JPS62255443A - Production of phenol compound - Google Patents

Production of phenol compound

Info

Publication number
JPS62255443A
JPS62255443A JP61098466A JP9846686A JPS62255443A JP S62255443 A JPS62255443 A JP S62255443A JP 61098466 A JP61098466 A JP 61098466A JP 9846686 A JP9846686 A JP 9846686A JP S62255443 A JPS62255443 A JP S62255443A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
supported
carrier
cyclohexen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098466A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsuoka
一之 松岡
Toyokazu Yanagii
豊和 楊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61098466A priority Critical patent/JPS62255443A/en
Publication of JPS62255443A publication Critical patent/JPS62255443A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:In obtaining the titled compound having various uses such as drug, coating compound, etc., by dehydrogenating a cyclic ketone in a gaseous phase, to improve selectivity, by using a specific catalyst having a limited supporting zone of noble metal on a carrier. CONSTITUTION:A cyclic ketone shown by formula I (R<1>-R<5> are H or <=18C aliphatic or aromatic hydrocarbon residue; n is r or 3; one unsaturated bond exists in the ring when n is 3)is dehydrogenated in a gaseous phase by the use of a catalyst wherein >=80% total amount of palladium and/or platinum 2 is supported on a surface zone amounting to <=2/3 volume of a carrier 1, the amount of palladium and platinum supported is 0.05-15wt%, preferably 0.1-2wt% and the section of the prepared catalyst has a shape like an eggshell to give a compound shown by formula III.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェノール化合物の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing phenolic compounds.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

フェノール化合物は、医薬、農薬、樹脂、塗料、洗剤、
酸化防止剤等の多様な用途分野で各種の構造のものが最
終製品、或いは中間原料として使用されている。
Phenolic compounds are used in pharmaceuticals, agricultural chemicals, resins, paints, detergents,
BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION Products of various structures are used as final products or intermediate raw materials in a variety of application fields such as antioxidants.

フェノール化合物の合成方法としては、フェノールやク
レゾールに直接置換基を導入する方法があるが、この方
法は応用に限界があり、構造が複雑な場合は、通常、他
の合成法を使用する。例えば、目的とするフェノール化
合物に対応する環状ケトンを脱水素する方法はその−っ
である。
One method for synthesizing phenolic compounds is to directly introduce substituents into phenol or cresol, but this method has limited applicability, and when the structure is complex, other synthetic methods are usually used. For example, there is a method for dehydrogenating a cyclic ketone corresponding to a target phenol compound.

上記の脱水素反応は通常、触媒存在下に実施される。用
いられる触媒は、パラジウム及び白金を担体上に担持し
たものが多用されている。
The above dehydrogenation reaction is usually carried out in the presence of a catalyst. The catalyst used is often one in which palladium and platinum are supported on a carrier.

例えば、ジャーナル・オン・ザ・オーガニック・ケミス
トリー(J、 Org、 Chem、、)1972年、
37巻。
For example, Journal on the Organic Chemistry (J, Org, Chem, ) 1972,
Volume 37.

2340〜2343頁には、パラジウムを活性炭上に担
持した触媒を用いて2.5.6− )ジメチル−2−シ
クロヘキセン−1−オンより2.3.6− )リメチル
フェノールを得る反応が示されている。また、特公昭4
6−17223号には、パラジウムをシリカゲル、活性
炭等に担持した触媒を用いて、シクロヘキセノン誘導体
より対応するフェノール化合物を得る方法が開示されて
いる。
Pages 2340 to 2343 show a reaction to obtain 2.3.6-)limethylphenol from 2.5.6-)dimethyl-2-cyclohexen-1-one using a catalyst in which palladium is supported on activated carbon. has been done. In addition, the special public
No. 6-17223 discloses a method for obtaining a corresponding phenol compound from a cyclohexenone derivative using a catalyst in which palladium is supported on silica gel, activated carbon, or the like.

しかしながら、パラジウム又は白金を担体に担持する方
法や反応成績についての具体的な検討は開示されていな
かった。
However, no specific study on the method of supporting palladium or platinum on a carrier or the reaction results was disclosed.

