center of the upper cover 6. A punching test is executed by fixing the test piece 4 to a jig, and thereafter, applying a compressive force until the test piece 4 is broken down by the pedestal 5 and a push rod 1 by a tension tester in a state that the whole jig is in an extremely low temperature. A relation of a load and a displacement in this case is recorded. In this case, there is a strong correlation between impact absorbing energies of 100 deg.C and 200 deg.C of a breakdown energy of a punching test at -196 deg.C, and a fracture toughness value of 100 deg.C and 200 deg.C can be calculated by using each different experiential expression with regard to the upper shelf area and the transition temperature area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸気タービンのロータ、車室、弁室及びボイラ
ーチューブや鋼板など高温で使用される火力、原子力発
電プラント各部材や長時間使用によって脆化する一般構
造物用材料の破壊靭性値の測定法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to steam turbine rotors, casings, valve chambers, boiler tubes, steel plates, and other components of thermal power and nuclear power plants that are used at high temperatures and those that are used for long periods of time. This paper relates to a method for measuring the fracture toughness of general structural materials that become brittle.

〔従来の技術〕[Conventional technology]

従来は、供試体からASTM E399またはASTM
 E813に規定されている寸法の試験片および方法に
よって破壊靭性値KICまたはJrc  を求めている
Conventionally, ASTM E399 or ASTM
Fracture toughness values KIC or Jrc are determined using test pieces with dimensions and methods specified in E813.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、従来において破壊靭性値)(ICまたはJr
cを求める場合、 ASTM E399またはE813
に規定されているような比較的大きな試験片が必要であ
る。しかしながら、多くの場合、運転中の各種プラント
の各部材例えば伝熱管などの破壊靭性値を測定するため
にASTM E399またはE813に規定されている
ような試験片を採取することは実際上不可能であったd そのため、限られた供試体から破壊靭性値を測定するた
めに試1験片を採取することは困難であり、実際上破壊
靭性値の測定が出来ない不具合があった。
However, in the past, fracture toughness value) (IC or Jr.
When determining c, ASTM E399 or E813
Relatively large specimens are required, as specified in However, in many cases, it is practically impossible to collect test pieces as specified in ASTM E399 or E813 in order to measure the fracture toughness values of various parts of various plants in operation, such as heat exchanger tubes. Therefore, it was difficult to collect test pieces for measuring the fracture toughness value from the limited number of specimens, and there was a problem in that the fracture toughness value could not be measured in practice.

本発明は、上記従来法の不具合に鑑みてなされたもので
、微小な試験片の採取により、破壊靭性値を得ることの
できる破壊靭性値の測定法を提供することを目的とする
The present invention was made in view of the above-mentioned disadvantages of the conventional method, and an object of the present invention is to provide a method for measuring a fracture toughness value that can obtain a fracture toughness value by collecting a minute test piece.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、運転中のプラントの各部材の破壊靭性値全測
定するため被供試体から例えば3 mm X 3 mm
 X 5 mmの直方体の試験片を通常1〜2個採取し
微小圧縮試験を行い降伏応力又は縦断性係数金求める第
一工程とさらに被供試体から例えば10 mx X 1
0 +nm X O,5ynxの薄い小片1通常1〜2
枚を試験片として採取し。
In order to measure all the fracture toughness values of each member of a plant in operation, the present invention is carried out at a distance of, for example, 3 mm x 3 mm from the specimen.
In the first step, one or two rectangular parallelepiped specimens of 5 mm x 5 mm are usually taken and subjected to a micro compression test to determine the yield stress or longitudinal modulus.
0 + nm X O,5ynx thin piece 1 usually 1-2
Take a piece as a test piece.

