JPS62254217A - Controller for electric power-factor - Google Patents

Controller for electric power-factor

Info

Publication number
JPS62254217A
JPS62254217A JP61098559A JP9855986A JPS62254217A JP S62254217 A JPS62254217 A JP S62254217A JP 61098559 A JP61098559 A JP 61098559A JP 9855986 A JP9855986 A JP 9855986A JP S62254217 A JPS62254217 A JP S62254217A
Authority
JP
Japan
Prior art keywords
reactive power
power
value
factor
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098559A
Other languages
Japanese (ja)
Inventor
Akio Hayazaki
早崎 昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP61098559A priority Critical patent/JPS62254217A/en
Publication of JPS62254217A publication Critical patent/JPS62254217A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To secure a constant level of average power-factor and to improve the power-factor in terms of a long period of time, by correcting automatically the set value of reactive power based on the past value of achievements. CONSTITUTION:The power factor Pf is first set at the power receiving point of a demander by a power-factor setting part 1. This set factor Pf is led to a reactive power value arithmetic means 3 together with the electric power value WH obtained by a power value generating part 2 on the previous day. Thus the reactive power value VarH1 is obtained. An overs/shorts arithmetic means 3 obtains the reactive power value VarH3 undergone overs/shorts on the previous day from said value VarH1 and the reactive power value VarH2 obtained on the previous day through a reactive power generating part 4. In a overs/shorts mode the value VarH3 is delivered to a converting part 8 to be converted into the instantaneous reactive power Var2 and multiplied by a weight coefficient K3 to be delivered to a reactive power setting means 9 for today. The means 9 obtains the set reactive power value Var3 of today from the reactive power value Var1 obtained in an application mode of a phase advance capacitor and K3.Var2 and delivers it.

Description

【発明の詳細な説明】 囚 産業上の利用分野 本発明は、受電点において無効電力を検出し、この検出
値に基いて受電力率を改善するための電力力率制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a power power factor control device for detecting reactive power at a power receiving point and improving the received power factor based on the detected value.

(B)  発明の概要 本発明は、電力力率制御装置において、無効電力設定値
を固定とせずに、過去の実積値をもとにこの無効電力の
設定値を自動的に修正することによって平均力率を一定
とし、長期的な力率改善を可能となしたものである。
(B) Summary of the Invention The present invention provides a power factor control device that does not fix the reactive power setting value, but automatically corrects the reactive power setting value based on the past actual value. This makes it possible to maintain a constant average power factor and improve the power factor over the long term.

(O従来の技術 水処理設備などのように、負荷のほとんどが電動機であ
る電気設備の受電点は遅れ力率となるため、この遅れ力
率を補償し、力率改善を行うために進相用コンデンサ制
御が行なわれている。
(O Conventional technology The power receiving point of electrical equipment where most of the loads are electric motors, such as water treatment equipment, has a lagging power factor, so in order to compensate for this lagging power factor and improve the power factor, the power receiving point is capacitor control is being performed.

第2図は、力率制御のための単結線図を示したもので、
受電点において負荷L1〜Lnと並列に進相用コンデン
サSC1〜SCnを接続し、変圧器PT、変流器Gを介
して得られる電力よシ無効電力(瞬時値)を継電器RY
にて検出し、検出された無効電力が設定無効電力よシ大
きいか否かによってスイッチ81〜Snを選択し、投入
あるいは引外し制御を行なっている。なお、CBおよび
CB、〜CBnはしゃ断器、SR1〜SRnは直列リア
クトルである。
Figure 2 shows a single line diagram for power factor control.
Phase advance capacitors SC1 to SCn are connected in parallel with loads L1 to Ln at the power receiving point, and the reactive power (instantaneous value) obtained through transformer PT and current transformer G is transferred to relay RY.
The switches 81 to Sn are selected depending on whether or not the detected reactive power is larger than the set reactive power, and control for closing or tripping is performed. Note that CB and CB, to CBn are circuit breakers, and SR1 to SRn are series reactors.

