JPS622526B2 - - Google Patents

Info

Publication number
JPS622526B2
JPS622526B2 JP56065219A JP6521981A JPS622526B2 JP S622526 B2 JPS622526 B2 JP S622526B2 JP 56065219 A JP56065219 A JP 56065219A JP 6521981 A JP6521981 A JP 6521981A JP S622526 B2 JPS622526 B2 JP S622526B2
Authority
JP
Japan
Prior art keywords
temperature
heat flow
thermopile
flow density
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56065219A
Other languages
Japanese (ja)
Other versions
JPS57183832A (en
Inventor
Tatsuo Togawa
Tetsu Nemoto
Tosho Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56065219A priority Critical patent/JPS57183832A/en
Publication of JPS57183832A publication Critical patent/JPS57183832A/en
Publication of JPS622526B2 publication Critical patent/JPS622526B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (1) 技術分野 この発明は、皮膚表面からの熱の放散を測定す
ることにより血液循環不全が予想される病気の監
視や手掌・足趾等の血流量の推定を行なうのに使
用される生体表面の熱流密度測定装置に関する。
[Detailed Description of the Invention] (1) Technical Field The present invention is capable of monitoring diseases where blood circulation failure is expected and estimating blood flow in the palms, toes, etc. by measuring heat dissipation from the skin surface. The present invention relates to a heat flow density measuring device on the surface of a living body, which is used to measure the heat flow density on the surface of a living body.

(2) 背景技術 心臓病をはじめとして血液循環不全を伴う病気
において重体に陥いるときは、その前兆として心
臓に遠い手や足への血流量が初めに少なくなり、
手が足が生体の他の部位よりも先に冷たくなる。
したがつて、患部あるいは手や足の皮膚表面から
の熱流を経時的に測定すれば血液循環不全が予想
される病人の血流量の状態、特に重体に陥いる前
兆時を監視でき、もつて医師は重体に陥いる前段
階に適切な処置を施すことにより重体に陥いらな
いように防止することができる。しかして、皮膚
表面からの熱の放散を測定できる生体表面の熱流
密度測定装置の提供が要望される。また、生体表
面の熱流密度測定装置は生体の各部位の血流量の
推定を行なう上で深部温度測定装置とともに必要
な測定器である。けだし、生体の局所の温度は平
衡状態においては血流による熱の流入および流
出、皮膚からの熱放散、組織の熱産生によつて決
まり、体内で産生された熱は伝導および血流によ
つて皮膚に運ばれ、皮膚表面から伝導・対流・輻
射および蒸散によつて生体外に放散されるので、
皮膚血流が全身の体温調節に重要な関与をしてい
ることが明らかであり、したがつて生体の血流量
の推定には生体の深部温度測定とともに皮膚表面
から放散する熱流密度の測定が必要となるからで
ある。
(2) Background technology When a person falls into a critical condition due to a disease that involves poor blood circulation, such as heart disease, the first sign of this is that the amount of blood flowing to the hands and feet, which are far from the heart, decreases.
The hands and feet become cold before the rest of the body.
Therefore, by measuring the heat flow from the skin surface of the affected area or hands and feet over time, it is possible to monitor the state of blood flow in patients who are expected to suffer from poor blood circulation, especially in the early stages of becoming seriously ill. can be prevented from becoming a serious condition by taking appropriate measures before the condition becomes serious. Therefore, it is desired to provide a heat flow density measuring device on the surface of a living body that can measure heat dissipation from the skin surface. In addition, a heat flow density measuring device on the surface of a living body is a necessary measuring device along with a deep temperature measuring device to estimate the blood flow rate in each part of the living body. However, in an equilibrium state, the local temperature of an organism is determined by heat inflow and outflow through blood flow, heat dissipation from the skin, and tissue heat production; heat generated within the body is determined by conduction and blood flow. It is carried to the skin and dissipated outside the body through conduction, convection, radiation, and transpiration from the skin surface.
It is clear that skin blood flow plays an important role in regulating body temperature, and therefore, in order to estimate blood flow in a living body, it is necessary to measure the body's deep temperature as well as the heat flow density dissipated from the skin surface. This is because.

なお、人体における深部体温計と熱流計を用い
た組織血流量の推定の可能性については、本願発
明者らと神谷瞭、田中正敏、川上憲司の各氏との
共同研究による成果として「体肢組織内温度を用
いた血流量の推定」と題する論文を医学研究雑
誌;医器材研報Vol.13、P27〜P37(1979年発
刊)において掲載している。
Regarding the possibility of estimating tissue blood flow in the human body using a core thermometer and a heat flow meter, the results of joint research between the present inventors and Messrs. Akira Kamiya, Masatoshi Tanaka, and Kenji Kawakami are as follows: A paper entitled "Estimation of Blood Flow Using Temperature" was published in a medical research journal; Medical Equipment Research Report Vol. 13, P27-P37 (published in 1979).

しかるに、従来より提供されてきた生体表面の
熱流密度測定装置は、第1図,に示すような
もので、その構成を説明すると、サーモパイルす
なわち薄板状の熱抵抗体1aの表裏の温度差に応
じて電圧を生じるよう熱電対1bを上記熱抵抗体
内に差動型に結線してその表裏を被覆材1c,1
cでカードして成る熱流センサ1(以下、単にサ
ーモパイルという。)と、このサーモパイル1で
生じる電圧から所定量の熱流に演算して表示する
演算表示器2から成つていた。上述のような構成
の生体表面の熱流密度測定装置は該装置を皮膚表
面に密着させるので熱がこもり皮膚表面から放散
する熱流に偏向を来たして真正値よりも低い熱流
密度を測定している欠点を有している。
However, the conventional heat flow density measuring device on the surface of a living body is as shown in FIG. A thermocouple 1b is differentially wired inside the thermal resistor so as to generate a voltage, and its front and back surfaces are covered with coating materials 1c, 1.
It consisted of a heat flow sensor 1 (hereinafter simply referred to as a thermopile) consisting of a heat flow sensor 1 (hereinafter referred to simply as a thermopile), and a calculation display 2 that calculated and displayed a predetermined amount of heat flow from the voltage generated in the thermopile 1. The device for measuring heat flow density on the surface of a living body configured as described above has the disadvantage that because the device is placed in close contact with the skin surface, heat is trapped and the heat flow dissipated from the skin surface is deflected, resulting in a lower heat flow density than the true value. have.

