JPS62254032A - Method for detecting breakage of piping - Google Patents

Method for detecting breakage of piping

Info

Publication number
JPS62254032A
JPS62254032A JP9677986A JP9677986A JPS62254032A JP S62254032 A JPS62254032 A JP S62254032A JP 9677986 A JP9677986 A JP 9677986A JP 9677986 A JP9677986 A JP 9677986A JP S62254032 A JPS62254032 A JP S62254032A
Authority
JP
Japan
Prior art keywords
gap
piping
pressure
fluid
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9677986A
Other languages
Japanese (ja)
Inventor
Akihiko Minato
明彦 湊
Ryuhei Kawabe
隆平 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9677986A priority Critical patent/JPS62254032A/en
Publication of JPS62254032A publication Critical patent/JPS62254032A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance safety, by providing a gap between the outer wall surface of piping and a heat insulating material and detecting the lowering in the internal temp. of the gap due to the thermal expansion or reduced pressure boiling of a fluid leaking at the time of breakage. CONSTITUTION:A gap 3 is provided between a piping wall 3 and a heat insulating material 2 and a temp. sensor 4 is arranged in the gap 3. When a high pressure fluid 5 leaks to the outside of piping, the leaked fluid adiabatically expands in the gap 3 low in pressure to lose internal energy by its expansion work and the temp. sensor 4 can detect the lowering in the temp. of the gap. Therefore, the breakage of the piping permitting the high pressure fluid to pass is detected without being affected by the disturbance of pressure and sound caused by peripheral machinery and safety can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボイラ、化学プラント、原子炉等において高
圧流体1通す配管π係9、特に早期検出に好適fL破破
断出出方法関Tる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a piping system for passing high-pressure fluid in boilers, chemical plants, nuclear reactors, etc., and a fL rupture release method particularly suitable for early detection. .

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭58−59437号公報に記載の
ように、漏洩流体による圧力変動の検知又はセンナ技術
、第3巻第3号(昭和58年)の第60負から第63頁
に記載されているように、放田流の発生する超音波の検
知により配管破断を検出している。
Conventional devices are known for detecting pressure fluctuations due to leakage fluid or Senna technology, as described in Japanese Patent Application Laid-open No. 58-59437, pp. 60-63 of Vol. 3, No. 3 (1981). As described, pipe breaks are detected by detecting ultrasonic waves generated by the field flow.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術に、配管周辺の機器による圧力や音の外乱
について配慮がされておらす、特VC仮断面積が小さい
とき、漏洩流賞や超音波のエネルギが少ないので早ル(
検出の点で間鴎があった。
In the above conventional technology, consideration is given to pressure and sound disturbances caused by equipment around the piping.When the temporary VC cross-sectional area is small, leakage flow and ultrasonic energy are small, so it is easy to use.
There was a gap in terms of detection.

本発明の目的は、周辺機器に起因Tる外乱の影響が少な
く、破断面積が小さい場合にも容易vc恢検知きる配管
破断検出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pipe rupture detection device that is less affected by disturbances caused by peripheral equipment and can easily detect VC even when the rupture area is small.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的に、第1図に示■ように、配管壁1と断熱材2
の間に間隙3を設け、その中[崗載セ/す4を設置し、
高圧流体5が配管外vc漏洩したとき、抵出である間隙
3内で断熱膨張し・その仕事なKよって内部エネルキー
を失い、温度が低下■ることを温度センサ41Cよって
検知Tることにより達成される。
For the above purpose, as shown in Fig. 1, a pipe wall 1 and a heat insulating material 2 are
A gap 3 is provided between the two, and a gap 3 is installed in the space.
This is achieved by detecting with the temperature sensor 41C that when the high-pressure fluid 5 leaks outside the piping, it adiabatically expands in the gap 3 where it leaks, loses internal energy due to its work, and the temperature decreases. be done.