押抜き試験を極低温で実施し、その押抜き試験で得た荷
重一変位曲線から破壊て要した破壊エネルギー量を算出
し、その破壊エネルギー量を予め求めた評価基準曲線か
ら/ヤルピー衝雰特性値に換算する第二工程と、第一工
程および第二工程より求めた降伏応力又は縦弾性係数と
7ヤルビー衝憔特性値を換算式に代入する第二工程と、
からなることを特徴とする破壊靭性値KICの測定法で
ある。
A punching test was conducted at a cryogenic temperature, and the amount of fracture energy required for fracture was calculated from the load-displacement curve obtained in the punching test, and the amount of fracture energy was calculated from a predetermined evaluation standard curve. a second step of converting into a value; a second step of substituting the yield stress or modulus of longitudinal elasticity and 7 Jarby impact characteristic values obtained from the first step and the second step into the conversion formula;
This is a method for measuring fracture toughness value KIC, which is characterized by comprising:

〔作 用〕[For production]

本発明は前述の構成により、まず、微小試験片からデー
タのとれる圧縮降伏応力、縦弾性係数のうちいずれかと
、破壊エネルギー量を実験により求め、あらかじめ得ら
れていた相関直線により破壊エネルギーと極めて相関性
のよい当該試験温度の衝58(吸収エネルギー値を得た
上で、衝撃吸収エネルギーと降伏応力又は縦弾性係数と
から換算式により破壊靭性値をもとめるもので、実機稼
働中の部材のように、大型の試験片が切りだせない場合
でも2適正な破壊靭性値を得ることができる。
With the above-mentioned configuration, the present invention first determines either the compressive yield stress or the modulus of longitudinal elasticity from which data can be obtained from a micro test piece, and the amount of fracture energy through an experiment, and then uses a previously obtained correlation straight line to determine an extremely high correlation with the fracture energy. The fracture toughness value is calculated from the shock absorption energy and the yield stress or longitudinal elastic modulus using a conversion formula after obtaining the shock absorption energy value at the relevant test temperature. 2. Appropriate fracture toughness values can be obtained even when large test pieces cannot be cut.

尚1本発明を応用することにより、破壊靭性値から既設
プラントの余寿命診断を行うことも可能である。
By applying the present invention, it is also possible to diagnose the remaining life of an existing plant from the fracture toughness value.

〔実施例〕〔Example〕

本発明に係る一実施例てより具体的に説明する。 One embodiment of the present invention will be described in more detail.

供試材は実際に約10万時間運転に供した蒸気タービン
ロータ材のCrMoV鋼であり、その化学成分を第1表
に示す。
The test material is CrMoV steel, which is a steam turbine rotor material that has actually been used for approximately 100,000 hours of operation, and its chemical composition is shown in Table 1.

第一工程の微小圧縮試験による降伏応力と縦弾性係数の
測定は次のようにして行った。まず試験片を約3朋×3
朋×5朋に切り出し。
The yield stress and longitudinal elastic modulus were measured by the micro compression test in the first step as follows. First, prepare a test piece of approximately 3 x 3
Cut out 5 friends.

表面の加工層を取り除くため約1080前後に冷却した
5%過塩素酸+95%酢酸溶液で電流条件ft40〜6
0V、 0.8〜1.2A テ約8分間電解研摩金行っ
た。このようにして得た試験片を図示省略の引張圧縮試
験機にて圧縮試験を行い降伏応力を求めた。その結果e
 JIS Z2204号試験片の引張試験で求めた試験
結果と比較して第1図乃至第3図および第2表に示すが
、微小圧縮試験による降伏応力の結果は引張試験結果よ
シ若干低い値を示すがほぼ一致した値となっている。
To remove the processed layer on the surface, use a 5% perchloric acid + 95% acetic acid solution cooled to around 1080 ℃ and use a current condition of 40 to 6 ft.
Electrolytic polishing was performed at 0 V and 0.8 to 1.2 A for about 8 minutes. The thus obtained test piece was subjected to a compression test using a tension compression tester (not shown) to determine the yield stress. As a result e
As shown in Figures 1 to 3 and Table 2, the yield stress results from the micro compression test are slightly lower than the tensile test results compared to the test results obtained from the tensile test of JIS Z2204 test pieces. As shown, the values are almost the same.

また、第二工程の押抜き試験に−る衝≦特性の測定は次
のようにして行った。
Further, the impact ≦ characteristic in the punching test in the second step was measured as follows.

第4図に押抜き試験において使用する治具。Figure 4 shows the jig used in the punching test.

