JPS62253126A - Driving method for liquid crystal element - Google Patents

Driving method for liquid crystal element

Info

Publication number
JPS62253126A
JPS62253126A JP1322387A JP1322387A JPS62253126A JP S62253126 A JPS62253126 A JP S62253126A JP 1322387 A JP1322387 A JP 1322387A JP 1322387 A JP1322387 A JP 1322387A JP S62253126 A JPS62253126 A JP S62253126A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage pulse
voltage
waveform
selection period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1322387A
Other languages
Japanese (ja)
Inventor
Minoru Yazaki
矢崎 稔
Kazuo Aoki
和雄 青木
Takaaki Tanaka
孝昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JPS62253126A publication Critical patent/JPS62253126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate deterioration due to a DC component by making the width of a voltage pulse applied to liquid crystal invariably constant during a nonselection period and also setting the mean value of DC components of positive and negative voltages pulses to zero. CONSTITUTION:Scanning electrodes 23 and signal electrodes 24 are provided in a lattice shape on the opposite surfaces of a couple of substrates 21 and 22, and liquid crystal is oriented. The liquid crystal is ON in a selection period t10 and OFF in t20. In the selection periods, the 1st voltage pulses V2.t13 and (V2-V4).t24 larger than a saturation value are applied firstly. Then, the 2nd voltage pulse (V1-V4).t14 larger than the saturation value in one polarity direc tion in the ON state or (V1-V3).t24 less than the threshold value of the liquid crystal in the OFF state is applied. Further, the 3rd voltage pulses are applied in a selection period t15(t25). In nonselection periods t11 and t21, on the other hand, the ON or OFF waveform of a signal electrode waveform 202 in t10 or t20 is applied. Consequently, there is neither a contrast decrease nor a flicker as shown by optical response 204.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は液晶素子の駆動方法に関し、特に強誘電性液晶
の駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for driving a liquid crystal element, and particularly to a method for driving a ferroelectric liquid crystal.

[従来の技術] 従来強誘電性液晶の駆動方法としては、特願昭60−0
21499号、特開昭60−156046号に記載され
、それぞれ第7図、及び第8図の如き駆動波形であった
。特願昭60−021499号に呈示された駆動波形(
第7図)においては、走査W極(第7図中701)には
選択期間tlO及びt20に双安定性液晶を¥R1の安
定状態に配向させるための液晶の飽和値よりも絶対値の
大きな第1の電圧パルス(第7図中ML)及びこれと逆
極性で液晶を第2の安定状態に配向させるための飽和電
圧よりも絶対値の小さな第2の電圧パルス(第7図中V
2)を印加し、非選択期間tll及びt21は零ボルト
であり、一方信号電a(第7図中702)には、前記第
2の電圧パルスと合成した時第2の安定状態側の極性で
の液晶の飽和値以上にする事のできる第3の電圧パルス
(第7図中V3)又は同一極性側での液晶のしきい値以
下とするための前記第3の電圧パルスと逆極性で直流成
分の等しい第4の電圧パルス(ts7図中V4)を印加
し、かつ前記第1の電圧パルスに対応する期間内にそれ
ぞれ前記第3、!s4の電圧パルスと逆極性で、直流成
分が等しく、しかも前記第1の電圧パルスと合成した時
前記第1の電圧パルス極性側の液晶の飽和値以上となる
ような第5(第7図中V3)の電圧パルスを印加する駆
動方法である。この駆動方法は、非選択時に液晶には、
各画素の選択内容及び多量度に関係なく液晶のしきい値
以下で常に正負電圧パルスの直流成分の平均値が零とな
るように構成されており、また該電圧パルスは同一極性
方向に前記第2の電圧パルスのパルス幅の2倍よりも長
い期間連続して印加されない事を特徴としている。この
駆動方法は、液晶のしきい値が印加パルスのパルス幅で
異なる現象及び累積応答効果による液晶の選択内容変化
をある程度防止した事に特徴がある。さらに特開昭60
−156046号に記載されている駆動方法は、走査電
極上の画素に選択期間(第8図中t10)内のslの位
相で液晶を第1の安定状態に配向させる第1の電圧パル
スが印加され、第2の位相で前記画素のうち選択された
画素に液晶を第2の安定状態に配向させる第2の電圧パ
ルスが印加されて前記走査電極上の画素が選択され、さ
らにtlo内に第3の位相を有しており、非選択期間(
第8図中t 11)内には零を介して交番する電圧パル
スを印加する駆動方法である。この駆動方法は非選択期
間内に印加される電圧パルスが、零を介することによっ
て、同一極性方向に前記第1及び第2の電圧パルスのパ
ルス幅の2倍以上の長さで連続して印加されることのな
い事を特徴としている。
[Prior art] As a conventional method for driving a ferroelectric liquid crystal, there is
No. 21499 and Japanese Unexamined Patent Publication No. 156046/1983, the drive waveforms were as shown in FIGS. 7 and 8, respectively. The drive waveform presented in Japanese Patent Application No. 60-021499 (
In Fig. 7), the scanning W pole (701 in Fig. 7) has an absolute value larger than the saturation value of the liquid crystal in order to orient the bistable liquid crystal to a stable state of ¥R1 during the selection period tlO and t20. A first voltage pulse (ML in FIG. 7) and a second voltage pulse (V in FIG.
2) is applied, and the non-selection periods tll and t21 are zero volts, while the signal voltage a (702 in FIG. 7) has a polarity on the second stable state side when combined with the second voltage pulse. A third voltage pulse (V3 in Figure 7) that can raise the liquid crystal saturation value or higher at A fourth voltage pulse (V4 in the TS7 diagram) having the same DC component is applied, and the third, !, ! A fifth voltage pulse (in FIG. 7) which has a polarity opposite to that of the voltage pulse s4, has an equal DC component, and which, when combined with the first voltage pulse, exceeds the saturation value of the liquid crystal on the polarity side of the first voltage pulse. This is a driving method that applies a voltage pulse of V3). With this driving method, when the LCD is not selected,
The structure is such that the average value of the DC components of the positive and negative voltage pulses is always zero below the threshold of the liquid crystal, regardless of the selection content and quantity of each pixel, and the voltage pulses are arranged in the same polarity direction. The second voltage pulse is characterized in that it is not applied continuously for a period longer than twice the pulse width of the second voltage pulse. This driving method is characterized in that it prevents, to some extent, the phenomenon that the threshold value of the liquid crystal varies depending on the pulse width of the applied pulse and the change in the selection content of the liquid crystal due to the cumulative response effect. Furthermore, JP-A-60
In the driving method described in No. 156046, a first voltage pulse is applied to a pixel on a scanning electrode to orient the liquid crystal in a first stable state at a phase of sl within a selection period (t10 in FIG. 8). A second voltage pulse is applied to select one of the pixels in a second phase to orient the liquid crystal in a second stable state to select the pixel on the scan electrode, It has a phase of 3 and has a non-selection period (
In FIG. 8, t11) is a driving method in which alternating voltage pulses are applied through zero. In this driving method, the voltage pulses applied during the non-selection period are continuously applied in the same polarity direction with a length that is more than twice the pulse width of the first and second voltage pulses by passing through zero. It is characterized by something that will never happen.