〔作用〕[Effect]

一般の流体において圧力P (Pa )、温度T(C)
、比容積v (m!/ kg )は次の状態方程式であ
られされる。
Pressure P (Pa) and temperature T (C) in general fluids
, the specific volume v (m!/kg) is given by the following equation of state.

T=T(P、V) 高圧流体5が気体である場合、低圧の間隙3に於いて断
熱膨張■るとき、熱力学の教えるところによれば、次の
拘束栄件に従う。
T=T(P,V) When the high-pressure fluid 5 is a gas, when it expands adiabatically in the low-pressure gap 3, thermodynamics teaches that it obeys the following constraint:

Pvγ=定数 ここでrll断熱指数である。この拘束φ件と上記の状
態方程式から比容積Vを消去すれば、流体グ)温度は圧
力のみの関数として得ることができろ。
Pvγ=constant where rll is the adiabatic index. If we eliminate this constraint φ and the specific volume V from the above equation of state, we can obtain the fluid temperature as a function of pressure only.

理想気体であるときに、圧力の低下VC#つて温度が低
下Tる挙動P第2ト閾に示T0 高圧流体5が二相流体又は高温液体であり、低圧の間1
!A3!’l(於いて二相流体になるとき、二相流体の
副題ζ即ち流体の種む■151有なM和瘍融である。流
体か水及びフレオンである場合の抱和渦度を、圧力の関
数として第3図に示す。
When it is an ideal gas, the temperature decreases as the pressure decreases VC#.
! A3! 'l (When a two-phase fluid becomes a two-phase fluid, the subtitle ζ of a two-phase fluid, that is, the fluid has a type of 151 M fusion. If the fluid is water and freon, the absorbed vorticity is expressed as pressure It is shown in Figure 3 as a function of .

〔実施例〕〔Example〕

以下、本発面の一実施例2第4図により説明Tる。4湛
高圧水6を通す配管壁l外側に間隙3を隔てて保温箱7
を設置する。間隙3はスペーサ8πよって保持されてい
る。保温箱7外(ilは断熱し2で覆われて外部雰囲気
と熱的Vr:J断されているため、間隙3は高温高圧水
6と同じ温度であ々1゜導電体9をスペーサ8で保持し
、第5Pりに示すように配管全長にわたって配@する。
Embodiment 2 of the present invention will be explained below with reference to FIG. 4. 4 A piping wall through which high-pressure water 6 passes l A heat insulation box 7 with a gap 3 on the outside
Set up. Gap 3 is maintained by spacer 8π. Outside the heat insulation box 7 (il is insulated and covered with 2 and thermally disconnected from the external atmosphere Vr:J, so the gap 3 is at the same temperature as the high temperature and high pressure water 6). Hold it and place it over the entire length of the piping as shown in the 5th page.

導電体90両端は抵抗値変動検出器10vC接続してい
る。凪抗埴変動検出器10は、第6崗π示す回路構成を
もっている。4電体9は、正常時の44宿体9と1hJ
じ抵抗値をもつ規準抵抗と11と直列(q定′市l′E
源12Vc接続している。これと並列に同じ抵抗1−を
もつ規準抵抗器11を二個直列にして定1h、 E t
16i12にすχ続する。二個の抵抗器節点13の′[
h、泣全比較器14vcよって比較し、導電体9の41
11の抵抗器節点13が他方に比べて所定のしきいfi
A以上高い市:位を示すことによって破断を検知する。
Both ends of the conductor 90 are connected to a resistance value fluctuation detector 10vC. The calming resistance fluctuation detector 10 has a circuit configuration shown in the sixth section. 4 electric body 9 is normal 44 electric body 9 and 1hJ
In series with the reference resistor 11 having the same resistance value (q constant l'E
Connected to power source 12Vc. In parallel with this, two standard resistors 11 with the same resistance 1- are connected in series and constant 1h, E t
Continued on 16i12. ′[ of the two resistor nodes 13
h, Compare with full comparator 14vc, 41 of conductor 9
11 resistor nodes 13 are at a predetermined threshold fi compared to the other
City higher than A: Breakage is detected by indicating the position.