〔問題点を解決するための手段〕[Means for solving problems]

本研究者らは、環状ケトンの脱水素によるフェノール化
合物の製造法を更に改良するべく、担持方法と反応成績
の相関関係を検討した結果、驚(べきことに担体上の貴
金属の担持領域と反応成績に相関があることを見出し、
本発明に到達した。
In order to further improve the method for producing phenolic compounds by dehydrogenation of cyclic ketones, the present researchers investigated the correlation between the supporting method and reaction results. found that there is a correlation between grades,
We have arrived at the present invention.

即ち本発明は、担体に対しその体積の273以下を占め
る表面領域にパラジウム又は(及び)白金の全量の80
%以上が担持された触媒を用いることを特徴とする、一
般式(1)で表される環状ケトンの気相中での脱水素に
よる一般式(ff)で表されるフェノール化合物の製造
法に関するものである。
That is, the present invention provides that the total amount of palladium or/and platinum is 80% of the total amount of palladium or
% or more of a supported catalyst, the method for producing a phenol compound represented by the general formula (ff) by dehydrogenating a cyclic ketone represented by the general formula (1) in a gas phase. It is something.

(1)(II) 〔(I)、(n)に於いて、R1,R5は水素原子、或
いはCI8以下、好ましくはC1以下の脂肪族若しくは
芳香族の炭化水素残基を表す。
(1) (II) [In (I) and (n), R1 and R5 represent a hydrogen atom or an aliphatic or aromatic hydrocarbon residue having a CI of 8 or less, preferably a C1 or less.

また、(1)に於いて、nは5又は3を表し、nが3の
場合は1つの不飽和結合が環内に存在する。〕 本発明は実施例で示すように、担体状のパラジウム又は
白金の担持領域が表面領域に限定された触媒が、全領域
に均等に担持されさた触媒に比べ、より高いフェノール
化合物選択性を示す実験結果に基づく、この現象のメカ
ニズムは次のように考察される。触媒の表面領域に貴金
属が集中していると、環状ケトンは表面でフェノール化
合物に転化した後、触媒内部を通過する確率が均質な触
媒より高くなる。環状ケトンは触媒担体の有する酸性点
により分解、異性化等の副反応をおこすが、フェノール
化合物はより安定であり、この結果、表面領域に貴金属
を担持した触媒は、均質なものより高選択性を示すと推
察される。
Further, in (1), n represents 5 or 3, and when n is 3, one unsaturated bond exists in the ring. ] As shown in the examples, the present invention shows that a catalyst in which the supporting region of palladium or platinum is limited to the surface region has higher phenol compound selectivity than a catalyst in which the supporting region of palladium or platinum is uniformly supported over the entire region. The mechanism of this phenomenon is considered as follows based on the experimental results shown. If the noble metal is concentrated in the surface area of the catalyst, the probability that the cyclic ketone will pass through the interior of the catalyst after being converted to a phenolic compound at the surface is higher than in a homogeneous catalyst. Cyclic ketones cause side reactions such as decomposition and isomerization due to the acidic points of the catalyst support, but phenolic compounds are more stable, and as a result, catalysts with precious metals supported on the surface area have higher selectivity than homogeneous ones. It is inferred that it shows.

本発明に用いられる触媒担体としては、公知の担体を用
いることができる。特に、担体としての実用性が大きい
アルミナ、シリカ、シリカアルミナが応用できる。
As the catalyst carrier used in the present invention, any known carrier can be used. In particular, alumina, silica, and silica-alumina, which have great practicality as carriers, can be used.

担持の方法はパラジウム又は白金の担持領域を小さくで
きる公知の方法を選べばよく、例えば加熱された担体上
にパラジウム又は白金の塩の溶液を噴霧することにより
、溶液が担体表面で蒸発し、貴金属の沈着を担体表面領
域に限定できる。
The supporting method may be any known method that can reduce the supporting area of palladium or platinum. For example, by spraying a solution of a palladium or platinum salt onto a heated carrier, the solution evaporates on the carrier surface and the precious metal is can be confined to the carrier surface area.