第3図は、進相コンデンサの制御態様を示したもので、
人は設定無効電力の引外し線、Bは設定無効電力の投入
線で、無効電力継電器RYで検出された受電点の無効電
力が、設定無効電力Bよシ大きいとき(遅れ)進相コン
デンサを投入し、またAよシ小さいとき〔進み〕引外す
。すなわち受電点の無効電力量が常に設定無効電力巾W
内に位置するよう制御される。
Figure 3 shows the control mode of the phase advance capacitor.
B is the set reactive power trip line, B is the set reactive power input line, and when the reactive power at the receiving point detected by the reactive power relay RY is larger than the set reactive power B (lag), connect the phase advance capacitor. Insert it, and when it is smaller than A, [proceed] and pull it out. In other words, the amount of reactive power at the power receiving point is always the set reactive power width W
controlled to be located within.

■) 発明が解決しようとする問題点 力率を改善して得られる利点としては、電力損失、電力
降下の軽減、主変圧器の容量の軽減などがあるが、需用
家にとってもつとも大きな要°素となるのは電力料金の
軽減である。このような目的でなされる無効電力の制御
においては、従来、第3図で示す無効電力の設定A、B
は固定的であるため次のような問題点を有している。
■) Problems that the invention aims to solve The benefits obtained by improving the power factor include reducing power loss, reducing power drop, and reducing the capacity of the main transformer, but this is a major need for consumers. The key is to reduce electricity costs. Conventionally, in controlling reactive power for such purposes, reactive power settings A and B shown in FIG.
Since it is fixed, it has the following problems.

(1)  設定無効電力に過去の実積が反映されない。(1) Past actual results are not reflected in the set reactive power.

(2)使用電力が少ないときの低力率(低無効電力)を
改善できないため、平均力率の改善に限度がある。
(2) Since it is not possible to improve the low power factor (low reactive power) when the power used is low, there is a limit to the improvement of the average power factor.

(3)使用電力は時々刻々変動し、かつその変動パター
ンも一定でないため、平均力率を一定にすることができ
ない。
(3) Since the power used fluctuates from moment to moment and its fluctuation pattern is not constant, it is not possible to keep the average power factor constant.

(4)安定な制御ができないため、投入、引外し口数が
多くなり、コンデンサ寿命を短くする。
(4) Since stable control is not possible, the number of closing and tripping ports increases, shortening the life of the capacitor.

上記のような問題点を有すると共に、電力料金の割引き
の点からみると、割引きは月間平均率で行われることか
ら、短期的な力率改善よシ実績値による長期的な力率改
善とすることにょシ、安定な制御が期待できる。
In addition to having the above-mentioned problems, from the point of view of electricity rate discounts, discounts are given at the monthly average rate, so long-term power factor improvement based on actual values is preferable to short-term power factor improvement. In particular, stable control can be expected.

本発明はかかる点に鑑みてなされたもので、その目的と
するところは、長期的な力率改善のための制御装置を提
供せんとするものである。
The present invention has been made in view of this point, and its purpose is to provide a control device for long-term power factor improvement.

(ト)問題解決のための手段 この発明は、無効電力の設定を1日車位で自動的に修正
するために、力率設定値と前日の電力量よシカ率設定時
の無効電力量を求めるための力率設定時の無効電力量演
算手段と、この演算手段によって求められた無効電力量
と前日の無効電力量よシ前Hに過不足した無効電力量を
求める過不足演算手段と、この演算手段によって求めら
れた過不足量と投入時の無効電力設定値によって本日の
無効電力設定値を演算する無効電力設定手段とを備えた
ものである。
(g) Means for solving the problem This invention calculates the reactive power amount at the time of deer rate setting from the power factor setting value and the previous day's power amount in order to automatically correct the reactive power setting by the daily vehicle position. a reactive power amount calculation means for setting a power factor; an excess/deficiency calculation means for calculating an excess or deficiency of reactive power in the previous H from the reactive power amount obtained by this calculation means and the reactive power amount of the previous day; It is provided with a reactive power setting means for calculating today's reactive power setting value based on the surplus/deficiency amount determined by the calculation means and the reactive power setting value at the time of turning on.

(j 作用 力率設定時の無効電力量と前日の実際の無効電力量よシ
当日の過不足無効電力量が求まシ、この過不足量を投入
時の無効電力設定値よシ差引くことによル本日の無効電
力設定値(投入)が求まる。
(j Calculate the excess or deficiency reactive energy on the day between the reactive energy at the time of setting the active power factor and the actual reactive energy of the previous day. Subtract this excess or deficiency from the reactive power setting value at the time of power-on. Accordingly, today's reactive power setting value (input) can be determined.