破断梗知信号により、弁閉鎖、警報その他必要な処閘を
自動釣に行う。
In response to the rupture signal, valves are closed, alarms are issued, and other necessary measures are taken automatically.

配管雫IK破断口15が生じた時、その面積Aδ(m2
)とサブクール水臨界流清Gc(kg/ mJ) カら
漏洩流t W I kg / 5 )  は次式で与え
らゎ、る。
When the pipe drop IK break 15 occurs, its area Aδ (m2
) and the subcooled water critical flow Gc (kg/mJ) and the leakage flow tW I kg/5) are given by the following formula.

W ”  An  (Jc GcにZaloudek V(よれば次式で近似できる
W ” An (Jc Gc can be approximated by the following equation according to Zaloudek V).

Ge = (2ρt  (Po  P”’))ここでP
ofPa)  n配管内の圧力、P(8)(Pa) n
高温高圧水6の減圧沸騰開始子方、ρ4(8’ (kg
/m3)に減圧溝S開始圧力πおける1和水密度である
Ge = (2ρt (Po P”')) where P
ofPa) nPressure inside the pipe, P(8)(Pa) n
The point at which the high-temperature, high-pressure water 6 starts boiling under reduced pressure, ρ4 (8' (kg
/m3) is the monohydric water density at the starting pressure π of the pressure reducing groove S.

保温箱7汀、外部雰囲気が自然対流で保温箱7に流入す
ることを防止できれば工ぐ、耐圧信造で灯ない。このた
め、浦波した高温高圧水6に大気l−Eまで減圧し、1
00Cの蒸気と水の二相流体となる。沸騰り非常に早い
現象であり、蒸気発生に要する時間i100msや越−
2ない。
If the heat insulation box 7 can be prevented from flowing into the heat insulation box 7 by natural convection, the heat insulation box 7 will not turn on due to its pressure-resistant structure. For this reason, the high-temperature, high-pressure water 6 produced by Uranami is depressurized to atmospheric l-E, and 1
It becomes a two-phase fluid of steam and water at 00C. This is a very rapid boiling phenomenon, and the time required to generate steam is 100 ms.
2 No.

漏洩部所の中で、間隙3において蒸気に相侯比Tる割合
xh次式で与えられる。
Among the leakage points, the proportion xh of steam in the gap 3 is given by the following equation.

ここでり、(JAg)に高幌品圧水6のエンタルピ、h
t I J/kgフ、  hz(J/kglにそれぞれ
大気圧における飽和蒸気と飽和水のエンタルピである。
Here, (JAg) is the enthalpy of Takahoro water pressure water 6, h
t I J/kgf, hz (J/kgl are the enthalpy of saturated steam and saturated water at atmospheric pressure, respectively.

以上のryt係から、破断後Δを秒後の発生蒸気の占め
る容積Vs (m” )n次のように求められる。
From the above ryt equation, the volume occupied by the generated steam after Δ seconds after rupture is determined as follows: Vs (m'')n.

Vi=AmGeXvsΔ電 ここでVヨ(m’/に+r)は大気圧における飽和蒸気
の比容積である。保温箱7内の間隙3の全容積をVy(
mJ) とすると導電体9のほぼVa/VTVcあたる
部分が100’Cの蒸気に横われることになる。
Vi=AmGeXvsΔElectricity Here, Vyo(m'/+r) is the specific volume of saturated steam at atmospheric pressure. The total volume of the gap 3 in the heat insulation box 7 is Vy(
mJ), a portion of the conductor 9 approximately corresponding to Va/VTVc will be surrounded by vapor at 100'C.

導電体9が外径d(mJの円柱状であれば、外部温度の
変動に対する時だ数τ(s)は次式で与えられる。
If the conductor 9 has a cylindrical shape with an outer diameter d (mJ), the time factor τ(s) for fluctuations in external temperature is given by the following equation.