得られる所望の触媒を断面で見ると、担持される領域(
担体−金属)の形は第1図に示すようないわゆるエソグ
シェルの形に類する。第1図に於いてlは担体、2は担
持された金属である。
When looking at the cross section of the desired catalyst obtained, the supported area (
The shape of the carrier (metal) is similar to the so-called esog shell shape as shown in FIG. In FIG. 1, 1 is a carrier and 2 is a supported metal.

担体の全体積に対し、少しでも担持金属が表面層に局在
していれば本発明の効果が得られるが、全担持量に対し
て表面担持量の比が小さければその効果も小さい、一方
、含浸法等の場合、非担持領域にも貴金属をゼロとする
ことは難しく、またゼロにしなくとも本発明の効果が得
られる0以上より、体積で担体の2ノ3以下の表面領域
にパラジウム又は白金の全量の80%以上を担持するこ
とによって、本発明の効果が達成される。
The effect of the present invention can be obtained if even a small amount of the supported metal is localized in the surface layer with respect to the total volume of the support, but if the ratio of the amount supported on the surface to the total amount supported is small, the effect is small. In the case of the impregnation method, etc., it is difficult to reduce the precious metal to zero even in the non-supported region, and palladium is added to the surface area of 2 to 3 or less of the support by volume compared to 0 or more, where the effect of the present invention can be obtained even if it is not reduced to zero. Alternatively, the effects of the present invention can be achieved by supporting 80% or more of the total amount of platinum.

担持するパラジウム及び白金の担持量は、0.05〜1
5重量%の範囲より選ぶことができる。
The supported amount of palladium and platinum is 0.05 to 1
It can be selected from a range of 5% by weight.

経済性及び反応活性の点から0.1〜2重量%が特に好
ましい。パラジウムと白金を合計量が上記の範囲になる
ように併用することも出来る。
From the viewpoint of economy and reaction activity, the content is particularly preferably 0.1 to 2% by weight. Palladium and platinum can also be used together so that the total amount falls within the above range.

本発明の製造法の原料としては、一般式(I)で表され
る環状ケトンを使用することができる。
As a raw material for the production method of the present invention, a cyclic ketone represented by general formula (I) can be used.

〔(I)に於いて、R1−R5は水素原子、或いはCI
8以下、好ましくは06以下の脂肪族若しくは芳香族の
炭化水素残基を表す。nは5又は3を表し、nが3の場
合は1つの不飽和結合が環内に存在する。〕 更に具体的に説明すれば、R1,R5にあてはまる官能
基は水素原子の他、メチル、エチル、n−プロピル、イ
ソプロピル、n−ブチル、イソブチル、S−ブチル、n
−アミル、イソアミル、S−アミル、L−アミル、n−
ヘキシル、n−オクチル、2−エチルヘキシル、デシル
、ウンデシル、ドデシル、テトラデシル、オクタデシル
、シクロヘキシル、シクロヘキシルメチル、フェニル、
トルイル、キシリル、ナフチル、ベンジル、ビニル、1
−プロペニル、2−7’ロベニル等を例として挙げるこ
とができる。R1,R5以外に5個の水素原子を持つ場
合は、環状ケトンはシクロヘキサノン誘導体、3個の水
素原子を持つ場合は、2−シクロヘキセン−1−オン又
は3−シクロヘキセン−1−オン誘導体を意味する。
[In (I), R1-R5 are hydrogen atoms or CI
Represents an aliphatic or aromatic hydrocarbon residue of 8 or less, preferably 06 or less. n represents 5 or 3, and when n is 3, one unsaturated bond exists in the ring. ] To explain more specifically, functional groups applicable to R1 and R5 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, S-butyl, n-butyl, in addition to hydrogen atom.
-amyl, isoamyl, S-amyl, L-amyl, n-
hexyl, n-octyl, 2-ethylhexyl, decyl, undecyl, dodecyl, tetradecyl, octadecyl, cyclohexyl, cyclohexylmethyl, phenyl,
Toluyl, xylyl, naphthyl, benzyl, vinyl, 1
-propenyl, 2-7'lovenyl, etc. may be mentioned by way of example. When the cyclic ketone has 5 hydrogen atoms other than R1 and R5, it means a cyclohexanone derivative, and when it has 3 hydrogen atoms, it means a 2-cyclohexen-1-one or 3-cyclohexen-1-one derivative. .