以下、上記欠点がなぜ存するかについてその理
論を説明すると、第2図,,はそれぞれ生
体内から生体表面Aへの熱の移動(伝導)および
生体表面Aからの熱の放散の状態を示す概念図で
あり、第3図,,は生体内の熱伝導および
生体表面からの放散の温度勾配を示した概念図で
ある。第2図および第3図は生体表面を何も
覆つていない場合であつて、熱流密度は測定した
い真正値であり生体表面の垂直方向に均等な熱流
となり、また温度勾配は生体の深部温度t1がおよ
そ36℃〜38℃、生体表面Aの温度t2がおよそ34℃
であり、生体表面Aより僅かに離れるだけで大気
温度taまで急激に下降する。第2図は生体表
面Aに熱抵抗体Bを当てがい、かつこの熱抵抗体
Bが温まらない状態であり、また第2図は熱抵
抗体Bが温まつた状態であり、第3図は熱抵抗
体Bが温まつた平衡状態である。今、生体表面A
に当てがつた熱抵抗体Bが温まらない段階では熱
抵抗体Bにより生前表面Aが冷却されることにな
り、熱流は深部温度t1に対して温度差の大きい熱
抵抗体Bに集中し、熱抵抗体Bに伝導する熱は温
度上昇のために吸収され、熱抵抗体Bを通流する
熱流密度は第2図に示す真正値の熱流密度より
も大きくなる。そして、熱抵抗体Bが徐々に温ま
つてくるにつれて熱流の集中は弱くなり、熱流密
度は真正値に近づいていく。生体表面Aの熱抵抗
体Bを当がつている部位の温度が熱抵抗体Bを当
てがう前の温度にまで回復すると、その時点では
熱抵抗体Bを通流する熱流密度が熱抵抗体Bで覆
われていない生体表面Aの対流・輻射による真正
値の熱流密度と等しくなり、生体の熱の放散は熱
抵抗体Bを当てがつてある部位も当てがつてない
部位も第2図と同様の均等な熱流となる。さら
に、第3図に示すように生体表面Aの温度t2
熱抵抗体Bを当てがつていることで当てがつてい
なかつたときの温度、すなわち真正な皮膚温度以
上に上昇して深部温度に近い点t2′まで上昇して
いくと、第2図に示すように熱流はかなりの量
が熱抵抗体Bを寄けて温度差の大きいその周辺に
多く集中する。このため、熱抵抗体Bの熱流密度
は真正値よりも低くなる。以上のような理由から
第1図,に示す従来の熱流密度測定装置は真
正値の熱流密度を測定できない欠点を有してい
る。
The theory behind why the above-mentioned drawbacks exist is explained below. Figure 2 and 2 are concepts showing the state of heat transfer (conduction) from inside the living body to the living body surface A and the state of heat dissipation from the living body surface A, respectively. FIG. 3 is a conceptual diagram showing the temperature gradient of heat conduction within a living body and radiation from the surface of the living body. Figures 2 and 3 show the case where the biological surface is not covered with anything, the heat flow density is the true value to be measured, the heat flow is uniform in the vertical direction of the biological surface, and the temperature gradient is the deep temperature of the biological body. t 1 is approximately 36℃ to 38℃, temperature t 2 of biological surface A is approximately 34℃
, and when the temperature is slightly away from the biological surface A, the temperature rapidly drops to the atmospheric temperature t a . Figure 2 shows a state in which the thermal resistor B is applied to the surface A of the living body, and the thermal resistor B does not heat up. Thermal resistor B is in a warm, equilibrium state. Now, biological surface A
At the stage where the thermal resistor B applied to the t The heat conducted to the thermal resistor B is absorbed due to the temperature increase, and the heat flow density flowing through the thermal resistor B becomes larger than the true value heat flow density shown in FIG. Then, as the thermal resistor B gradually warms up, the concentration of heat flow becomes weaker, and the heat flow density approaches the true value. When the temperature of the part of the biological surface A where thermal resistor B is applied recovers to the temperature before applying thermal resistor B, at that point the heat flow density flowing through thermal resistor B is equal to that of the thermal resistor. It is equal to the true value of the heat flow density due to convection and radiation on the biological surface A that is not covered by B, and the heat dissipation of the biological body is as shown in Figure 2, both in areas where thermal resistor B is applied and in areas where it is not applied. This results in a similar even heat flow. Furthermore, as shown in Figure 3, the temperature t2 of the biological surface A rises above the temperature when the heat resistor B is not applied, that is, the true skin temperature, and the deep body temperature rises. As the temperature rises to a point t 2 ' close to , as shown in FIG. 2, a considerable amount of the heat flow approaches the thermal resistor B and concentrates around it where the temperature difference is large. Therefore, the heat flow density of the thermal resistor B becomes lower than the true value. For the reasons mentioned above, the conventional heat flow density measuring device shown in FIG. 1 has the drawback that it cannot measure the true value of heat flow density.

しかるに、本発明者らは上記欠点を解消すべく
鋭意に考究した結果、第3図に示すように熱抵
抗体Bの外面に冷却機能を有する冷却パネルCを
当てがうことにより第3図に示す熱抵抗体Bの
外面温度t3をt3′まで下降させれば、生体表面Aの
温度t2′が第3図に示す真正な皮膚温度t2にまで
下降し、この皮膚温度を維持できれば、熱抵抗体
Bを通流する熱流は第2図に示すような偏向は
なく真正値になるであろうとの認識を得た。
However, as a result of intensive studies by the present inventors in order to eliminate the above-mentioned drawbacks, as shown in FIG. 3, by applying a cooling panel C having a cooling function to the outer surface of the thermal resistor B, If the external surface temperature t 3 of the thermal resistor B shown in FIG . It has been recognized that, if possible, the heat flow flowing through the thermal resistor B will have a true value without being deflected as shown in FIG.