(G)  実施例 以下第1図に基いて本発明の一実施例を詳述する。同図
において、1は力率設定部で力率Pfが設定される。2
は前日の電力量発生部で、この発生部2はパルそ積算計
かアナログ積算計あるいは当日新たにwHを設定する設
定器などが用いられる。3は無効電力量演算手段で、力
率設定値Pfと前日の電力量よシカ率設定時の無効電力
量varH1が演算される。4は前日の無効電力量発生
部、5は過不足演算手段で、この演算手段5は前日に超
過、あるいは不足した無効電力量Var I(5、を求
める。6は判定部、7は無効電力設定部で、この設定部
7は進相コンデンサの投入時の無効電力値Var1  
が設定される。8は変換部、9は本日の無効電力設定値
を演算するための無効電力設定手段、lOは無効電力の
巾VarDを設定するための無効電力設定手段御lは減
算部で、この減算部11は進相コンデンサ1外しのため
の無効電力を設定する。
(G) Example An example of the present invention will be described below in detail with reference to FIG. In the figure, reference numeral 1 denotes a power factor setting section where the power factor Pf is set. 2
is a power generation unit for the previous day, and this generation unit 2 is a pulse totalizer, an analog totalizer, or a setting device that newly sets wH for the current day. 3 is a reactive power amount calculation means which calculates the reactive power amount varH1 at the time of deer rate setting based on the power factor setting value Pf and the previous day's power amount. 4 is a reactive power generation unit for the previous day, 5 is an excess/deficiency calculation means, and this calculation unit 5 calculates the reactive power amount Var I(5) that was excessive or insufficient on the previous day. 6 is a determination unit, and 7 is a reactive power In the setting section, this setting section 7 sets the reactive power value Var1 when the phase advance capacitor is turned on.
is set. 8 is a conversion unit, 9 is a reactive power setting means for calculating today's reactive power setting value, lO is a reactive power setting means for setting the reactive power width VarD, and l is a subtraction unit. sets the reactive power for removing phase advance capacitor 1.

以上のように構成された本発明においてその動作を説明
する。
The operation of the present invention configured as above will be explained.

イニシャライズ時には、別途無効電力量を設定してその
値を使用するが、以下の説明は運転が継続されているこ
とを前提とする。
At the time of initialization, the amount of reactive power is separately set and that value is used, but the following explanation assumes that the operation is continued.

先ず、前もって需用者の受電点の力率Pfが力率設定部
1によって設定され、この設定値Pfと前日の電力量発
生部2よシ得られた電力量wHとを無効電力量演算手段
3に導入して(1)式の演算をし、力率設定時の無効電
力量VarH1を求める。
First, the power factor Pf of the power receiving point of the consumer is set in advance by the power factor setting section 1, and this set value Pf and the power amount wH obtained by the power amount generating section 2 on the previous day are calculated by the reactive power amount calculation means. 3 and calculate the equation (1) to obtain the reactive power amount VarH1 at the time of setting the power factor.

VarH1=WH1−(Pf)”/Pf ”・・””・
(1)求まった値VarH1は過不足演算手段5に出力
される。この演算手段5には、パルス積算計などよりな
る前日の無効電力量演算手段4よシ前日の無効電力量v
arH2も印加されておシ、これら各位よシVarH5
= VarHl −VarH2・=−f21を演算して
前日に過不足した無効電力量VarH5を求める。求ま
ったVarH5は判定部6に導入されて、VarH5が
負のとき1VarH51>KLならば不足VarH3が
正のとき1VarH5l )K2ならば過大と判定され
る。また上記条件以外のときはVarH5= 0 と判定する。ここでに1は不足側不感帯、K2は過大側
不感帯の各定数である。
VarH1=WH1-(Pf)”/Pf ”・・””・
(1) The determined value VarH1 is output to the excess/deficiency calculation means 5. The calculation means 5 includes the previous day's reactive power amount calculation means 4, which is a pulse integrator or the like, and the previous day's reactive power amount v.
arH2 is also applied, and these people are also applying VarH5.
=VarHl -VarH2·=-f21 is calculated to find the reactive power amount VarH5 which was surplus or insufficient on the previous day. The obtained VarH5 is introduced into the determination unit 6, and if VarH5 is negative, 1VarH51>KL, then insufficient VarH3 is positive, then 1VarH5l), and if K2, it is determined to be excessive. Further, when the conditions are other than the above, it is determined that VarH5=0. Here, 1 is a constant for the insensitivity side dead zone, and K2 is a constant for the overabundance side dead zone.