ここで(、” (J/kg−K ) i導電体9の比熱
、ρ(にg/m’)J”1m厩、b (W/rn”K)
htiの熱伝達率である。雰囲気Y都度と導11体9の
温度差はτ秒後に初期の36.8壬、2τ秒後に13.
5%に減少する。
Here, (," (J/kg-K) i specific heat of conductor 9, ρ (in g/m') J"1m stable, b (W/rn"K)
It is the heat transfer coefficient of hti. The temperature difference between the atmosphere Y and the conductive body 9 is 36.8 mm at the initial stage after τ seconds, and 13.8 mm after 2τ seconds.
It decreases to 5%.

物質の電気抵抗の温度依存性に一般捉次式であらればれ
る。
The temperature dependence of the electrical resistance of a material can be expressed as a general equation.

d凡 i ここでR(ΩITI)ia、5抗値、a (1tl;”
 l tl 淵度’17%数、T (C’)はその物質
の温度である。
d where R(ΩITI)ia, 5 resistance value, a (1tl;”
l tl depth '17% number, T (C') is the temperature of the material.

導電体9のVIl/Vtの部分のみΔT (C)だけ温
度が低下したときの導電体9の全抵抗値の減、中割せは
欠のようになる。
When the temperature of only the VIl/Vt portion of the conductor 9 decreases by ΔT (C), the total resistance value of the conductor 9 decreases, and the middle division becomes like a chipping.

比教姦14において2!4.拍;体9の電気抵抗変化紮
坂所信号とみな丁しきい値に、小さくTる程早期検出が
ム」nシであるが、一方龜動作牙避けるためπはあ19
しきい頓を小さくすることにできない。
2!4 in Pikkyokan 14. Beat: The electric resistance change of the body 9 is the signal and the threshold value, so the smaller T is, the harder it is to detect it early.
It is not possible to make the threshold smaller.

構出する必安いある最小イ尺断面積、計容;均量遅れか
ら上記の計算方法に従ってその時の2s′tJi、体9
の全抵抗値の減少割合を算出Tれば、必要かつ十分なし
さい愉を設定することができる。
According to the above calculation method from the uniformity delay, 2s'tJi, body 9
By calculating the reduction rate of the total resistance value of T, it is possible to set a necessary and sufficient value.

具体例として圧カフMPa、サブクール度10Cの高温
高圧水6が流れる、外径0.1m、長さ10mGr)配
管を考える。保温箱72内径0.14mの円筒とTると
、間隙3の各種は0.075m’である。
As a specific example, consider a pipe having an outer diameter of 0.1 m and a length of 10 m (Gr), through which high-temperature, high-pressure water 6 with a pressure cuff MPa and a subcool degree of 10 C flows. When the heat insulation box 72 is a cylinder with an inner diameter of 0.14 m and T, each of the gaps 3 is 0.075 m'.

mlJ ’Z可能最小破断面面積 1 n−’ m” 
+1ml、、2 ) 、許容時間遅れ号1秒とする。こ
の間の漏洩量は0.038k[と見積られる。大気圧1
で減圧すると、このうち37’16.即ち0.1114
 kgが蒸気となり、その容!*に0.0086m”と
なる。この蒸気が間隙3Vr、占めるみ1」合は0.1
1である。この区間において、導電体9の崗紘は284
Cから100Cへ184C低下する。温usiμ、白金
やタングステンにおいて大きい値をと9% 3X l 
0−3C−1をこえる。このとき佛矩体9の全抵りT値
の変化割付に6チと見積られる。抵抗器節点13の電位
変化率は3係となるのでこの++a P l、きいイI
Bと■れげ工いことがわかる。
mlJ 'Z minimum possible fracture surface area 1 n-' m”
+1 ml, 2), and the allowable time delay is 1 second. The amount of leakage during this period is estimated to be 0.038k. Atmospheric pressure 1
When the pressure is reduced at 37'16. i.e. 0.1114
kg turns into steam, its volume! * is 0.0086 m". If this steam occupies a gap of 3 Vr and only 1", then it is 0.1
It is 1. In this section, the height of the conductor 9 is 284
It decreases by 184C from C to 100C. Temperature usiμ, with large values in platinum and tungsten, 9% 3X l
Over 0-3C-1. At this time, the total resistance T value change allocation of the Buddha rectangle 9 is estimated to be 6 chis. The rate of change in potential at the resistor node 13 is a factor of 3, so this ++a P l, Kii I
I can see that B and ■Regekou.