したがつて、この発明は熱抵抗体であるサーモ
パイルを生体表面に当てがつても生体表面の温度
を皮膚温度に維持することができ、これにより熱
流に偏向をもたらさずに真正値の熱流密度を経時
的に測定でき、さらに患者の容態悪化の前兆であ
る血流量の不足による熱流密度の変化に対しても
追随性を有し、もつて血液循環不全が予想される
病気等において患者の容態急変の前兆を検知する
のに一層確実性・信頼性を有し、また手掌・足趾
等の血流量の推定を一層正確にする生体表面の熱
流密度測定装置を提供するを目的としている。
Therefore, this invention can maintain the temperature of the biological surface at the skin temperature even when a thermopile, which is a heat resistor, is applied to the biological surface, and thereby maintains the true value of the heat flow density without causing a deflection of the heat flow. It can be measured over time and can also track changes in heat flow density due to insufficient blood flow, which is a sign of deterioration in the patient's condition, making it possible to detect sudden changes in the patient's condition in diseases where blood circulation failure is expected. The purpose of the present invention is to provide a heat flow density measuring device on the surface of a living body, which is more reliable and reliable in detecting signs of heat flow, and more accurate in estimating blood flow in the palms, toes, etc.

(3) 発明の開示 この発明の生体表面の熱流密度測定装置は、2
個のセンサー部と制御表示部とから成り、一のセ
ンサー部はサーモパイルに電子冷却素子より成る
冷却パネルを重ね合せ、サーモパイル表面に制御
用サーミスタを付設して成り、他の一のセンサー
部は生体表面に別に当てがう皮膚温度検出用サー
ミスタから成り、また制御表示部は上記サーモパ
イルの出力信号を増幅する第1の増幅器と、この
増幅器の出力信号を熱流密度に演算して記録する
記録出力部と、上記二つのサーミスタの出力信号
をそれぞれ増幅する第2、第3の増幅器と、これ
ら第2、第3の増幅器の出力信号を入力して差信
号を出力する差動増幅器と、上記冷却パネルの上
記サーモパイルと接合された面部が吸熱側となる
ように上記電子冷却素子に所定方向の電流を流し
かつ電流の大きさを上記差動増幅器の出力信号を
入力してフイードバツク制御できる電子冷却素子
制御部とから成ることを特徴としている。
(3) Disclosure of the invention The apparatus for measuring heat flow density on the surface of a living body according to the present invention comprises two
It consists of two sensor sections and a control display section. One sensor section consists of a thermopile with a cooling panel made of an electronic cooling element superimposed on it, and a control thermistor attached to the surface of the thermopile. It consists of a thermistor for skin temperature detection that is separately applied to the surface, and the control display section includes a first amplifier that amplifies the output signal of the thermopile, and a recording output section that calculates and records the output signal of this amplifier into a heat flow density. , second and third amplifiers that amplify the output signals of the two thermistors, respectively, a differential amplifier that inputs the output signals of these second and third amplifiers and outputs a difference signal, and the cooling panel. Thermoelectric cooling element control that allows current to flow in a predetermined direction through the thermoelectric cooling element so that the surface joined to the thermopile is on the heat absorption side, and the magnitude of the current can be feedback-controlled by inputting the output signal of the differential amplifier. It is characterized by consisting of two parts.

従つて、この発明の生体表面の熱流密度測定装
置によれば、生体表面にサーモパイルを当てがつ
ても電子冷却素子の冷却制御によりサーモパイル
を通流する熱流密度を実質的に変化させることが
でき、しかもかかる変化は皮膚温度検出用サーミ
スタと制御用サーミスタの差信号により電子冷却
素子を制御してサーモパイルを当てがつている部
位の皮膚温度を当てがつていない近傍部位の皮膚
温度に維持でき、さらに患者の容態が悪化して血
流量が不足し皮膚から放散する熱流が減るとサー
モパイルを当てがつていない近傍部位の皮膚温度
が、当てがつている部位の皮膚温度より先に低下
するのでこれを2個の感温素子により差信号とし
て検出して電子冷却素子を制御し、サーモパイル
を当てがつている部位の皮膚温度を容態悪化後の
真正な皮膚温度になるようにサーモパイル表面温
度を制御でき、よつていずれの場合でもサーモパ
イルに通流する熱流密度に偏向を来たさず真正値
の熱流密度を記録出力部において記録することが
できるものである。
Therefore, according to the heat flow density measuring device on the surface of a living body of the present invention, even when the thermopile is applied to the surface of the living body, the heat flow density flowing through the thermopile can be substantially changed by cooling control of the electronic cooling element. Moreover, such changes can be made by controlling the electronic cooling element using the difference signal between the skin temperature detection thermistor and the control thermistor to maintain the skin temperature of the area to which the thermopile is applied to the skin temperature of the nearby area to which the thermopile is not applied. When the patient's condition deteriorates and the blood flow is insufficient, reducing the heat flow radiated from the skin, the skin temperature in the area to which the thermopile is not applied will drop faster than the skin temperature in the area to which the thermopile is applied. The thermopile surface temperature can be controlled so that the skin temperature of the area to which the thermopile is applied becomes the true skin temperature after the condition has deteriorated, by detecting the difference signal with two temperature sensing elements and controlling the electronic cooling element. Therefore, in any case, the heat flow density flowing through the thermopile is not deflected, and the true value of the heat flow density can be recorded at the recording output section.