[発明が解決しようとする問題点] しかし、従来の駆動方法では第7図及び第8図に示した
如く、各画素の選択内容によっては、非選択期間内に印
加される電圧パルスが同一極性方向に連続、あるいは零
を介して同一極性方向に印加される0強誘電性液晶は累
積して応答する事が知られており、見かけ上はぼ2倍の
長さの電圧パルスが印加された場合、前記パルス幅依存
性の影響で画素の選択内容によっては動作マージンが狭
くなり、光学特性、特にコントラスト低下、チラッキ等
を生じ易い、また第7図及び第8図中tlGに示される
如く、選択期間内において液晶に印加される波形は正及
び負の電圧パルスの直流成分が異なる。液晶素子では駆
動中に直流成分が印加されると電気化学反応により、素
子の劣化が促進され寿命低下をきたす事がよく知られて
いる。
[Problems to be Solved by the Invention] However, in the conventional driving method, as shown in FIGS. 7 and 8, depending on the selection content of each pixel, the voltage pulses applied during the non-selection period may have the same polarity. It is known that 0 ferroelectric liquid crystals that are applied continuously in the same polarity direction or in the same polarity direction through zero respond cumulatively, and a voltage pulse that is apparently about twice as long is applied. In this case, the operation margin becomes narrow depending on the pixel selection due to the influence of the pulse width dependence, and the optical characteristics, especially the contrast, are likely to deteriorate and flicker, etc. As shown by tlG in FIGS. 7 and 8, The waveforms applied to the liquid crystal during the selection period have different DC components of positive and negative voltage pulses. It is well known that when a direct current component is applied to a liquid crystal element during operation, deterioration of the element is accelerated due to an electrochemical reaction, resulting in a shortened lifespan.

本発明は上記問題点を解決するもので、その目的とする
ところは、液晶に印加される電圧パルス幅が非選択期間
においては選択内容によらず常に一定となり、又正負電
圧パルスの直流成分の平均値が零となるように構成する
ことによって、直流成分による液晶素子の劣化を防止し
、しかも選択・非選択期間に印加される電圧パルスも、
強誘電性液晶特有の印加電圧のパルス幅によるしきい個
物性の変化及び累積応答効果を充分に考慮した良好なマ
ルチプレキシング駆動方法を提供するところにある。
The present invention is intended to solve the above problems, and its purpose is to ensure that the voltage pulse width applied to the liquid crystal is always constant during the non-selection period, regardless of the selection content, and that the DC components of the positive and negative voltage pulses are By configuring the average value to be zero, deterioration of the liquid crystal element due to DC components can be prevented, and the voltage pulses applied during selection and non-selection periods can also be
The object of the present invention is to provide a good multiplexing driving method that fully takes into account the change in threshold physical properties due to the pulse width of the applied voltage and the cumulative response effect, which are unique to ferroelectric liquid crystals.