判定結果NOとなった場合、すなわち、VarH5=O
の場合にはそのままとなるが、YeSの場合、すなわち
過不足が発生した場合にはVarH5は変換部8に出力
されて瞬時無効電力Var2に変換され、重み係数に3
が乗ぜられて今日の無効電力設定手段9に出力する。無
効電力設定手段9には、設定部7より投入時の無効電力
値Var1が導入されておシ、これら各位よシ Var 5 = Var 1− K5 *Var 2−
・・…・(3)を演算して今日の設定無効電力値Var
3を求める。
If the judgment result is NO, that is, VarH5=O
In the case of , it remains as it is, but in the case of Yes, that is, when an excess or deficiency occurs, VarH5 is output to the converter 8 and converted to instantaneous reactive power Var2, and the weighting coefficient is set by 3.
is multiplied and output to today's reactive power setting means 9. The reactive power setting means 9 is supplied with the reactive power value Var1 from the setting section 7 at the time of power-on.
......Calculate (3) and get today's set reactive power value Var
Find 3.

ただし、Var5  にはリミッタが設けられ、Mar
5≦に4のときはVar5 =に4Var5≧に5のと
きはVar5−に5とする。ここでK11は無効電力の
設定最小値、K5は無効電力の設定最大値である。
However, a limiter is provided for Var5, and Mar
When 5≦4, Var5 = 4. When Var5≧5, Var5- is set to 5. Here, K11 is the set minimum value of reactive power, and K5 is the set maximum value of reactive power.

一方引外し用の設定無効電力量VarlIは、減算部1
1において、設定部7によって設定された値VBrlと
設定部IOによって設定された無効電力中VarDを用
いて Var+4 = Varl、 −VarD ・=−=・
(4)の演算よシ求める。(なおVarp)制御コンデ
ンサ容量) 0 発明の効果 以上本発明によれば、 (1)1日車位で過去の実績値よシ無効電力の設定値を
自動的に修正することによって過去の実績値が力率に反
映される。
On the other hand, the set reactive power amount VarlI for tripping is calculated by the subtraction unit 1
1, using the value VBrl set by the setting unit 7 and the reactive power VarD set by the setting unit IO, Var+4 = Varl, −VarD ・=−=・
Find the calculation in (4). (Varp) Control Capacitor Capacity) 0 Effects of the Invention According to the present invention, (1) By automatically correcting the setting value of the reactive power, the past actual value can be changed from the past actual value at one day's vehicle position. reflected in the power factor.

(2)使用電力が少ないと゛きの低力率(低無効電力)
についても、過去の実績値に反映されることで平均値を
改善できる。
(2) Low power factor (low reactive power) when less power is used
The average value can also be improved by being reflected in past performance values.

(3)  設定力率を基準としているため、無効電力設
定手段で碌<、力率一定制御になるため、使用電力の変
動などによる平均力率がばらつくことがない0 (4)長期的な力率改善となるため、コンデンサの投入
、引外し頻度が減少した安定制御が可能となシ、コンデ
/す寿命を長くすることができる。
(3) Since the set power factor is used as the standard, the reactive power setting means is used to control the power factor at a constant value, so the average power factor does not vary due to fluctuations in power consumption, etc. (4) Long-term power As a result, stable control with reduced frequency of capacitor closing and tripping is possible, and the life of the capacitor can be extended.

(5)制御対象のコンデンサ容量はステップ的ではある
が、無効電力の設定値が任意の値に修正されるため、等
測的にはあたかも連続的なコンデンサ容量制御となる。
(5) Although the capacitor capacitance to be controlled is stepped, the set value of the reactive power is corrected to an arbitrary value, so the capacitor capacitance control is isometrically as if it were continuous.

などの利点を有する。It has the following advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は従来
の力率制御装置の単結線図、第3図はコンデンサ制御説
明図である。 1は力率設定部、2は前日の電力量発生部、3は無効電
力量演算手段、4は前日の無効電力量発生部、5は過不
足演算手段、6は判定部、7は無効電力設定部、9は無
効電力設定手段。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is a single connection diagram of a conventional power factor control device, and FIG. 3 is an explanatory diagram of capacitor control. 1 is a power factor setting section, 2 is a previous day's power generation section, 3 is a reactive power amount calculation means, 4 is a previous day's reactive power generation section, 5 is an excess/deficiency calculation means, 6 is a determination section, and 7 is a reactive power The setting section 9 is a reactive power setting means.