(4) この発明を実施するための最良の形態 (4−1) 構成 この発明の生体表面の熱流密度測定装置は、第
4図のブロツク回路図に示すように2個のセンサ
ー部L,Mと制御表示部Nとから成つている。一
のセンサー部Lは、第5図,にも示すように
第1図に示した従来のものと同様のサーモパイル
1に半導体熱電対素子であるペルチエ効果を応用
した電子冷却素子3aを一層もしくは多層の薄板
状に配列して成る冷却パネル3を重ね合せ、さら
に冷却パネル3表面に放熱フイン5のプレート部
5aを重ね合せ、サーモパイル1表面のほぼ中央
部にサーモパイル表面温度を検出する制御用サー
ミスタ4を付設して成る。他の一のセンサー部M
は皮膚温度検出用サーミスタ6を支持体7に支持
して成り、支持体7は生体表面に上記センサー部
Lとは別に安定して当てがい得るようにリング状
に形成し、上記サーミスタ6をリング状中央に臨
むように支持して成る。また制御表示部Nは、上
記サーモパイル1の出力信号8を増幅する第1の
増幅器9と、この増幅器9の出力信号を熱流密度
に演算して記録する記録出力部10と、増幅器9
の出力信号を熱流密度に演算してデジタル表示計
11と、上記二つのサーミスタ4,6の出力信号
12,13をそれぞれ増幅する第2、第3の増幅
器14,15と、これら第2、第3の増幅器1
4,15の出力信号を入力して差信号を出力する
差動増幅器16と、上記冷却パネル3の上記サー
モパイルと接合された面部3bが吸熱側となるよ
うに上記電子冷却素子3aに所定方向の電流17
を流しかつ電流17の大きさを上記差動増幅器1
6の出力信号18を入力してフイードバツク制御
できる電子冷却素子制御部19と、上記第3の増
幅器15の出力信号を入力して温度に演算して記
録する記録出力部20とから成つている。そし
て、上記デジタル表示計11は第3の増幅器15
の出力信号を入力できるように端子が切換式に設
けられ常に真正な皮膚温度をデジタル表示できる
ように成つている。なお、上記差動増幅器16は
例えばサーミスタ4の検出温度がサーミスタ6の
検出温度よりも高ければ正の差信号18を出力
し、低ければ負の差信号18を出力するように成
つており、またこのとき上記電子冷却素子制御部
19は正または負の差信号18に比例して電流1
7の大きさを変化できるように成つているものと
する。
(4) Best Mode for Carrying Out the Invention (4-1) Configuration The apparatus for measuring heat flow density on the surface of a living body according to the present invention has two sensor sections L and M as shown in the block circuit diagram of FIG. and a control display section N. As shown in FIG. 5, the first sensor section L includes a thermopile 1 similar to the conventional one shown in FIG. A control thermistor 4 for detecting the thermopile surface temperature is placed approximately in the center of the surface of the thermopile 1 by overlapping the cooling panels 3 arranged in a thin plate shape, and further overlapping the plate part 5a of the heat dissipation fin 5 on the surface of the cooling panel 3. It consists of an attached. Another sensor part M
The thermistor 6 for detecting skin temperature is supported on a support 7, and the support 7 is formed in a ring shape so that it can be applied stably to the surface of the living body separately from the sensor part L. It is supported so that it faces the center of the shape. The control display section N also includes a first amplifier 9 that amplifies the output signal 8 of the thermopile 1, a recording output section 10 that calculates and records the output signal of the amplifier 9 into a heat flow density, and an amplifier 9.
A digital display meter 11 which calculates the output signal of 3 amplifier 1
A differential amplifier 16 inputs the output signals of 4 and 15 and outputs a difference signal, and the electronic cooling element 3a is oriented in a predetermined direction so that the surface portion 3b of the cooling panel 3 connected to the thermopile is on the heat absorption side. current 17
and the magnitude of the current 17 in the differential amplifier 1.
6, and a recording output section 20 which inputs the output signal of the third amplifier 15 and calculates and records the temperature. The digital display meter 11 is connected to a third amplifier 15.
The terminal is switchable so that the output signal can be input, so that the true skin temperature can always be displayed digitally. The differential amplifier 16 is configured to output a positive difference signal 18 if the temperature detected by the thermistor 4 is higher than the temperature detected by the thermistor 6, and output a negative difference signal 18 if it is lower. At this time, the electronic cooling element control section 19 generates a current of 1 in proportion to the positive or negative difference signal 18.
It is assumed that the size of 7 can be changed.