E問題点を解決するための手段] 本発明の液晶素子の駆動方法は、上記問題点を解決する
ために、走査電極を有する基板と信号電極を有する基板
の電極面を対向させた基板間に強訴電性液晶を挾持して
なる液晶素子の駆動方法に於いて、選択期間には、少な
くとも液晶分子の配列方向を一方の状態番とそろえるた
めの、液晶の飽和値以上の第1の電圧パルスを印加し、
次に第1の電圧パルスと逆極性で、もう一方の液晶の配
列方向にそろえるか否かを選択するための、液晶のしき
い電圧以下もしくは液晶の飽和値以上の第26一 の電圧パルスを印加し、次に液晶のしきい値電圧以下の
第3の電圧パルスを印加し、一方、非選択期間には零も
しくは液晶のしきい値より絶対値の小さな電圧パルスを
印加し、しかも該電圧パルスは小なくとも同一極性方向
に前記第2の電圧パルスのパルス幅以上の長さで連続ま
たは零を介して連続して印加されることのない車を特徴
とする。
Means for Solving Problem E] In order to solve the above problem, the method for driving a liquid crystal element of the present invention provides a method for driving a liquid crystal element between two substrates in which electrode surfaces of a substrate having a scanning electrode and a substrate having a signal electrode are opposed to each other. In a method for driving a liquid crystal element formed by sandwiching a strongly electrostatic liquid crystal, a first voltage pulse of at least the saturation value of the liquid crystal is applied during the selection period to align the alignment direction of the liquid crystal molecules with one state number. Apply
Next, a 26th voltage pulse with the opposite polarity to the first voltage pulse and below the threshold voltage of the liquid crystal or above the saturation value of the liquid crystal is applied to select whether or not to align in the alignment direction of the other liquid crystal. then apply a third voltage pulse below the threshold voltage of the liquid crystal, while applying a voltage pulse of zero or a smaller absolute value than the threshold voltage of the liquid crystal during the non-selection period; The pulses are characterized in that they are applied continuously or not continuously through zero in at least the same polarity direction and with a length longer than the pulse width of the second voltage pulse.

[実施例−1] WS1図は本発明の実施例における液晶素子の構成を示
した一例の略図であり、第1図(a)は断面図、第1図
(b)は平面図である。ガラス又はプラスチックから構
成される一対の基板21.22の対向面に、酸化インジ
ウム、酸化スズからなる透明電極23.24を設ける。
[Example-1] Figure WS1 is a schematic view of an example of the configuration of a liquid crystal element in an example of the present invention, with Figure 1(a) being a cross-sectional view and Figure 1(b) being a plan view. Transparent electrodes 23 and 24 made of indium oxide and tin oxide are provided on opposing surfaces of a pair of substrates 21 and 22 made of glass or plastic.

この電極はそれぞれがストライプ状に形成され、はぼ直
交され、格子状に組合せられる。ここで、23.24は
それぞれ走査電極、信号電極である。更に必要に応じこ
の電極上に5io2等の絶縁層を設けた後、液晶を配向
させるためにsio等の斜方蒸着膜又はポリイミド、ナ
イロン、ポリエチレン等からなる配向膜25を設け、ラ
ビングして液晶26を配向させる。又、上下基板21.
22の電極23.24が設けられていない面に、変更板
27.28を互いに直交となるように設置し、一方の偏
光板の偏光軸と、強誘電性液晶の飽和電界以上の電界を
印加した時の液晶分子の長袖方向とを一致させた。
These electrodes are each formed in a stripe shape, the electrodes are crossed at right angles, and are combined in a lattice shape. Here, 23 and 24 are a scanning electrode and a signal electrode, respectively. Furthermore, after providing an insulating layer such as 5io2 on this electrode as necessary, an obliquely deposited film such as SIO or an alignment film 25 made of polyimide, nylon, polyethylene, etc. is provided to orient the liquid crystal, and the liquid crystal is then rubbed. 26. Also, the upper and lower substrates 21.
The change plates 27 and 28 are installed on the surface where the electrodes 23 and 24 of 22 are not provided so as to be perpendicular to each other, and an electric field that is equal to or higher than the polarization axis of one polarizing plate and the saturation electric field of the ferroelectric liquid crystal is applied. The long sleeve direction of the liquid crystal molecules when

第2図に本発明実施例−1の駆動波形及び光学応答を示
す。第1図に示した素子を使用し、素子キャップ厚は1
3gm、ン夜晶は である。尚、この素子のしきい特性は、パルス幅200
 pLsecのとき、しきい電圧が6.5v、飽和電圧
が8Vである。この値は、電圧極性を変えても、はぼ同
じ値を示した。
FIG. 2 shows the driving waveform and optical response of Example-1 of the present invention. The device shown in Figure 1 is used, and the device cap thickness is 1
3gm, nya crystal is. The threshold characteristic of this element is a pulse width of 200
At pLsec, the threshold voltage is 6.5V and the saturation voltage is 8V. This value remained almost the same even if the voltage polarity was changed.