蒸発のための時間遅れ戸数10rr+sである。また、
纒1[坏9を径2鴎の円柱状のタングステン線とし、そ
の外向における高速の二相流との熱伝達率をl O’ν
V / m ”・Cであると仮Wすると、温度変化の時
定65tα13(118となる。蒸発及び導電体9の御
電賞化に安する時・出框訂容時till遅れと比べて無
視できる相手σい。
The time delay for evaporation is 10rr+s. Also,
The heat transfer coefficient with the high-speed two-phase flow in the outward direction is l O'ν.
If we assume that V/m''・C is W, then the time of temperature change will be 65tα13 (118).It can be ignored compared to the till delay when the evaporation and electric conductor 9 become electric. I'm a good partner.

本爽施例vr、工れば、周辺機器に起因Tる圧力、音の
外乱の影譬5−受けずに・いかなる筒所の破断も早ルI
K恢出■ることが可能である。
If you install this example VR, you will be able to avoid the effects of pressure and sound disturbances caused by peripheral equipment, and any pipe breakage will occur quickly.
It is possible to extract K.

以下、別の実施例を第7図により説明する。導め′体9
0.蘭隙3の中を配管壁]の周囲にコイル状に^己If
σれている。
Another embodiment will be described below with reference to FIG. guide body 9
0. Inside the gap 3, in a coil around the pipe wall] If
σ is falling.

破市丁口からと9A洩した高圧流体の断熱膨張又は減圧
那#によって発生Tる低温ガス又は蒸気に、間隙3の雰
囲気ガスとび)密度の麿によって、間隙3の下方又μ上
方vc、1桶るル合がある。ピッチ?、配看全茨[間隙
3内?低棉ガス又に蒸気が占める割合を栄じた距#(上
1Cの世1でに1.1 m 3以下に設定する。
Low-temperature gas or steam generated by the adiabatic expansion or decompression of the high-pressure fluid that leaked from the opening of the opening 9A is caused by the atmospheric gas in the gap 3) below the gap 3 or above μvc, 1. There is an okeruruai. pitch? , all the thorns [within gap 3?] The proportion of gas or steam occupied by low-carbon gas or steam should be set at 1.1 m3 or less in the upper 1C world.

本実施撚によnげ、配管の配11訛体の種fdに関係な
く破開rヴt0が町Reである。
According to the present twisting, the rupture rvt0 is the town Re regardless of the type fd of the arrangement 11 of the piping.