(4−2) 作用 今、第6図に示すようにセンサー部Lのサーモ
パイル1の表面を血液循環不全を伴う病人の腕に
当てがうとともにセンサー部Mを当てがつて皮膚
の熱流密度を経時的に測定するものとする。この
場合、電子冷却素子3aに通電しないでサーモパ
イル1を腕に当てがうと、その直後では第7図に
示すように当てがう前の真正な皮膚温度t2はサー
モパイル1が冷たいのでt2′に温度降下するが、
引続き電子冷却素子3aに通電せずしたがつて冷
却パネル3の冷却しないでいると、熱抵抗体であ
るサーモパイル1が皮膚より熱を受けて短時間に
温まりかつ生体内にこもる熱量も次第に多くな
り、サーモパイル1で覆われている部位の皮膚温
度がt2′から次第に上昇してt2を通過し熱伝導が放
熱フイン5にまで十分に伝わるようになると深部
温度に近い温度t2″に平衡した状態となる。この
ような温度変化はサーミスタ4に接続している図
示しない温度記録計に記録できる。一方、サーミ
スタ6に接続している記録出力部20およびデジ
タル表示計11にはそれぞれ皮膚温度t2が変化な
く記録・表示される。そこで、制御表示部Nの図
示しないメインスイツチをオンにすると(注;説
明を分り易くするためにこの段階でオンにしてい
るが最初からオンにしても良い。)、電子冷却素子
制御部19により制御された所定の方向・大きさ
の直流17が電子冷却素子3aに流れ、電子冷却
素子3aより成る冷却パネル3がサーモパイル1
からの熱を発熱側に能動的に移動して放熱フイン
5より放熱させ、かつ生体のサーモパイル1で覆
われている部位の皮膚温度をそれまでのt2″から
下降させることになる。そこで、下降後の温度が
t2に近い温度t2またはt2〓であるものとする
(なお、このt2″からt2またはt2〓への変化はサ
ーモパイル1の表面温度の変化とほぼ等しい。)
サーモパイル1の表面温度がt2(またはt2〓)
に冷却されるとサーミスタ4の検出信号12はサ
ーミスタ6の検出信号13より大(または小)と
なつて両信号に差が生じ、それぞれ増幅器14,
16で増幅された後さらに差動増幅器16におい
て正(または負)の差信号15が出力される。そ
して、差動増幅器16からの出力信号18は電子
冷却素子制御部19にフイードバツク信号として
入力する。このフイードバツク信号18は感温素
子4の検出温度t2が感温素子6の検出温度t2
りも高いと正の信号となるから、電子冷却素子3
aには今までよりも大きな電流が流れてサーモパ
イル1の冷却が強まり感温素子の検出温度t2
下降してt2に近づき、また反対に、フイードバツ
ク信号18は、感温素子4の検出温度t2〓が感温
素子6の検出温度t2よりも低いと負の信号となる
から、電子冷却素子3aには今までよりも小さな
電流が流れてサーモパイル1の冷却が弱まり感温
素子4の検出温度t2〓が上昇してt2に近づく。こ
うして、感温素子4の検出温度が感温素子6の検
出温度に近づき一致すると、差信号15が零とな
り、電子冷却素子制御部19により制御される電
流は一定値に落着き、センサー部Lを当てがつた
生体部位の皮膚温度が真正値に維持される。した
がつて、センサー部Lを当てがつた生体部位の皮
膚は当てがつていない部位の熱放散と全く同一密
度の熱流となり、サーモパイル1で検出される熱
流密度は真正値となつて記録出力部10およびデ
ジタル表示計11に記録表示される。このように
して患者の平生時の皮膚の熱流密度を真正に測定
できる。
(4-2) Effect Now, as shown in Fig. 6, the surface of the thermopile 1 of the sensor part L is applied to the arm of a patient with poor blood circulation, and the sensor part M is also applied to measure the heat flow density in the skin over time. shall be measured. In this case, when the thermopile 1 is applied to the arm without energizing the electronic cooling element 3a, the true skin temperature t 2 immediately before application is t 2 ' because the thermopile 1 is cold, as shown in FIG. The temperature drops to
If the electronic cooling element 3a is not energized and therefore the cooling panel 3 is not cooled, the thermopile 1, which is a thermal resistor, receives heat from the skin and warms up in a short time, and the amount of heat trapped in the body gradually increases. , the skin temperature of the area covered by the thermopile 1 gradually rises from t 2 ′, passes through t 2 , and when the heat conduction reaches the heat dissipation fins 5 sufficiently, the temperature reaches a temperature t 2 ″ close to the deep temperature. Such a temperature change can be recorded on a temperature recorder (not shown) connected to the thermistor 4. On the other hand, the record output unit 20 and digital display meter 11 connected to the thermistor 6 each record the skin temperature. t 2 is recorded and displayed without any change. Therefore, when you turn on the main switch (not shown) in the control display section N (note: it is turned on at this stage to make the explanation easier to understand, but even if you turn it on from the beginning ), a direct current 17 in a predetermined direction and magnitude controlled by the thermoelectric cooling element control section 19 flows to the thermoelectric cooling element 3a, and the cooling panel 3 made of the thermoelectric cooling element 3a is connected to the thermopile 1.
The heat is actively transferred to the heat generating side and radiated from the heat dissipation fins 5, and the skin temperature of the part of the body covered by the thermopile 1 is lowered from the previous t2 ' '.Therefore, The temperature after falling is
Assume that the temperature is t 2 or t 2 〓 close to t 2 (note that the change from t 2 ″ to t 2 or t 2 〓 is almost equal to the change in the surface temperature of thermopile 1.)
The surface temperature of thermopile 1 is t 2 (or t 2 〓)
When the thermistor 4 is cooled to a temperature of
After being amplified in step 16, a positive (or negative) difference signal 15 is outputted in differential amplifier 16. The output signal 18 from the differential amplifier 16 is input to the thermoelectric cooling element control section 19 as a feedback signal. This feedback signal 18 becomes a positive signal when the temperature t 2 detected by the temperature sensing element 4 is higher than the temperature t 2 detected by the temperature sensing element 6.
A larger current flows through a than before, cooling the thermopile 1 becomes stronger, and the detected temperature t 2 of the thermosensing element decreases and approaches t 2 . If the temperature t 2 〓 is lower than the temperature t 2 detected by the temperature sensing element 6, a negative signal will be generated, so a smaller current flows through the electronic cooling element 3a than before, weakening the cooling of the thermopile 1, and lowering the temperature of the temperature sensing element 4. The detected temperature t 2 〓 rises and approaches t 2 . In this way, when the temperature detected by the thermosensor 4 approaches and matches the temperature detected by the thermosensor 6, the difference signal 15 becomes zero, and the current controlled by the electronic cooling element control section 19 settles to a constant value, causing the sensor section L to The skin temperature of the applied body part is maintained at the true value. Therefore, the heat flow on the skin of the body part to which the sensor part L is applied has exactly the same density as the heat dissipation in the part to which the sensor part L is not applied, and the heat flow density detected by the thermopile 1 becomes the true value and is output to the recording output part. 10 and a digital display meter 11. In this way, the heat flow density of the patient's normal skin can be truly measured.

続いて今、患者の容態が悪化する前兆として腕
の血流量が次第に少なくなると、これに応じて深
部温度および皮膚温度が下がるとともに熱流密度
が小さくなる。このような熱流密度の変化はサー
モパイル1の表裏面に温度差が表われるまで検出
されない。生体に熱流密度の変化があるときは、
感温素子6の検出信号は感温素子4の検出信号よ
りも先に小さくなり、このため差動増幅器12に
より正の差信号18が出力して、このフイードバ
ツク信号となつて、電子冷却素子制御部19で制
御出力される電流17が大きくなり、これにより
電子冷却素子3aより成る冷却パネル3の冷却側
と発熱側の温度差が大きくなりサーモパイル1表
面の温度は降下して真正な皮膚温度に近づき、か
つ感温素子4の検出信号12が小さくなつて感温
素子6の検出信号13との差が次第に小さくな
り、差がなくなるとフイードバツク信号18も零
になつて電流が新たな値に平衡状態になる。した
がつて、患者に異常が起つた後も熱流密度を真正
に測定できる。異常が発生したことが記録計によ
り判つたら、医師は患者に適切な処置を迅速に施
す必要があり、この処置により患者の容態悪化を
未然に防ぐことが可能となり、また引続きの測定
により上記処置による患者の容態回復も知ること
ができる。
Now, as the blood flow in the arm gradually decreases as a sign that the patient's condition will deteriorate, the core temperature and skin temperature decrease and the heat flow density decreases accordingly. Such a change in heat flow density is not detected until a temperature difference appears between the front and back surfaces of the thermopile 1. When there is a change in heat flow density in the living body,
The detection signal of the thermosensor 6 becomes smaller before the detection signal of the thermosensor 4, and therefore the differential amplifier 12 outputs a positive difference signal 18, which becomes a feedback signal and is used to control the electronic cooling element. The current 17 controlled and outputted by the section 19 increases, which increases the temperature difference between the cooling side and the heating side of the cooling panel 3 made of the electronic cooling element 3a, and the temperature on the surface of the thermopile 1 decreases to the true skin temperature. As the detection signal 12 of the thermosensing element 4 becomes smaller, the difference with the detection signal 13 of the thermosensor 6 gradually becomes smaller, and when the difference disappears, the feedback signal 18 also becomes zero, and the current balances to a new value. become a state. Therefore, the heat flow density can be accurately measured even after an abnormality occurs in the patient. If the recorder determines that an abnormality has occurred, the doctor must promptly take appropriate measures to treat the patient.This treatment will prevent the patient's condition from worsening, and further measurements will confirm the above-mentioned symptoms. It is also possible to know how the patient's condition has improved due to the treatment.