第5図は押し抜き試験に供する試験片を示す斜視図であ
る。本実施例においては、先ず第4図に図示する様に、
試験片4を台座5と上蓋6の間にはさみ、止めねじ2で
しっかりと固定する。次に上蓋6の中央の穴6aから鋼
球3を試験片4の上に載置し、さらに押し棒1を鋼球3
の上に載せてセントする。押し抜き試験は第4図に示す
ように試験片4を試験治具に固定したのち、治具全体全
極低温状態例えば液体窒素中(−196°C)において
2図示省略の引張圧縮試験機で台座5と押し棒1により
試験片4が破壊するまで圧縮力を加えて行う。このとき
の荷重と変位の関係を記録する0 第6図に荷重一変位曲線の1例を示す。この荷重一変位
曲線から各試験片に亀裂が発生するのに要した破壊エネ
ルギー量Jt−算出した。
FIG. 5 is a perspective view showing a test piece to be subjected to a punch-out test. In this embodiment, first, as shown in FIG.
A test piece 4 is sandwiched between a pedestal 5 and an upper lid 6, and firmly fixed with a set screw 2. Next, the steel ball 3 is placed on the test piece 4 through the center hole 6a of the upper lid 6, and the push rod 1 is inserted into the steel ball 3.
Place it on top of the cent. In the push-out test, as shown in Fig. 4, after fixing the test piece 4 to the test jig, the entire jig is placed in a cryogenic state, for example, in liquid nitrogen (-196°C), using a tension-compression tester (not shown). A compressive force is applied using the pedestal 5 and the push rod 1 until the test piece 4 breaks. Record the relationship between load and displacement at this time. Figure 6 shows an example of a load-displacement curve. From this load-displacement curve, the amount of fracture energy Jt required for generating a crack in each test piece was calculated.

この破壊エネルギーiJと別途実施した2 mmVノノ
チンヤルピー衝撃試験の結果を第7図および第8図に示
す。この第7図および第8図は一196℃の温度におい
て行った押し抜き試験で亀裂が発生するまでに要した破
壊エネルギー値Jと2朋vノツチ7ヤルピー衝撃試験に
よって得られた100℃および200℃の衝盤吸収エネ
ルギー(kgf−m)の関係を示す図である。図中の実
線で図示した直線はこれらの実験値から求めたものであ
る。この図から明らかなように一196℃における押抜
き試験の破壊エネルギー100℃および200℃の衝撃
吸収エネルギーの間には強い相関関係がある。
This fracture energy iJ and the results of a 2 mmV nonochinyalpy impact test conducted separately are shown in FIGS. 7 and 8. Figures 7 and 8 show the fracture energy J required to generate a crack in a punch-out test conducted at a temperature of 196°C and the values obtained by a 2-hv notch 7-year-old impact test at 100°C and 200°C. It is a figure which shows the relationship of impact absorption energy (kgf-m) of degreeC. The solid line in the figure was determined from these experimental values. As is clear from this figure, there is a strong correlation between the fracture energy of the punching test at -196°C and the impact absorption energy of 100°C and 200°C.

ここで材料番号5および8で100℃および200℃の
破壊靭性値を算出すると次のとおりとなる。
Here, the fracture toughness values at 100°C and 200°C for material numbers 5 and 8 are calculated as follows.

破壊靭性値(1(tc)の換算式として以下の経験式を
用いる。
The following empirical formula is used as a conversion formula for the fracture toughness value (1 (tc)).

(11上部棚領域 (1(IC/δy)” =646(vE/δy)  −
6,35−−−−−、a(1)式1式% krc  =  0.833α (VE)3/4   
    、、・、、、第(2)式ただし、δy:降伏応
力Ckgf/myn雪)vE:  2nmvハテンヤル
ビー衝撃吸収エネルギー(kgf−yn) E:縦弾性係数(kgf/mf )  である。
(11 upper shelf area (1(IC/δy)” = 646(vE/δy) −
6,35----, a(1) formula 1 formula % krc = 0.833α (VE)3/4
Equation (2) where δy: Yield stress Ckgf/myn)vE: 2nmv Hatenjarby impact absorption energy (kgf-yn) E: Longitudinal elastic modulus (kgf/mf).