環状ケトンの具体例としては、2−メチルシクロヘキサ
ノン、2.6−シメチルシクロヘキサノン、2.3.6
− )リメチルシクロヘキサノン、2.6−ジニチルシ
クロヘキサノン、2.6−ジイツプロビルシクロヘキサ
ノン、3−フェニルシクロヘキサノン、2−メチル−2
−シクロヘキセン−1−オン、6−メチル−2−シクロ
ヘキセン−1−オン、2.6−シメチルー2−シクロヘ
キセン−1−オン、2.3.6−’)ジメチル−2−シ
クロヘキセン−1−オン、2.5.6− トリメチル−
2−シクロヘキセン−1−オン、2,6−ジエチル−2
−シクロヘキセン−1−オン、2゜6−ジイソプロピル
−2−シクロヘキセン−1−オン、3−フェニル−2−
シクロヘキセン−1−オン、5−フェニル−2−シクロ
ヘキセン−1−オン、2−メチル−3−シクロヘキセン
−1−オン、6−メチル−3−シクロヘキセン−1−オ
ン、2,6−シメチルー3−シクロヘキセン−1−オン
、2,3.6−ドリメチルー3−シクロヘキセン−1−
オン、2.5.6− )ジメチル−3−シクロヘキセン
−1−オン、2,6−ジエチル−3−シクロヘキセン−
1−オン、2,6−ジイソプロビル−3−シクロヘキセ
ン−1−オン、3−フェニル−3−シクロヘキセン−1
−オン、5−フェニル−3−シクロヘキセン−1−オン
等を挙げることができる。
Specific examples of cyclic ketones include 2-methylcyclohexanone, 2.6-dimethylcyclohexanone, 2.3.6
-) Limethylcyclohexanone, 2.6-dinitylcyclohexanone, 2.6-diituprobylcyclohexanone, 3-phenylcyclohexanone, 2-methyl-2
-cyclohexen-1-one, 6-methyl-2-cyclohexen-1-one, 2.6-dimethyl-2-cyclohexen-1-one, 2.3.6-') dimethyl-2-cyclohexen-1-one, 2.5.6-trimethyl-
2-cyclohexen-1-one, 2,6-diethyl-2
-cyclohexen-1-one, 2゜6-diisopropyl-2-cyclohexen-1-one, 3-phenyl-2-
Cyclohexen-1-one, 5-phenyl-2-cyclohexen-1-one, 2-methyl-3-cyclohexen-1-one, 6-methyl-3-cyclohexen-1-one, 2,6-dimethyl-3-cyclohexene -1-one, 2,3,6-drimethyl-3-cyclohexene-1-
one, 2.5.6-) dimethyl-3-cyclohexen-1-one, 2,6-diethyl-3-cyclohexene-
1-one, 2,6-diisopropyl-3-cyclohexen-1-one, 3-phenyl-3-cyclohexen-1
-one, 5-phenyl-3-cyclohexen-1-one, and the like.

本発明の方法は液相にも適用できるが、特に気相で好適
に床用され、通常、−a式(I)で表される出発原料を
、脱水素温度で活性化された触媒上に導入することで実
施される。反応の開始時に原料の蒸気に他のガス、例え
ば、水素等を加えることが有利である。
Although the method of the present invention can be applied to a liquid phase, it is particularly preferably applied to a gas phase, in which a starting material represented by the formula (I) is usually heated on a catalyst activated at a dehydrogenation temperature. This will be implemented by introducing It is advantageous to add other gases, such as hydrogen, to the raw material vapor at the beginning of the reaction.

反応温度は150〜400℃、更に好ましくは250〜
370℃で行うことができる。反応圧力は、原料化合物
及び生成物の沸点等に応じて適切な圧力を選んで行う。
The reaction temperature is 150-400°C, more preferably 250-400°C.
It can be carried out at 370°C. The reaction pressure is selected appropriately depending on the boiling points of the raw material compounds and products.