なお、白ろう病患者などの場合は、健康な人と
比較すると平生時においても血流量が少ないこと
による皮膚の熱流密度が小さく、その真正値が記
録出力部10およびデジタル表示計11に記録・
表示され、患者の容態に応じた中途における特別
の調整は不用である。
In addition, in the case of patients with leucism, the heat flow density in the skin is low due to the low blood flow even during normal life compared to healthy people, and its true value is recorded on the record output unit 10 and the digital display meter 11.
No special adjustments are required depending on the patient's condition.

(4−3) 実験例 第8図はこの発明の生体表面の熱流密度測定装
置を第6図に示すように使用して測定した結果を
示すグラフであつて、横軸の1目盛は2分間の計
測時間を示し、縦軸は温度および熱流密度を示
し、測定場所は環境温度30℃、相対湿度60%の恒
温恒湿室とした。このグラフから分かることは、
冷却パネル3の冷却をしないでいると、皮膚温度
がサーミスタ6の検出により34℃を真正値として
示すのに対しサーミスタ4の検出温度は34゜4′と
なりサーモパイル1を当がつた生体部位の皮膚に
熱がこもつていることが分り、このときの熱流密
度は0.19cal/min・cm2となり、また皮膚温度t2
34℃に維持したままフイードバツク制御をしてサ
ーモパイル1の表面温度を同温度にすると、熱流
密度が0.26cal/min・cm2に上昇し、従来装置によ
る見掛上の値と本装置による真正な値との間にか
なりの差があることが分る。フイードバツク制御
をした際に温度が等しくなるのに要する時間は30
秒以内であつた。したがつて、患者の容態悪化の
前兆として起る熱流密度の変動に対する追従性も
実用上問題がないと考えられる。
(4-3) Experimental example Figure 8 is a graph showing the measurement results using the biological surface heat flow density measuring device of the present invention as shown in Figure 6, where one scale on the horizontal axis corresponds to 2 minutes. The vertical axis shows the temperature and heat flow density, and the measurement location was a constant temperature and humidity room with an environmental temperature of 30°C and a relative humidity of 60%. What we can see from this graph is that
If the cooling panel 3 is not cooled, the skin temperature will be 34°C as the true value as detected by the thermistor 6, but the temperature detected by thermistor 4 will be 34°4', which is the skin temperature of the biological part where the thermopile 1 is in contact. It turns out that heat is trapped in the skin, and the heat flow density at this time is 0.19 cal/min・cm 2 , and the skin temperature t 2
When the surface temperature of thermopile 1 is brought to the same temperature by feedback control while maintaining the temperature at 34°C, the heat flow density increases to 0.26 cal/min・cm 2 , which is a difference between the apparent value obtained by the conventional device and the true value obtained by this device. It can be seen that there is a considerable difference between the values. The time required for the temperature to become equal when using feedback control is 30
It was hot within seconds. Therefore, it is considered that there is no problem in practical use in terms of the ability to follow changes in heat flow density that occur as a sign of deterioration of a patient's condition.

なお、環境温度が低い場合(20℃)にも同様な
傾向が得られた。
A similar trend was observed when the environmental temperature was low (20°C).

(5) 変形例 第9図はこの発明の要部変形例であり、放熱フ
インが付設されていない点が異なり第5図と同
一部材は同一符号をもつて表わし説明を省略す
る。
(5) Modification FIG. 9 shows a modification of the main part of the present invention, except that no heat radiation fins are attached, and the same members as those in FIG.

また制御表示部Nについては、感温素子4の検
出温度が感温素子6の検出温度より低ければ負の
差信号18を出力し、高ければ正の差信号18を
出力するように処理しても良い。
The control display section N is processed so that if the temperature detected by the temperature sensing element 4 is lower than the temperature detected by the temperature sensing element 6, a negative difference signal 18 is output, and if it is higher, a positive difference signal 18 is output. Also good.

(6) 効果 以上説明してきたように、この発明の生体表面
の熱流密度測定装置は、サーモパイルに電子冷却
素子より成る冷却パネルを重ね合せるとともにサ
ーモパイルの表面温度を感温素子で検出し得るよ
うにして成る第1のセンサー部と、これとは別に
生体表面に当てがう感温素子から成る第2のセン
サー部と、両感温素子の検出信号をそれぞれ増幅
器で増幅してさらに差動増幅器により差信号と
し、この差信号で電子冷却素子の電流を制御する
電子冷却素子制御部をフイードバツク制御し、ま
たサーモパイルによる検出信号を増幅器で増幅し
て少くとも記録出力部に記録するようにした制御
表示部とから構成した。
(6) Effects As explained above, the apparatus for measuring heat flow density on the surface of a living body of the present invention has a cooling panel made of an electronic cooling element superimposed on a thermopile, and the surface temperature of the thermopile can be detected with a temperature sensing element. A first sensor section consisting of a thermosensor, and a second sensor section consisting of a thermosensor that is applied to the surface of the living body, and the detection signals of both thermosensors are amplified by an amplifier, and further amplified by a differential amplifier. A control display in which the difference signal is used to feedback-control the electronic cooling element control unit that controls the current of the electronic cooling element, and the detection signal from the thermopile is amplified by an amplifier and recorded at least in the recording output unit. It consists of the following sections.