なお、第9図にCrMoV  鋼の2mmV7.7チシ
ヤルピー衝撃試1験結果を示し、あわせて上部棚領域、
遷移温度域、下部欄領域50%FATTを説明した。こ
の50%FATTとは50%Fracture App
earance Transition Teuoer
atureの略で2龍vノツチツヤルビー衝乍試験で脆
性破面と延性破面の面積が等しくなる温度を表わす。破
壊靭性値を算出する際第(1)式を使うのか第(2)式
を使うのか問題となるが、第9図を見ると明らかなよう
に50%FATTの値が有効な目安となる。
In addition, Fig. 9 shows the results of a 2mmV7.7-chip impact test of CrMoV steel, and also shows the results of the upper shelf area,
The transition temperature range and lower column region 50% FATT have been explained. What is 50% FATT? 50% Fracture App
earance Transition Teuoer
Abbreviation for ature, which refers to the temperature at which the areas of brittle and ductile fractures are equal in the 2Ryu vs. Notchiru Ruby impact test. There is a question of whether to use equation (1) or equation (2) when calculating the fracture toughness value, but as is clear from FIG. 9, the value of 50% FATT is an effective guideline.

第10図に一196℃における押抜き試験の破壊エネル
ギー値と2龍Vノツチシヤルピー衝撃試験より求めた5
0%FATTの関係を示すが。
Figure 10 shows the fracture energy values of the punching test at -196°C and the
Although the relationship of 0% FATT is shown.

2つの値には強い相関係があり、第10図に示すように
1本の曲線でまとめられる。したがって−196℃にお
ける押抜き試験の破壊エネルギーより50 % FAT
Tが指定でき、第(1)式か第(2)式かどちらの式を
使うか判定できる。
There is a strong correlation between the two values, and they are summarized in one curve as shown in FIG. Therefore, 50% FAT from the fracture energy of the punching test at -196℃
T can be specified, and it can be determined whether to use equation (1) or equation (2).

材料番号8の場合、50%FATTが約100℃であり
、100℃の破壊靭性値は第(2)式、200℃の破壊
靭性値は第(11式が妥当である。また、材料番号5は
50%FATTが若干100℃よシ高いが材料番号8と
同じ<100℃の破壊靭性値は第(2)式、200℃の
破壊靭性値は第<11式を使用する。
In the case of material number 8, the 50% FATT is approximately 100°C, the fracture toughness value at 100°C is given by equation (2), and the fracture toughness value at 200°C is given by equation (11). Although 50% FATT is slightly higher than 100°C, it is the same as material number 8. Formula (2) is used for the fracture toughness value of <100°C, and Formula (11) is used for the fracture toughness value of 200°C.

まず、材料番号5で破壊靭性値を求める。First, the fracture toughness value is determined using material number 5.

1)100℃のとき 第2表より E = 2.I X 10’ kgf/m
m’第7図工り vE = 1.7 kgf・mよッテ
krc = 0.833X421000X1.74= 
180  kgf/lm2 ii)200℃のとき 第3図より δy = 60.7 kgf/art第8
図より vE =  5.9 kgf−mヨッテkIc
 = 60.7x/646X(5,9/60.7)−6
,35ま = 456 kgf〆i2 次いで材料番号8の破壊 性値を求めると以下のとおり
となる。
1) From Table 2 at 100°C, E = 2. I x 10'kgf/m
m' 7th drawing vE = 1.7 kgf・m krc = 0.833X421000X1.74=
180 kgf/lm2 ii) At 200℃ From Figure 3 δy = 60.7 kgf/art No. 8
From the figure, vE = 5.9 kgf-m yacht kIc
= 60.7x/646X(5,9/60.7)-6
, 35 = 456 kgf〆i2 Next, the fracture resistance value of material number 8 is determined as follows.