第2図201は走査電極波形、202は信号電極波形、
203は液晶素子に印加される波形であり、204は液
晶素子の光学応答である。液晶には選択期間tlo、t
20において、tlOはON(仮に四状a)、、t2o
はOFF (仮に暗状態)が選択されている。選択期間
では、まず液晶の配列方向を一方向に揃えるための飽和
値以上のfslの電圧バjLzス(7)V2 ・t 1
3及び(V2−V4 )  It23が印加される。O
NとOFFでは第1の電圧パルスの波高値は異なってい
るが、いずれも飽和値以上のため、光学応答に影響はな
い、つぎにf32の電圧パルスはON時にはもう一方の
極性方向の飽和値以上(7) (Vj−V4 )  ・
t 14が、0FF(7)場合液晶のしきい値以下の(
Vl −V3 )  ・t24が印加される。更に選択
期間内t 15 (t 25)には、第3の電圧パルス
が印加されている。本実施例の場合この!83の電圧パ
ルスは、選択期間tlO1t20と非選択期間tll、
t21の最初(次の走査電極上の信号波形)で同一極性
パルスが連続又は零を介して連続に印加されることを防
止するためである。
201 is a scanning electrode waveform, 202 is a signal electrode waveform,
203 is a waveform applied to the liquid crystal element, and 204 is an optical response of the liquid crystal element. The selection period tlo, t is displayed on the LCD.
20, tlO is ON (temporarily four-state a), t2o
OFF (temporarily dark state) is selected. In the selection period, first, the fsl voltage bus jLz (7) V2 ・t 1 is equal to or higher than the saturation value in order to align the alignment direction of the liquid crystal in one direction.
3 and (V2-V4)It23 are applied. O
The peak value of the first voltage pulse is different between N and OFF, but since both are above the saturation value, there is no effect on the optical response.Next, when the f32 voltage pulse is ON, the peak value of the first voltage pulse is the saturation value of the other polarity direction. Above (7) (Vj-V4) ・
When t14 is 0FF (7), the threshold value of the liquid crystal (
Vl - V3 ) t24 is applied. Furthermore, a third voltage pulse is applied at t 15 (t 25) within the selection period. In this example, this! The voltage pulse 83 has a selection period tlO1t20, a non-selection period tll,
This is to prevent pulses of the same polarity from being applied continuously or continuously through zero at the beginning of t21 (signal waveform on the next scanning electrode).

一方弁選択期間tll、t21では、信号電極波形20
2のtlo、t20内のON又はOFF波形が液晶素子
の画素内容により、印加されることとなるが第2図中2
03の如く、同一極性の電圧パルスが9一 連続又は零を介して連続に印加されることがない。
On the other hand, in the valve selection period tll, t21, the signal electrode waveform 20
The ON or OFF waveforms in tlo and t20 of 2 will be applied depending on the pixel content of the liquid crystal element, but 2 in Fig. 2
As in 03, voltage pulses of the same polarity are not applied continuously through 9 or 0.

従って本実施例においては第2図中204に示された如
く、コントラスト低下及びチラッキ□もほとんどなく、
良好な光学応答が得られた。この時ON、OFFのコン
トラスト比は25:1で、異なる画素間でのコントラス
ト比は表示内容によらずほぼ一定であった。
Therefore, in this example, as shown at 204 in FIG. 2, there is almost no contrast reduction and flicker □.
A good optical response was obtained. At this time, the contrast ratio between ON and OFF was 25:1, and the contrast ratio between different pixels was almost constant regardless of the display content.