従つて、この発明の生体表面の熱流密度測定装
置は、サーモパイルを生体表面に当てがつても冷
却パネルの冷却によりサーモパイルの熱伝導率を
実質的に所要に制御でき生体表面からサーモパイ
ルへの熱伝達が所望かつ円滑に行なわれて皮膚温
度をサーモパイルを当てがわない温度に維持する
ことができ、もつて熱流密度を真正に測定するこ
とができる。
Therefore, the apparatus for measuring heat flow density on the surface of a living body of the present invention can substantially control the thermal conductivity of the thermopile as required by cooling the cooling panel even when the thermopile is applied to the surface of the living body. can be carried out as desired and smoothly to maintain the skin temperature at a temperature that does not apply to the thermopile, thus allowing a true measurement of heat flow density.

さらに、この発明の装置は熱流密度を真正に測
定できるだけではなく、生体の容態悪化に起因し
て皮膚温度が上昇または下降し、皮膚の熱流密度
が変化する場合にもこのような経時的変化を2個
の感温素子の検出信号の差となつて検出でき、こ
の差信号をフイードバツク信号として電子冷却素
子制御部を制御して冷却パネルによりサーモパイ
ルを所要に冷却し、サーモパイルを当てがつてい
ることの影響を受けないように該サーモパイルの
表面温度を異常が発生して新たに変化した真正な
皮膚温度に平衡させ得るという追随性を有する。
Furthermore, the device of the present invention can not only accurately measure heat flow density, but also detect changes over time when the skin temperature increases or decreases due to deterioration of the condition of the living body, and the skin heat flow density changes. It can be detected as a difference between the detection signals of two temperature sensing elements, and this difference signal is used as a feedback signal to control the electronic cooling element control unit to cool the thermopile as required by the cooling panel and apply the thermopile. The surface temperature of the thermopile can be kept in equilibrium with the true skin temperature that has newly changed due to the occurrence of an abnormality so as not to be affected by the abnormality.

このため、血液循環不全を伴うことにより重体
に陥いることが予想される病人に対しては、その
病人の腕等に2個のセンサー部を当てがつて皮膚
の熱流密度を経時的に測定すれば、病人が重前に
陥いる前兆である血流量の不足が生じたことを熱
流密度の経時的変化として知ることができ、かか
る異常時を知ることで医師が適切な処置をとれる
から、処置は落着いてとることができ、また多く
の場合重体に陥いることが未然に防止され、もつ
て臨床検査上および生命の安全上頗る有用である
という優れた効果を有する。
For this reason, for patients who are expected to be in critical condition due to poor blood circulation, two sensor sections are applied to the patient's arms, etc., and the heat flow density in the skin is measured over time. For example, changes in heat flow density over time can indicate a lack of blood flow, which is a sign that a patient is in critical condition, and by knowing when such an abnormality occurs, a doctor can take appropriate measures. can be taken calmly, and in many cases, serious illness can be prevented, which is extremely useful in terms of clinical tests and life safety.

また、この発明の生体表面の熱流密度測定装置
は、生体の深部温度測定装置と併用することで
「生体の各部位における血流量の推定」におい
て、一層正確な数値の推定に寄与でき、もつて健
康な人と白ろう病患者の血流量の差を一層正確に
知ることにおいて寄与できる。
In addition, the heat flow density measuring device on the surface of a living body of the present invention can contribute to more accurate numerical estimation in “estimating blood flow in each part of the living body” by using it together with a deep temperature measuring device of the living body. This can contribute to a more accurate understanding of the difference in blood flow between healthy people and patients with leukemia.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,は従来の生体表面の熱流密度測定
装置であつて、第1図は簡略外観図、第2図は
原理図である。第2図,,はそれぞれ熱流
の変化を示す概念図であつて、第2図は生体表
面に熱抵抗体を当てがわない状態の熱流を示し、
第2図は熱抵抗体を当てがつた直後の熱流の変
化を示し、第2図は熱抵抗体を当てがつて生体
表面が当てがう前の温度以上に上昇したときの熱
流を示す。第3図,,は生体表面に熱抵抗
体を当てがう前と当てがつた場合に温度勾配の変
化を図す概念図である。第4図はこの発明の生体
表面の熱流密度測定装置のブロツク回路図、第5
図,はこの発明の実施例にかかる熱流密度測
定装置の一方の要部であるセンサー部の分解図及
び正面図、第6図は患者の腕にセンサー部を当て
がう状態を示す取扱い説明図、第7図はこの発明
の熱流密度測定装置で測定しているときの生体お
よび装置断面における温度勾配を説明するための
概念図、第8図はこの発明の熱流密度測定装置で
測定した実験結果を示すグラフ図、第9図はこの
発明の一の要部であるセンサー部の変形例の図で
ある。 L,M……センサー部、N……制御表示部、1
……サーモパイル、3……冷却パネル、3a……
電子冷却素子、4……制御用サーミスタ、5……
放熱フイン、6……皮膚温度検出用サーミスタ、
9……第1の増幅器、10……記録出力部、14
……第2の増幅器、15……第3の増幅器、16
……差動増幅器、19……電子冷却素子制御部。
FIG. 1 shows a conventional apparatus for measuring heat flow density on the surface of a living body, in which FIG. 1 is a simplified external view and FIG. 2 is a diagram of the principle. Figures 2 and 2 are conceptual diagrams showing changes in heat flow, respectively, and Figure 2 shows the heat flow in a state where no thermal resistor is applied to the surface of the living body.
Figure 2 shows the change in heat flow immediately after applying the thermal resistor, and Figure 2 shows the heat flow when the temperature of the living body surface rises above the temperature before applying the thermal resistor. FIG. 3 is a conceptual diagram showing the change in temperature gradient before and after applying a thermal resistor to the surface of a living body. Figure 4 is a block circuit diagram of the apparatus for measuring heat flow density on the surface of a living body according to the present invention;
Figure 6 is an exploded view and a front view of the sensor part, which is one of the main parts of the heat flow density measuring device according to the embodiment of the present invention, and Fig. 6 is a handling explanatory diagram showing the state in which the sensor part is applied to the patient's arm. , Fig. 7 is a conceptual diagram for explaining the temperature gradient in the cross section of the living body and the device during measurement with the heat flow density measuring device of the present invention, and Fig. 8 shows the experimental results measured with the heat flow density measuring device of the present invention. FIG. 9 is a graph showing a modification of the sensor section, which is one of the main parts of the present invention. L, M...Sensor section, N...Control display section, 1
...Thermopile, 3...Cooling panel, 3a...
Electronic cooling element, 4... Control thermistor, 5...
Heat dissipation fin, 6...Thermistor for skin temperature detection,
9...first amplifier, 10...recording output section, 14
...Second amplifier, 15...Third amplifier, 16
...Differential amplifier, 19...Electronic cooling element control section.