i) 100℃のとき 第2表より E == 2.I X 10’ kgfA
m’第7図より  vE = 3.3 kgf−mよっ
てkxc = o、533xC21ooox3.戸=2
95kg論号1i)200℃のとき 第3図より δy = 58.5 kgf/Iイ第8図
より δy −7,4kgf °mよってkr c=5
8.7 X凸46X(7,4158,5)−6,35=
510 kgf/+++” これらの結果およびASTT E399で求めた1(I
IまたはASTM E813で求めたJrCをkIC=
−J!−シーE−(E:縦弾性係数、C:ボア1−V′ ソン比)式に代入して得たkrcと比較して第3表に示
す。
i) From Table 2 at 100°C E == 2. I x 10'kgfA
m' From Figure 7, vE = 3.3 kgf-m, so kxc = o, 533xC21ooox3. Door = 2
95kg theory 1i) At 200℃, from Figure 3, δy = 58.5 kgf/Ia From Figure 8, δy -7,4kgf °m Therefore, kr c=5
8.7 X convex 46X (7,4158,5)-6,35=
510 kgf/+++” These results and 1 (I
I or JrC determined by ASTM E813 is kIC=
-J! Table 3 shows a comparison with krc obtained by substituting it into the formula - C E - (E: longitudinal elastic modulus, C: bore 1-V'Son's ratio).

第3表より本発明法で求めたI(rC値は従来法の値と
よく一致することがわかる。
From Table 3, it can be seen that the I(rC value determined by the method of the present invention agrees well with the value of the conventional method.

なお1本実施例では第(1)式および第(2)式を用い
たが、材料によっては下記の換算式を用いる方がよい場
合もある。例えば溶接部材などく全温度域) (kxc
/δy)’ = 300(vF7δy) −・−・第(
3)式 (全温度域)kIc’/δy = 900’vE−・・
第(4)式δy=降伏応力(kg f/Iぎ) VE=2正Vノツチシャルピー衝 撃吸収エネルギー(kgf−□) :賀−、、〜!、 I’ll :、 W l−〜−ニー
:へ第3表 破壊靭性値 KIC 脣ASTM E813によシJrCを求め次式に代入し
KICを算出した。
Note that in this embodiment, equations (1) and (2) were used, but depending on the material, it may be better to use the following conversion equation. For example, all temperature ranges such as welding parts) (kxc
/δy)' = 300(vF7δy) −・−・th(
3) Formula (total temperature range) kIc'/δy = 900'vE-...
Equation (4) δy=yield stress (kg f/I) VE=2 positive V notch Charpy impact absorption energy (kgf-□): ka-,,~! , I'll:, W l-~-knee: to Table 3 Fracture toughness value KIC 脣JrC was determined according to ASTM E813, and KIC was calculated by substituting it into the following formula.