[実施例−2] 第3図は本発明第2の実施例である駆動波形及び光学応
答を示す図である。第3図301は走査電極波形、30
2は信号電極波形、303は液晶素子に印加される波形
であり、304は液晶素子の光学応答である。実施例−
1の駆動波形と異なるところは、選択期間tlO内に出
る直流成分を非選択期間tll内で除去することであり
、本実施例においては、次の選択期間の直前のt17の
期間にv5 ・t17として印加され、直流成分が除去
される。即ち、lV2  l ・t13−IVI  l
 ・t14= lV5  l・t17である。本実施例
においても第3図303に示す如く液晶素子には、選択
、非選択期間を通じて、第2の電圧パルスのパルス幅で
同一極性方向の電圧パルスが連続又は零を介して連続に
印加されず、第3図304に示された如く、コントラス
ト低下及びチラッキもほとんどなく良好な光学応答が長
期間にわたり得られた。
[Example 2] FIG. 3 is a diagram showing a drive waveform and optical response according to a second example of the present invention. FIG. 3 301 is a scanning electrode waveform, 30
2 is a signal electrode waveform, 303 is a waveform applied to the liquid crystal element, and 304 is an optical response of the liquid crystal element. Example-
The difference from the driving waveform of No. 1 is that the DC component that appears during the selection period tlO is removed during the non-selection period tll. The DC component is removed. That is, lV2 l ·t13-IVI l
・t14=lV5l・t17. In this embodiment as well, as shown in FIG. 3 303, voltage pulses in the same polarity direction with the pulse width of the second voltage pulse are continuously applied to the liquid crystal element throughout the selection and non-selection periods, or continuously through zero. First, as shown in FIG. 3 304, a good optical response was obtained for a long period of time with almost no decrease in contrast or flickering.

[実施例−3] 第4図に実施例−3における駆動波形及び光学応答を示
す。
[Example 3] FIG. 4 shows the drive waveform and optical response in Example 3.

尚、液晶素子のセル厚はおよそ1.5〜2gmであり、
液晶はチッソ社製C81015である。
Note that the cell thickness of the liquid crystal element is approximately 1.5 to 2 gm,
The liquid crystal is C81015 manufactured by Chisso Corporation.

第4図は本発明部3の実施例である駆動波及び光学応答
を示す図である。第4図401は走査電極波形、402
は信号電極波形、403は液晶素子に印加される波形で
あり、404は液晶素子の光学応答である。液晶には選
択期間tlG、t20において、tloはON(仮に明
状態)、t20は0FF(仮に暗状態)が選択されてい
る。選択期間では、まず液晶の配列方向を一方向に揃え
るための飽和値以上の第1の電圧パルスの(V2−V3
 )・t13及び(V2−V4 )−t23が印加され
る。
FIG. 4 is a diagram showing a driving wave and an optical response according to an embodiment of the present invention part 3. FIG. 4 401 is a scanning electrode waveform, 402
is a signal electrode waveform, 403 is a waveform applied to the liquid crystal element, and 404 is an optical response of the liquid crystal element. For the liquid crystal, during selection periods tlG and t20, tlo is selected to be ON (temporarily in a bright state), and t20 is set to 0FF (temporarily in a dark state). In the selection period, the first voltage pulse (V2-V3
)·t13 and (V2-V4)-t23 are applied.

ONとOFFでは第1の電圧パルスの波高値は異なって
いるが、いずれも飽和値以上のため、光学応答にほとん
ど差は生じない、つぎに第2の電圧パルスはON時には
もう一方の極性方向の飽和値以上の(Vl −V4 )
・t14が、0FF(7)場合液晶のしきい値以下の(
Vl −V3 )  ・t24が印加される。更に選択
期間内t 15 (t 25)には、第3の電圧パルス
が印加されている0本実施例の場合この第3の電圧パル
スは1選択期間tlo、t20と非選択期間tll、t
21の最初(次の走査電極上の信号波形)で同一極性パ
ルスが連続又は零を介して連続に印加されることを防止
するためであり、t 14 (t 24)よりパルス幅
の短かい交流パルスである。一方弁選択期間tll、t
21では、信号電極波形402の110、t20内のO
N、又はOFF波形が液晶素子の画素内容により、印加
されることとなるが第2図中403の如く、同一極性の
電圧パルスが連続又は零を介して連続に印加されること
がない。従って本実施例においては第2図中404に示
された如く、コントラスト低下及びチラッキもほとんど
なく良好な光学応答が得られた。
The peak value of the first voltage pulse is different between ON and OFF, but since both are above the saturation value, there is almost no difference in optical response.Next, the second voltage pulse is in the other polar direction when ON. (Vl - V4) greater than the saturation value of
・If t14 is 0FF (7), the threshold value of the liquid crystal (
Vl - V3 ) t24 is applied. Furthermore, a third voltage pulse is applied at t 15 (t 25) within the selection period.
This is to prevent pulses of the same polarity from being applied continuously or continuously through zero at the beginning of t 14 (signal waveform on the next scanning electrode), and an alternating current with a pulse width shorter than t 14 (t 24). It's a pulse. One-way valve selection period tll, t
21, 110 of the signal electrode waveform 402, O in t20
Although the N or OFF waveform is applied depending on the pixel content of the liquid crystal element, as shown in 403 in FIG. 2, voltage pulses of the same polarity are not applied continuously or continuously through zero. Therefore, in this example, as shown at 404 in FIG. 2, a good optical response was obtained with almost no decrease in contrast or flickering.