原料化合物が固体である場合、溶媒を用いてもよい。溶
媒は反応に不活性なものであれば良く、飽和の炭化水素
等を用いることができる。
When the starting compound is solid, a solvent may be used. The solvent may be any solvent as long as it is inert to the reaction, and saturated hydrocarbons and the like can be used.

〔発明の効果〕〔Effect of the invention〕

本発明によって、環状ケトンの脱水素によるフェノール
化合物の製造法の選択性が向上し、経済性の改善が達成
された。
According to the present invention, the selectivity of the method for producing phenolic compounds by dehydrogenation of cyclic ketones has been improved, and economic efficiency has been improved.

〔実 施 例〕〔Example〕

以下に実施例を示し、本発明を更に詳しく説明するが、
本発明はこれらの実施例に限定されるものではない。
Examples will be shown below to explain the present invention in more detail.
The present invention is not limited to these examples.

実施例 N2吸着によるBET法で150+wz/gの表面積を
存する直径51I11の球状アルミナ担体を120℃に
加熱し、担体に対して0.5重世%のパラジウムを含む
塩化パラジウム水溶液を噴霧し表面担持させた。次に水
素気流下、300℃まで昇温しで還元し、アルミナ担持
パラジウム触媒を製造した。
Example N2 A spherical alumina support with a diameter of 51I11 and having a surface area of 150+wz/g was heated to 120°C using the BET method using N2 adsorption, and a palladium chloride aqueous solution containing 0.5% palladium was sprayed onto the support to support the surface. I let it happen. Next, the mixture was heated to 300° C. and reduced under a hydrogen stream to produce an alumina-supported palladium catalyst.

X線解析によるこの触媒上のパラジウム分布は、触媒表
面から0.5amの深さまでの部分に集中していた。パ
ラジウムの集中している領域は担体の体積の49%にあ
たり、X線解析により、全量のうち96%のパラジウム
を含んでいた。
The palladium distribution on this catalyst according to X-ray analysis was concentrated at a depth of 0.5 am from the catalyst surface. The area where palladium was concentrated accounted for 49% of the volume of the carrier, and was found to contain 96% of the total amount of palladium by X-ray analysis.

気相反応装置にこの触媒をセットし、300℃で2.5
.6− )サメチル−2−シクロヘキセン−1−オンを
LSV (線空間速度)0.257!/触媒lで、同体
積の水素と共に仕込んで反応した。
This catalyst was set in a gas phase reactor, and the temperature was 2.5 at 300°C.
.. 6-) LSV (linear space velocity) of samethyl-2-cyclohexen-1-one is 0.257! /l of catalyst was charged with the same volume of hydrogen and reacted.

転化率98.1%、2,3.6− )リメチルフェノー
ル選択率は60.5%であった。
The conversion rate was 98.1%, and the selectivity for 2,3.6-)limethylphenol was 60.5%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いられる触媒の断面図である
。 1 担体   2 金属
FIG. 1 is a cross-sectional view of a catalyst used in the method of the present invention. 1 carrier 2 metal

Claims (1)

【特許請求の範囲】 担体に対しその体積の2/3以下を占める表面領域にパ
ラジウム又は(及び)白金の全量の80%以上が担持さ
れた触媒を用いることを特徴とする、一般式( I )で
表される環状ケトンの気相中での脱水素による一般式(
II)で表されるフェノール化合物の製造方法。 ▲数式、化学式、表等があります▼( I ) ▲数式、
化学式、表等があります▼(II) 〔( I )、(II)に於いて、R^1〜R^5は水素原
子、或いはC_1_■以下の脂肪族若しくは芳香族の炭
化水素残基を表す。 また、( I )に於いて、nは5又は3を表し、nが3
の場合は1つの不飽和結合が環内に存在する。〕
[Claims] A catalyst of the general formula (I ) The general formula (
II) A method for producing a phenolic compound represented by II. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲Mathematical formulas,
Chemical formulas, tables, etc. are available▼(II) [In (I) and (II), R^1 to R^5 represent hydrogen atoms, or aliphatic or aromatic hydrocarbon residues of C_1_■ or less. . Also, in (I), n represents 5 or 3, and n is 3
In the case of , one unsaturated bond is present in the ring. ]
JP61098466A 1986-04-28 1986-04-28 Production of phenol compound Pending JPS62255443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098466A JPS62255443A (en) 1986-04-28 1986-04-28 Production of phenol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098466A JPS62255443A (en) 1986-04-28 1986-04-28 Production of phenol compound