KIC=′Jを′X−司−(一般に使われる換算式)%
式% r: ポアソン比(ここでは0.3とした)〔発明の効
果〕 本発明法は、現在稼動中のプラント、特に火力原子力発
電プラントで高温にさらされる部分の材料の破壊靭性値
を少量の試験片で正確に把握することができ、余寿命診
断を行う上で大いに役立つ等産業の発達に寄与するとこ
ろが大きい。
KIC='J to'X-Si-(commonly used conversion formula)%
Formula % r: Poisson's ratio (here assumed to be 0.3) [Effects of the invention] The method of the present invention reduces the fracture toughness value of materials in parts exposed to high temperatures in currently operating plants, especially thermal nuclear power plants. It can be accurately determined with a test piece, and it is of great help in diagnosing remaining life, making a major contribution to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は室温における微小圧縮試験から求めた降伏応力
とJ Is z2201.4号試験片の引張試験から求
めた降伏応力の関係を示す図、第2図は100℃におけ
る微小圧縮試験から求めた降伏応力とJts z220
1.4号試験片の引張試験から求め友降伏応力の関係を
示す図、第3図は200°Cにおける微小圧縮試験から
求めた降伏応力とJts z2201,4号試験片の引
張試験から求めた降伏応力の関係を示す図、第4図は本
発明に係わる押抜試験の治具(試験片を含む)の構成を
示す横断面図、第5図は押抜き試験に供する試験片形状
を示す斜視図、第6図は押抜き試験で得られる荷重一変
位曲線の1例と破壌エネルギーの定義を示す図、第7図
は一196℃の温度での押抜き試験で試験材に亀裂が発
生するまでに要した破壊エネルギーの実験値と100℃
における2mmVノツチ/ヤルピーT#撃吸収エネルギ
ーの関係を示す図、第8図は一196℃の温度での押抜
き試験で試験材の亀裂が発生するまでに要した破壊エネ
ルギーの実験値と200℃における2韻vノツチツヤル
ビー衝撃吸収エネルギーの関係を示す図、第9図は2朋
Vノツチンヤルビー衝窄試験結果の1例を示す図で横軸
に試験温度縦軸に衝撃吸収エネルギーおよび脆性破面率
を示す図であり1本図は下部欄領域、遷移温度領域、上
部棚領域、50%FATTの定義もあわせて示す。第1
0図は一196℃の温度での押抜き試験で、試験材に亀
裂が発生するまでに要した破壊エネルギーの実験値と、
2mmVノツチ7ヤルビー衝撃試験で得られた50%F
ATTとの関係を示す図である。 1・・・押し棒、2・・・止めねじ、3・・・鋼球、4
・・・試験片、5・・・台座、6・・・上蓋、  6a
・・・穴。 荷重 (kqf) 一二−暑 も
Figure 1 shows the relationship between the yield stress determined from the microcompression test at room temperature and the yield stress determined from the tensile test of a J Is z2201.4 test piece, and Figure 2 shows the relationship between the yield stress determined from the microcompression test at 100°C. Yield stress and Jts z220
Figure 3 shows the relationship between the yield stress determined from the micro compression test at 200°C and the yield stress determined from the tensile test of the JTS Z2201, No. 4 test piece. A diagram showing the relationship between yield stress, FIG. 4 is a cross-sectional view showing the configuration of a jig (including a test piece) for a push-out test according to the present invention, and FIG. 5 shows the shape of a test piece to be subjected to a push-out test. A perspective view, Figure 6 is a diagram showing an example of a load-displacement curve obtained in a punching test and the definition of fracture energy, and Figure 7 is a diagram showing a crack in the test material in a punching test at a temperature of -196°C. Experimental value of fracture energy required to generate and 100℃
Figure 8 shows the relationship between the impact energy absorbed by a 2mm V notch/Yalpi T# at 200°C and the experimental value of the fracture energy required to generate a crack in the test material in a punching test at a temperature of -196°C. Figure 9 is a diagram showing an example of the results of a 2-way V-notch jarby impact absorption test, where the horizontal axis shows the test temperature, and the vertical axis shows the impact absorption energy and the brittle fracture ratio. This figure also shows the definitions of the lower column region, transition temperature region, upper shelf region, and 50% FATT. 1st
Figure 0 shows the experimental value of the fracture energy required to generate cracks in the test material during a punching test at a temperature of -196°C, and
50%F obtained in 2mm V notch 7 jarby impact test
It is a figure showing the relationship with ATT. 1... Push rod, 2... Set screw, 3... Steel ball, 4
...Test piece, 5...Pedestal, 6...Top lid, 6a
···hole. Load (kqf) 12-Hot

Claims (1)

【特許請求の範囲】[Claims] 微小圧縮試験により試験片の降伏応力若しくは、縦弾性
係数を求める第一工程と、薄板状の試験片を治具に固定
し、該試験片を鋼球で押し、そのときの荷重一変位曲線
を求める押し抜き試験を極低温で行い、前記荷重一変位
曲線より破壊エネルギー量を算出し、該破壊エネルギー
量を予め求めておいたシャルピー衝撃特性値に換算する
第二工程と、第一工程および第二工程によって求めた降
伏応力若しくは縦弾性係数とシャルピー衝撃特性値を換
算式に代入する第三工程と、からなることを特徴とする
破壊靭性値の測定法。
The first step is to determine the yield stress or modulus of longitudinal elasticity of the test piece through a micro compression test.The thin plate-shaped test piece is fixed to a jig, the test piece is pushed with a steel ball, and the load-displacement curve at that time is calculated. A second step of performing the desired push-out test at a cryogenic temperature, calculating the amount of fracture energy from the load-displacement curve, and converting the amount of fracture energy into a predetermined Charpy impact characteristic value; A method for measuring a fracture toughness value, comprising a third step of substituting the yield stress or modulus of longitudinal elasticity obtained in the two steps and the Charpy impact property value into a conversion formula.
JP9979186A 1986-04-30 1986-04-30 Measuring method for fracture toughness value Pending JPS62255846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9979186A JPS62255846A (en) 1986-04-30 1986-04-30 Measuring method for fracture toughness value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9979186A JPS62255846A (en) 1986-04-30 1986-04-30 Measuring method for fracture toughness value