[実施例−4] 第5図は本発明部4の実施例である駆動波形及び光学応
答を示す図である。第5図501は走査電極波形、50
2は信号電極波形、503は液晶素子に印加される波形
であり、504は液晶素子の光学応答である。実施例−
3の駆動波形と異なるところは、選択期間tlo内に出
る直流成分を比選択期間tll内で除去することであり
、本実施例においては、次の選択期間の直前のt17の
期間にv2 ・t17として印加され、直流成分が除去
される。即ち、IV2 1 ・t13−IVI  1−
t14=lv51.・t17である。本実施例において
もts5図503に示す如く液晶素子には、選択、非選
択期間を通じて、第2の電圧パルスのパルス幅で同一極
性方向の電圧パルスが連続又は零を介して連続に印加さ
れず、第5図504に示された如く、コントラスト低下
及びチラッキもほとんどなく良好な光学応答が長期間に
わたり得られた。
[Example 4] FIG. 5 is a diagram showing a driving waveform and optical response as an example of the present invention section 4. FIG. 5 501 is a scanning electrode waveform, 50
2 is a signal electrode waveform, 503 is a waveform applied to the liquid crystal element, and 504 is an optical response of the liquid crystal element. Example-
The difference from the drive waveform of No. 3 is that the DC component appearing within the selection period tlo is removed within the ratio selection period tll. The DC component is removed. That is, IV2 1 ・t13−IVI 1−
t14=lv51.・It is t17. In this embodiment as well, as shown in the TS5 diagram 503, voltage pulses in the same polarity direction with the pulse width of the second voltage pulse are not applied continuously or continuously through zero throughout the selection and non-selection periods. As shown in FIG. 5 504, a good optical response was obtained for a long period of time with almost no decrease in contrast or flickering.

[実施例−5] 第6図は本発明ls5の実施例である駆動波形及び光学
応答を示す図である。第6図601は走査電極波形、6
02は信号電極波形、603は液晶素子に印加される波
形であり、604は液晶素子の光学応答である。第3の
実施例の駆動波形と異なるところは、信号電極波形60
2に於いて、ON又はOFFを選択するための、走査電
極波形601と合成した時第2の電圧パルスに相当する
電圧パルスv4 ・t14(V3 ・t24)と、これ
と極性が逆で波高値とパルス幅の等しい電圧パルスV3
・t15(V4 ・t23)以外の期間に第2の電圧パ
ルスより短かいパルス幅の交流パルスを印加し。
[Example-5] FIG. 6 is a diagram showing a driving waveform and optical response as an example of ls5 of the present invention. FIG. 6 601 is a scanning electrode waveform, 6
02 is a signal electrode waveform, 603 is a waveform applied to the liquid crystal element, and 604 is an optical response of the liquid crystal element. The difference from the drive waveform of the third embodiment is that the signal electrode waveform 60
2, a voltage pulse v4 ・t14 (V3 ・t24) corresponding to the second voltage pulse when combined with the scanning electrode waveform 601 for selecting ON or OFF, and a voltage pulse v4 ・t14 (V3 ・t24) whose polarity is opposite to this and the peak value voltage pulse V3 with the same pulse width as
- Apply an AC pulse with a pulse width shorter than the second voltage pulse during a period other than t15 (V4/t23).

しかもON、OFF電圧パルスが同一極性から印加され
て同一極性で終了する交流パルスとすることであり、そ
れらにより、第6図中603に示した合成波形の如く、
画素の選択内容に関係なく、第2の電圧パルスのパルス
幅で同一極性方向の電圧パルスが連続又は零を介して連
続に印加されない0本実施例の場合信号電極波形の第2
の電圧パルスより短かいパルスとして半分のパルス幅の
交流波形としたが、この場合選択期間t20内において
は第2の電圧パルスの1.5倍の長さで印加されること
になる。又液晶のしきい個物性によってはより高周波の
電圧パルスと、この時の光学特性を第6図604に示し
たが、OFF選択時のコントラスト低下及びチラッキも
ほとんどなく良好であった。
Moreover, the ON and OFF voltage pulses are applied from the same polarity and are made into AC pulses that end with the same polarity, so that, as shown in the composite waveform shown at 603 in FIG. 6,
Regardless of the pixel selection content, in this embodiment, the second voltage pulse of the signal electrode waveform is
An alternating current waveform with half the pulse width is used as a pulse shorter than the voltage pulse of , but in this case, the length of the second voltage pulse is 1.5 times longer than the second voltage pulse. Further, depending on the threshold individual properties of the liquid crystal, a higher frequency voltage pulse was applied, and the optical characteristics at this time are shown in FIG. 6 604, and the contrast was good with almost no decrease in contrast or flickering when OFF was selected.