Publications (1)

Publication Number Publication Date
JPS62255443A true JPS62255443A (en) 1987-11-07

Family

ID=14220454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098466A Pending JPS62255443A (en) 1986-04-28 1986-04-28 Production of phenol compound

Country Status (1)

Country Link
JP (1) JPS62255443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929762A (en) * 1988-03-07 1990-05-29 Mitsui Petrochemical Industries, Ltd. Process for producing a phenol and/or a cyclohexanone
US4933507A (en) * 1987-12-03 1990-06-12 Mitsui Petrochemical Industries, Inc. Method of dehydrogenating cyclohexenone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933507A (en) * 1987-12-03 1990-06-12 Mitsui Petrochemical Industries, Inc. Method of dehydrogenating cyclohexenone
US4929762A (en) * 1988-03-07 1990-05-29 Mitsui Petrochemical Industries, Ltd. Process for producing a phenol and/or a cyclohexanone

Similar Documents

Publication Publication Date Title
Corey et al. New stereospecific synthesis of trisubstituted olefins. Stereospecific synthesis of farnesol
Gnanaprakasam et al. Ruthenium Pincer‐Catalyzed Acylation of Alcohols Using Esters with Liberation of Hydrogen under Neutral Conditions
EP0916637B1 (en) Process for preparating optically active compounds
Zhang et al. Enantioselective addition of diethylzinc to aromatic aldehydes catalyzed by titanium-5, 5′, 6, 6′, 7, 7′, 8, 8′-octahydro-1, 1′-bi-2-naphthol complex
Kabalka et al. New mild conversion of ketones to the corresponding methylene derivatives
Vora et al. Rhodium catalyzed hydroacylation of ethylene with 4-pentenals. reactions of 4-hexenal-1-d
Suslick et al. Sonochemistry and sonocatalysis of iron carbonyls
Akazome et al. Palladium complex-catalyzed intermolecular reductive N-heterocyclization: novel synthesis of quinazoline derivatives from 2-nitrobenzaldehyde or 2-nitrophenyl ketones with formamide
Lopez et al. A mild, convenient, and inexpensive method for converting imines into amines: Tin-catalyzed reduction with polymethylhydrosiloxane (PMHS)
US5780701A (en) Process for alkane group dehydrogenation with organometallic catalyst
JPS61275241A (en) Production of deuterated acrylic acid or methacrylic acid
CN109485621A (en) A method of producing gamma valerolactone
US4684751A (en) Catalytic compositions for preparing amides and primary alcohols
CN109134368B (en) Method for synthesizing 3, 4-dihydroisoquinoline by semi-dehydrogenating and oxidizing 1,2,3, 4-tetrahydroisoquinoline
Kramp et al. In situ Generated Iridium Nanoparticles as Hydride Donors in Photoredox‐Catalyzed Hydrogen Isotope Exchange Reactions with Deuterium and Tritium Gas
Scalzi et al. Alkylation of pyridine with tert-butyllithium. Convenient syntheses of 2, 6-di-tert-butylpyridine and 2, 4, 6-tri-tert-butylpyridine
JPS62255443A (en) Production of phenol compound
Joh et al. Rhodium-catalyzed synthesis of 2 (5H)-furanones from terminal alkynes and non-substituted alkynes under water-gas shift reaction conditions
US3655735A (en) Production of 3-methylbut-2-en-1-ol or 3-methylbut-2-en-1-yl acetate
JPS62255444A (en) Production of phenol compound
Franzus et al. Synthesis of exo, exo-5, 6-dideuterio-syn-7-acetoxy-norbornene and exo, exo-k, 6-dideuterio-2-norbornene
KR20040018399A (en) Process for producing adamantanol and adamantanone
US3217041A (en) Preparation of olefinic oxygencontaining compounds
JP2003327551A (en) Method for producing indane
CN113058652B (en) Zirconium gallate catalyst and application thereof in selective hydrogenation reaction of crotonaldehyde