Claims (1)

【特許請求の範囲】 1 2個のセンサー部と制御表示部とから成り、
一のセンサー部はサーモパイルに電子冷却素子よ
り成る冷却パネルを重ね合せ、サーモパイル表面
に制御用サーミスタを付設して成り、他の一のセ
ンサー部は生体表面に別に当てがう皮膚温度検出
用サーミスタから成り、また制御表示部は上記サ
ーモパイルの出力信号を増幅する第1の増幅器
と、この増幅器の出力信号を熱流密度に演算して
記録する記録出力部と、上記二つのサーミスタの
出力信号をそれぞれ増幅する第2、第3の増幅器
と、これら第2、第3の増幅器の出力信号を入力
して差信号を出力する差動増幅器と、上記冷却パ
ネルの上記サーモパイルと接合された面部が吸熱
側となるように上記電子冷却素子に所定方向の電
流を流しかつ電流の大きさを上記差動増幅器の出
力信号を入力してフイードバツク制御できる電子
冷却素子制御部とから成ることを特徴とする生体
表面の熱流密度測定装置。 2 冷却パネルに放熱フインを付設したことを特
徴とする特許請求の範囲第1項記載の生体表面の
熱流密度測定装置。
[Claims] 1. Consists of two sensor sections and a control display section,
One sensor section consists of a thermopile with a cooling panel made of an electronic cooling element superimposed on it, and a control thermistor attached to the thermopile surface, and the other sensor section consists of a skin temperature detection thermistor that is separately applied to the surface of the living body. The control display section includes a first amplifier that amplifies the output signal of the thermopile, a recording output section that calculates and records the output signal of this amplifier into heat flow density, and amplifies the output signals of the two thermistors. a differential amplifier that inputs the output signals of the second and third amplifiers and outputs a difference signal; and a surface portion of the cooling panel joined to the thermopile is on the heat absorption side. and a thermoelectric cooling element control section capable of feeding a current in a predetermined direction to the thermoelectric cooling element and controlling the magnitude of the current by inputting an output signal of the differential amplifier as feedback control. Heat flow density measuring device. 2. The heat flow density measuring device on the surface of a living body according to claim 1, characterized in that the cooling panel is provided with heat radiation fins.
JP56065219A 1981-05-01 1981-05-01 Heat stream density measuring apparatus of live doby surface Granted JPS57183832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56065219A JPS57183832A (en) 1981-05-01 1981-05-01 Heat stream density measuring apparatus of live doby surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56065219A JPS57183832A (en) 1981-05-01 1981-05-01 Heat stream density measuring apparatus of live doby surface

Publications (2)

Publication Number Publication Date
JPS57183832A JPS57183832A (en) 1982-11-12
JPS622526B2 true JPS622526B2 (en) 1987-01-20

Family

ID=13280577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56065219A Granted JPS57183832A (en) 1981-05-01 1981-05-01 Heat stream density measuring apparatus of live doby surface

Country Status (1)

Country Link
JP (1) JPS57183832A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771918B2 (en) * 1991-12-27 1998-07-02 花王株式会社 Blood flow meter for skin
WO2010120362A1 (en) 2009-04-15 2010-10-21 Arizant Healthcare Inc. Deep tissue temperature probe constructions
US9354122B2 (en) 2011-05-10 2016-05-31 3M Innovative Properties Company Zero-heat-flux, deep tissue temperature measurement system
JP2016133484A (en) * 2015-01-22 2016-07-25 セイコーエプソン株式会社 Heat flow sensor and electronic apparatus
JP6759526B2 (en) * 2015-02-27 2020-09-23 セイコーエプソン株式会社 Heat flow meter and electronic equipment

Also Published As

Publication number Publication date
JPS57183832A (en) 1982-11-12

Similar Documents

Publication Publication Date Title
US4859078A (en) Apparatus for the non-invasive measurement of thermal properties and perfusion rates of biomaterials
Childs et al. Tympanic membrane temperature as a measure of core temperature
EP0991926B1 (en) Ambient and perfusion normalized temperature detector
US20190142280A1 (en) Single heat flux sensor arrangement
US5803915A (en) System for detection of probe dislodgement
US10827931B2 (en) Patch for temperature determination
JP5327840B2 (en) Temperature conductivity measuring device, skin tissue blood circulation evaluation device, and pressure ulcer diagnostic device
JPH0368690B2 (en)
RU2562229C2 (en) Device for monitoring of position of distal end of tube with respect to blood vessel
EP3666179A1 (en) Core body temperature sensor system based on flux measurement
US6221025B1 (en) Skin blood flow measurement
JPS61120026A (en) Simple deep-part clinical thermometer
JPH03221815A (en) Flow velocity sensor probe
Atallah et al. An ergonomic wearable core body temperature sensor
Roth et al. Agreement between rectal and tympanic membrane temperatures in marathon runners
JPS622526B2 (en)
US6488623B1 (en) Skin perfusion evaluation apparatus
Anuar et al. Non-invasive core body temperature sensor for continuous monitoring
Atallah et al. Perioperative measurement of core body temperature using an unobtrusive passive heat flow sensor
US20200397305A1 (en) Core Temperature Detection System and Method
Pompei et al. Noninvasive temporal artery thermometry: physics, physiology, and clinical accuracy
Holtzclaw New trends in thermometry for the patient in the ICU
JPS61120027A (en) Simple type clinical thermometer for deep part
Jaszczak et al. A combined tc‐Po2 and skin blood flow sensor
Robinson et al. Validation of methodologies for the estimation of blood perfusion using a minimally invasive probe