[考案の効果] 以上の如く本発明駆動方法によれば、少なくとも非選択
期間内に液晶素子のON・OFFを選択する電圧パルス
の長さで同一極性方向に続けて印加されることがないた
め、よりパルス幅依存性に対して効果があり、液晶素子
のコントラスト低下及びチラッキ等が低減できるもので
ある。しかも液晶素子に印加される直流成分の平均値を
零にするこが可能なため、直流成分による素子劣化を防
止でき、安定な液晶素子が実現でき、各種表示装置、電
子シャッター、偏光器等への応用が可能である。
[Effect of the invention] As described above, according to the driving method of the present invention, voltage pulses of the length for selecting ON/OFF of the liquid crystal element are not continuously applied in the same polarity direction at least during the non-selection period. , which is more effective against pulse width dependence and can reduce contrast deterioration and flickering of the liquid crystal element. Moreover, since it is possible to reduce the average value of the DC component applied to the liquid crystal element to zero, element deterioration due to the DC component can be prevented and stable liquid crystal elements can be realized, which can be used in various display devices, electronic shutters, polarizers, etc. can be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における液晶素子の構成を示し
た一例の略図であり、第1図(a)は断面図、第1図(
b)は平面図である。及び光学地温2図は、本発明の第
1の駆動波形及び光学応答を示す図である。の第2の実
施例の駆動波形及!s3図は、本発明の第2の実施例の
駆動波形及び光学応答を示す図である。 第4図は本発明の第3の実施例の駆動波形及び光学応答
を示す図である。 第5図は本発明の第4の実施例の駆動波形及び光学応答
を示す図である。 !s6図は本発明の第5の実施例の駆動波形及び光学応
答を示す図である。 第7図は従来の駆動波形を示す図である。 第8図は従来の駆動波形を示す図である。 21・・・・・・下基板   22・・・・・・上基板
23・・・・・・走査電極  24・・・・・・信号電
極25・・・・・・配向膜   26・・・・・・液晶
27.28・・・・・・偏光板  29・・・・・・シ
ール材201、 301. 401. 501. 60
1゜701.801・・・・・・走査電極波形202、
 302. 402. 502. 602゜702.8
02・・・・・・信号電極波形203、 303. 4
03. 503. 603゜703.803・・・・・
・合成波形 204、 304. 404. 504. 604゜・
・・・・・液晶素子の光学応答 以     上 第1 UA(α) 第1図(b) ℃ 第4図 り 第一5図
FIG. 1 is a schematic diagram showing an example of the configuration of a liquid crystal element in an embodiment of the present invention, FIG. 1(a) is a cross-sectional view, and FIG.
b) is a plan view. and Optical soil temperature diagram 2 are diagrams showing the first drive waveform and optical response of the present invention. The drive waveform of the second embodiment and! Figure s3 is a diagram showing the drive waveform and optical response of the second embodiment of the present invention. FIG. 4 is a diagram showing the drive waveform and optical response of the third embodiment of the present invention. FIG. 5 is a diagram showing the driving waveform and optical response of the fourth embodiment of the present invention. ! Figure s6 is a diagram showing the drive waveform and optical response of the fifth embodiment of the present invention. FIG. 7 is a diagram showing conventional drive waveforms. FIG. 8 is a diagram showing conventional drive waveforms. 21...Lower substrate 22...Upper substrate 23...Scanning electrode 24...Signal electrode 25...Alignment film 26... ...Liquid crystal 27.28...Polarizing plate 29...Sealing material 201, 301. 401. 501. 60
1°701.801...Scanning electrode waveform 202,
302. 402. 502. 602°702.8
02... Signal electrode waveform 203, 303. 4
03. 503. 603°703.803...
- Composite waveform 204, 304. 404. 504. 604°・
...Optical response of liquid crystal element Above 1st UA (α) Fig. 1(b) °C 4th diagram Fig. 15

Claims (2)