別の一実施例を第8を隠πより説明する。間隙3のl’
pff熱車対16を多収配置に゛「る。その間隔に、検
出破小U1.訪面積と計容時[…遅れから算出した低I
福カス又は蒸気の占める距陥工9f分少ざい櫃に設定す
る。熱w灼16の信号rユ第9図の回路によって処理さ
れる。各熱電対16の信号から比較器14rcよって舊
麓l碗度変・−を検知し、その1ごサタイマ17vcj
:つて示される搗度賀動挾出の時Ifi3差に、tL断
によって発生した低温ガス又ト電気の惑ば対16の取付
位置に到通した時間差を示している。演算器18f:、
工9、破も早く温度変化を示した熱電対16の取付位置
及び各熱ご対]6の11jI!III!lを温度震卯2
慄出時間差で除し、吐瀉ガス又は蒸気の発生速度を計W
する。最も早く温度変化を承した位置μ破断殆生湯所の
1頁近である。また低搗ガス又は電気の発生4度σ破曲
口の面積に比例Tることから、破断面積を仰ることかで
さる。こn−の清報をブラウン管19に表示し、4転八
に汲断伏況を通知する11 本実施?IIVCよれば、破#r侠出のみ、ならず、破
断発生−vj!si及び[断圓積を検知■ることが町i
口である。
Another embodiment will be explained from the eighth point of view. l' of gap 3
The pff heating wheel pair 16 is placed in a high yield arrangement.In the interval between them, the detected fracture U1.
Set up a box with a size smaller than 9 f, which is occupied by waste or steam. The heat signal 16 is processed by the circuit of FIG. A comparator 14rc detects a change in temperature from the signal of each thermocouple 16, and a timer 17vcj
: The difference in Ifi3 at the time of ejection of the power supply shown in 1 indicates the time difference in which the low-temperature gas or electricity generated by the tL disconnection reaches the installation position of the pair 16. Arithmetic unit 18f:,
9. Installation position of thermocouple 16 that broke and showed temperature change quickly and each thermocouple] 6-11jI! III! Temperature tremor 2
Divide by the difference in pumping time and calculate the rate of generation of discharged gas or steam.
do. The position where the temperature change was the earliest was near the first page of the μ-rupture. In addition, since the generation of gas or electricity is proportional to the area of the 4 degree σ fracture opening, the fracture area can be determined. 11 This report will be displayed on the cathode ray tube 19, and the 4th and 8th will be notified of the situation. According to IIVC, not only does break #r come out, but break occurs -vj! si and [detecting the discontinuous product■ is the town i
It is the mouth.

〔発明の効果〕〔Effect of the invention〕

本発明vc工fL、trf、、、高圧流体?通T配宵の
破断を周辺機器に起因「る圧力、旨の外乱VC影響され
ることなく伏出し、安全性を向上ざぜる効果がある。
Inventive VC engineering fL, trf, high pressure fluid? This has the effect of improving safety by exposing the rupture of the T-wire without being affected by external disturbances such as pressure and pressure caused by peripheral equipment.

第1図は本発明の一実施例による基杢憫成σ)説”ki
 FjXJ X第2図に理想A体の断熱膨張時の渦度實
イヒを示す線図、第3図は水のNセ本0搗度?示す〜図
1、J4図に一実施例の霧中1図、第5図に導電体の配
貢を示す祝明肉、第6図に抵抗埴変動検知のための回路
図、第7図α別の実厖汐11の説明図、第8し」α1に
別の実施例の説明図、第9図a熱箪、灼信号処理のため
の回路図で烏へ。
FIG. 1 shows the basic theory "ki" according to an embodiment of the present invention.
FjXJ Fig. 1, J4 is a diagram of one embodiment in the mist, Fig. 5 is a diagram showing the distribution of conductors, Fig. 6 is a circuit diagram for detecting resistance clay fluctuations, Fig. 7 is a separate diagram of α An explanatory diagram of the practical example 11, an explanatory diagram of another embodiment in No. 8, and an explanatory diagram of another embodiment in Fig. 9, a circuit diagram for processing the heating signal.

l・・・配管壁、2・・・断熱材、3・・・間隙、4・
・・温度センサ、6・・・茜掘晶圧水、8・・・スペー
サ、10・・・抵抗I[fwj横出構出11・・・規準
抵抗器、12−1.定取圧力P 躬皐図 某5霞 冶6図
l... Piping wall, 2... Insulating material, 3... Gap, 4...
...Temperature sensor, 6...Akanegori crystal pressure water, 8...Spacer, 10...Resistance I[fwj horizontal structure 11...Reference resistor, 12-1. Fixed pressure P

Claims (1)

【特許請求の範囲】[Claims] 1、高圧の流体を通す配管において、配管外壁面と保温
材の間に間隙を設け、破断時に漏洩する流体の熱膨張又
は減圧沸騰による間隙内温度低下を検知することを特徴
とする配管破断検出方法。
1. Pipe rupture detection, which is characterized by providing a gap between the outer wall surface of the pipe and a heat insulating material in a pipe that passes high-pressure fluid, and detecting a temperature drop in the gap due to thermal expansion or reduced pressure boiling of the fluid that leaks when the rupture occurs. Method.
JP9677986A 1986-04-28 1986-04-28 Method for detecting breakage of piping Pending JPS62254032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9677986A JPS62254032A (en) 1986-04-28 1986-04-28 Method for detecting breakage of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9677986A JPS62254032A (en) 1986-04-28 1986-04-28 Method for detecting breakage of piping