Claims (1)

【特許請求の範囲】[Claims] 負荷と並列に進相コンデンサを接続し、受電点の無効電
力量に応じて進相コンデンサの投入、引外し制御を行う
ものに於て、前記受電点の力率を設定するための力率設
定部と、前日の電力量発生部および前日の無効電力量発
生部と、前記力率設定部にて設定された設定値と前日の
電力量発生部より発生された電力量をもとに無効電力量
を演算する無効電力量演算手段と、この演算手段によつ
て求められた無効電力量と前記前日の無効電力発生部よ
り発生した無効電力によつて前日の無効電力量の過不足
を演算する過不足演算手段と、この演算手段による演算
結果、過不足発生時に該過不足量を投入無効電力設定値
とで本日の無効電力量を設定する無効電力設定手段とを
備えたことを特徴とする電力力率制御装置。
A power factor setting for setting the power factor of the power receiving point in a device that connects a phase advancing capacitor in parallel with the load and controls turning on and off of the phase advancing capacitor according to the amount of reactive power at the power receiving point. , the previous day's power generation section, the previous day's reactive power generation section, the setting value set in the power factor setting section, and the amount of power generated by the previous day's power generation section. a reactive power amount calculating means for calculating the amount of reactive power; and calculating an excess or deficiency of the reactive power amount of the previous day based on the reactive power amount obtained by the calculating means and the reactive power generated from the reactive power generating section of the previous day. The present invention is characterized by comprising an excess/deficiency calculation means, and a reactive power setting means for setting today's reactive power amount based on the calculation result of the calculation means and the input reactive power setting value when an excess/deficiency occurs. Power power factor control device.
JP61098559A 1986-04-28 1986-04-28 Controller for electric power-factor Pending JPS62254217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098559A JPS62254217A (en) 1986-04-28 1986-04-28 Controller for electric power-factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098559A JPS62254217A (en) 1986-04-28 1986-04-28 Controller for electric power-factor

Publications (1)

Publication Number Publication Date
JPS62254217A true JPS62254217A (en) 1987-11-06

Family

ID=14223043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098559A Pending JPS62254217A (en) 1986-04-28 1986-04-28 Controller for electric power-factor

Country Status (1)

Country Link
JP (1) JPS62254217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0187415U (en) * 1987-11-27 1989-06-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0187415U (en) * 1987-11-27 1989-06-09

Similar Documents

Publication Publication Date Title
JP6809753B2 (en) Combined cycle system
US6178101B1 (en) Power supply regulation
US8560136B2 (en) System stabilizing device
JP3386295B2 (en) Interconnected power converter
JP2006067760A (en) Distributed power supply unit
JPH05308780A (en) Distributed power system
JPH08280136A (en) Method for controlling distributed power supply linked with power system
JPS59181925A (en) System frequency and voltage stabilizing method
Vijayakumar et al. Photovoltaic interfaced three-phase four-wire unified power quality conditioner with extended reference current generation scheme
KR100707081B1 (en) Apparatus and method for controlling instantaneous current
Heidari et al. An intelligent capacity management system for interface converter in AC-DC hybrid microgrids
JPS62254217A (en) Controller for electric power-factor
Kalla Sliding reinforced competitive learning scheme for voltage and frequency regulation of diesel engine driven standalone single-phase generators
JPH0432621B2 (en)
CN116260163B (en) Three-phase inverter and output power control method and device
RU2056692C1 (en) Transformer-thyristor reactive-power corrector
JPH0965574A (en) Control of self-excited reactive power compensating device
RU2208890C1 (en) Method for no-break power supply to loads of power system operating on renewable energy sources (alternatives)
RU2726474C1 (en) Method of providing balance of accumulated energy in automatic reactive power compensation device
JP2001218368A (en) Power converter and photovoltaic generation system
Patel et al. Current Control Strategy using Sinusoidal Signal Integrators for Harmonic Elimination in a Standalone Microgird
JP2001224183A (en) Link inverter having dc power limiting function
SU1621130A1 (en) Stabilized ac to ac voltage converter for non-linear load
JP3238024B2 (en) Control device for self-excited converter
CN117595317A (en) Single-phase control-based power grid unbalance management method and device