【特許請求の範囲】[Claims] (1)走査電極を有する基板と信号電極を有する基板の
電極面を対向させた基板間に、強誘電性液晶を挾持して
なる液晶素子の駆動方法に於いて、選択期間には少なく
とも液晶分子の配列方向を一方の状態にそろえるための
、液晶の飽和値以上の第一の電圧パルスを印加し、次に
第1の電圧パルスを逆極性で、もう一方の液晶の配列方
向にそろえるか否かを選択するための、液晶のしきい値
電圧以下もしくは液晶の飽和値以上の第2の電圧パルス
を印加し、次に液晶のしきい値電圧以下の第3の電圧パ
ルスを印加し、一方、非選択期間には、零もしくは、液
晶のしきい値より絶対値の小さな電圧パルスを印加し、
しかも該電圧パルスは少なくとも同一極性方向に前記第
2の電圧パルスのパルス幅以上の長さで連続または零を
介して連続して印加されることのない事を特徴とする液
晶素子の駆動方法。
(1) In a method of driving a liquid crystal element in which a ferroelectric liquid crystal is sandwiched between substrates with electrode surfaces of a substrate having a scanning electrode and a substrate having a signal electrode facing each other, at least liquid crystal molecules are generated during a selection period. Apply a first voltage pulse higher than the saturation value of the liquid crystal to align the alignment direction of the liquid crystal in one state, and then apply the first voltage pulse with the opposite polarity to align the alignment direction of the other liquid crystal or not. A second voltage pulse below the threshold voltage of the liquid crystal or above the saturation value of the liquid crystal is applied, and then a third voltage pulse below the threshold voltage of the liquid crystal is applied, while , during the non-selection period, apply a voltage pulse of zero or a voltage pulse with an absolute value smaller than the threshold of the liquid crystal,
Furthermore, the method for driving a liquid crystal element is characterized in that the voltage pulse is not applied continuously or continuously through zero in at least the same polarity direction with a length longer than the pulse width of the second voltage pulse.
(2)上記液晶素子の駆動方法に於いて、非選択期間内
に前記選択期間内の直流成分をなくす極性方向に、前記
第1の電圧パルスと第2の電圧パルスの絶対値の差に等
しい電圧パルスを印加することを特徴とする特許請求の
範囲第1項記載の液晶素子の駆動方法。
(2) In the method for driving the liquid crystal element, the voltage pulse is equal to the difference in absolute value between the first voltage pulse and the second voltage pulse in the polarity direction that eliminates the DC component within the selection period within the non-selection period. A method for driving a liquid crystal element according to claim 1, characterized in that a voltage pulse is applied.
JP1322387A 1986-01-23 1987-01-22 Driving method for liquid crystal element Pending JPS62253126A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1282786 1986-01-23
JP61-12827 1986-01-23

Publications (1)

Publication Number Publication Date
JPS62253126A true JPS62253126A (en) 1987-11-04

Family

ID=11816211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322387A Pending JPS62253126A (en) 1986-01-23 1987-01-22 Driving method for liquid crystal element

Country Status (1)

Country Link
JP (1) JPS62253126A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180528A (en) * 1988-01-13 1989-07-18 Seiko Epson Corp Driving method for liquid crystal element
JPH01298319A (en) * 1988-05-27 1989-12-01 Sony Corp Method of driving liquid crystal
JPH0223315A (en) * 1988-07-12 1990-01-25 Seiko Epson Corp Driving method for liquid crystal element
JPH08262385A (en) * 1994-09-30 1996-10-11 Toshiba Corp Method and device for evaluating liquid crystal element
US6567063B1 (en) 1998-04-10 2003-05-20 Hunet, Inc. High-speed driving method of a liquid crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180528A (en) * 1988-01-13 1989-07-18 Seiko Epson Corp Driving method for liquid crystal element
JPH01298319A (en) * 1988-05-27 1989-12-01 Sony Corp Method of driving liquid crystal
JPH0223315A (en) * 1988-07-12 1990-01-25 Seiko Epson Corp Driving method for liquid crystal element
JPH08262385A (en) * 1994-09-30 1996-10-11 Toshiba Corp Method and device for evaluating liquid crystal element
US6567063B1 (en) 1998-04-10 2003-05-20 Hunet, Inc. High-speed driving method of a liquid crystal

Similar Documents

Publication Publication Date Title
US5631752A (en) Antiferroelectric liquid crystal display element exhibiting a precursor tilt phenomenon
KR100352717B1 (en) Liquid crystal display device
JP3603904B2 (en) Driving method and apparatus for antiferroelectric liquid crystal display element
EP0691639B1 (en) Apparatus and method for driving a ferroelectric liquid crystal panel
JP4163678B2 (en) Driving method of liquid crystal display device
JPS62253126A (en) Driving method for liquid crystal element
EP0588019A2 (en) Active matrix liquid crystal display
JP2650286B2 (en) Driving method of liquid crystal element
JPS628130A (en) Driving method for liquid crystal electrooptic device
JPH0291614A (en) Driving method for liquid crystal element
JPS60263124A (en) Driving method of liquid-crystal element
JPH0921997A (en) Liquid crystal display device
JPS61165734A (en) Driving method for liquid crystal element
JP2843861B2 (en) Driving method of liquid crystal electro-optical device
JPH02125226A (en) Method for driving liquid crystal element
JPS63247730A (en) Method for driving liquid crystal element
JP2651842B2 (en) Liquid crystal element
JPS61180219A (en) Driving method of liquid-crystal element
JPS63293530A (en) Method for driving liquid crystal element
KR940007504B1 (en) Driving method for ferro electric lcd particle
JPH02193116A (en) Driving method for liquid crystal element
JPH02120722A (en) Driving method for liquid crystal element
JPS6348529A (en) Driving method for liquid crystal
JPS63293529A (en) Method for driving liquid crystal element
JPS62278539A (en) Ferroelectric liquid crystal electrooptical device