Publications (1)

Publication Number Publication Date
JPS62254032A true JPS62254032A (en) 1987-11-05

Family

ID=14174121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9677986A Pending JPS62254032A (en) 1986-04-28 1986-04-28 Method for detecting breakage of piping

Country Status (1)

Country Link
JP (1) JPS62254032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282130A (en) * 1988-09-20 1990-03-22 Hitachi Ltd Leak fluid processing structure for piping, and leak detector and its detecting method used for the structure
JP2011185926A (en) * 2010-03-05 2011-09-22 General Electric Co <Ge> Thermal measurement system and method for leak detection
JP2015031542A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Leakage detector and nuclear facility
JP2015031543A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Leakage detector and nuclear facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237388A (en) * 1975-09-17 1977-03-23 Chugoku Seiki Kk Double inclining mechanism for hanging movable decks for multi-purpose carrying boat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237388A (en) * 1975-09-17 1977-03-23 Chugoku Seiki Kk Double inclining mechanism for hanging movable decks for multi-purpose carrying boat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282130A (en) * 1988-09-20 1990-03-22 Hitachi Ltd Leak fluid processing structure for piping, and leak detector and its detecting method used for the structure
JP2011185926A (en) * 2010-03-05 2011-09-22 General Electric Co <Ge> Thermal measurement system and method for leak detection
JP2015031542A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Leakage detector and nuclear facility
JP2015031543A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Leakage detector and nuclear facility

Similar Documents

Publication Publication Date Title
Kakaç et al. Investigation of thermal instabilities in a forced convection upward boiling system
Zhang et al. Visualized investigation of gas–liquid stratified flow boiling of water in a natural circulation thermosyphon loop with horizontal arranged evaporator
JPS62254032A (en) Method for detecting breakage of piping
Schmalhofer et al. A study of circumferentially-heated and block-heated heat pipes—I. Experimental analysis and generalized analytical prediction of capillary limits
US3512412A (en) Liquid level indicating device
Paudel et al. Effect of inclination angle on pulsating heat pipe performance
Wang et al. Natural convection in a square enclosure with an internal isolated vertical plate
CN108428319B (en) A kind of passive temperature-sensing fire detecting and synchronous alarm system
Zhu et al. Experimental study on the pressure drop characteristics of steam-water two-phase flow at a low mass velocity in a four-head rifled tube
JPS63175738A (en) Leak detector
Reynolds Burnout in forced convection nucleate boiling of water
Hamouda et al. Transient two-phase blowdown: Experiments and analysis
Wang et al. Experimental study of condensation heat transfer promotion on a fluted tube with thin porous coatings
Abdul-Razzak et al. Rewetting of hot horizontal tubes
Yang et al. Experimental study of steam condensation heat transfer characteristics in a horizontal tube under rolling motion
Wang et al. Impact of rapid condensations of large vapor spaces on natural circulation in integral systems
Kockum et al. Boiling vertical two-phase flow at sub-atmospheric pressures
Burnside et al. Development of a steam generator and calorimeter for property measurement at advanced conditions
Tibiriçá et al. Critical Heat Flux of R134a and R245fa in a 2.2 mm Circular Tube
GB2308192A (en) Liquid-sensing apparatus
JPS5843301A (en) Steam generator
CN106128524B (en) Cooling system
Balunov et al. The Specifics of Design and Prediction of Thermohydraulic Characteristics of Thermosiphons
Kanzaka et al. Heat transfer characteristics of horizontal smooth tube in high pressure region
Kulkarni et al. EXPERIMENTAL INVESTIGATION TO ENHANCE HEAT TRANSFER IN LITHIUM TITANATE PACKED BED