Publications (1)

Publication Number Publication Date
JPS62255846A true JPS62255846A (en) 1987-11-07

Family

ID=14256742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9979186A Pending JPS62255846A (en) 1986-04-30 1986-04-30 Measuring method for fracture toughness value

Country Status (1)

Country Link
JP (1) JPS62255846A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254839A (en) * 1988-04-05 1989-10-11 Japan Steel Works Ltd:The Method of determining cryogenic fracture toughness value and apparatus for testing fracture toughness at cryogenic temperature
US7299686B2 (en) * 2004-03-02 2007-11-27 The Texas A&M University System System and method for testing the compaction of soil
CN105300795A (en) * 2014-06-18 2016-02-03 上海宝冶钢渣综合开发实业有限公司 Method for detecting steel slag product stability
CN106053333A (en) * 2016-06-15 2016-10-26 浙江海洋大学 Hard fiber insertion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254839A (en) * 1988-04-05 1989-10-11 Japan Steel Works Ltd:The Method of determining cryogenic fracture toughness value and apparatus for testing fracture toughness at cryogenic temperature
US7299686B2 (en) * 2004-03-02 2007-11-27 The Texas A&M University System System and method for testing the compaction of soil
CN105300795A (en) * 2014-06-18 2016-02-03 上海宝冶钢渣综合开发实业有限公司 Method for detecting steel slag product stability
CN106053333A (en) * 2016-06-15 2016-10-26 浙江海洋大学 Hard fiber insertion device
CN106053333B (en) * 2016-06-15 2018-12-04 浙江海洋大学 Hard fibre insertion apparatus

Similar Documents

Publication Publication Date Title
James et al. Fatigue-crack propagation behavior of type 304 stainless steel at elevated temperatures
Yang et al. A continuous low cycle fatigue damage model and its application in engineering materials
Misawa et al. Fracture toughness evaluation of fusion reactor structural steels at low temperatures by small punch tests
CN107843510B (en) Method for estimating residual endurance life of supercritical unit T/P91 heat-resistant steel based on room-temperature Brinell hardness prediction
Dyson et al. Use of small specimen creep data in component life management: a review
Shoemaker et al. Static and dynamic low-temperature KIC behavior of steels
Hyde et al. Some considerations on specimen types for small sample creep tests
JPS62255846A (en) Measuring method for fracture toughness value
Yin et al. On the use of the Theory of Critical Distances to estimate the dynamic strength of notched 6063-T5 aluminium alloy
Foulds et al. Determination of the toughness of in-service steam turbine disks using small punch testing
Mishin et al. INVESTIGATION OF DEFORMATION AND FRACTURE FOR THIN BERYLLIUM FOILS UNDER STATIC LOADING BY EXTERNAL PRESSURE.
OHGUCHI et al. Fatigue life estimation of SAC solder based on inelastic strain analysis using stepped ramp wave loading
Partheepan et al. Design and usage of a simple miniature specimen test setup for the evaluation of mechanical properties
Tomášek et al. Fracture toughness and Charpy impact test of MIM steels and correlation of results by KIC-CVN relationships
Kryukov et al. Investigation of samples taken from Kozloduy unit 2 reactor pressure vessel
Holzmann et al. Degradation of mechanical properties of Cr Mo V and Cr Mo V W steam turbine rotors after long-term operation at elevated temperatures. Part I: tensile properties, intergranular fracture strength and impact tests
CN114279869A (en) Weld toughness evaluation method
JPS6222049A (en) Method for measuring degree of embrittlement
MacGregor et al. Effects of cyclic loading on mechanical behavior of 24S-T4 and 75S-T6 aluminum alloys and SAE 4130 steel
Valo et al. Application of reconstitution welding technique for studying base metal of a Novovoronesh Unit-1 trepan sample
JPS62194438A (en) Method for measuring embrittlement
Weiss et al. Effect of strain rate and temperature on yielding and fracture toughness of brazed joints of Inconel 718
Colbeck et al. Caustic embrittlement
Gogotsi Test Methods of Advanced Ceramics-Reasonable Approaches to Certification of Ceramics
Zhu et al. Experimental investigation on residual stresses in welded medium-walled I-shaped sections fabricated from Q460GJ structural steel plates