JPS62252417A - Resin composition for prepreg - Google Patents

Resin composition for prepreg

Info

Publication number
JPS62252417A
JPS62252417A JP9472786A JP9472786A JPS62252417A JP S62252417 A JPS62252417 A JP S62252417A JP 9472786 A JP9472786 A JP 9472786A JP 9472786 A JP9472786 A JP 9472786A JP S62252417 A JPS62252417 A JP S62252417A
Authority
JP
Japan
Prior art keywords
resin
resin composition
polyepoxy compound
aromatic
cyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9472786A
Other languages
Japanese (ja)
Inventor
Kazunao Kubodera
窪寺 一直
Takeji Nakae
中江 武次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9472786A priority Critical patent/JPS62252417A/en
Publication of JPS62252417A publication Critical patent/JPS62252417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain the titled composition excellent in heat resistance, water resistance and moldability and suitable as a matrix resin for prepregs of FRP, by mixing a specified polyepoxy compound condensate with a cyanate resin and a thermoplastic resin. CONSTITUTION:0.01-0.6 equivalent of a curing agent such as an aromatic amine is added to a polyepoxy compound having at least two epoxy groups in the molecule, such as a bisphenol F-derived epoxy resin, and, if necessary, prereacted to obtain a polyepoxy compound condensate (A). 9-2pts.wt. component A is mixed with 1-8pts.wt. cyanate resin (B) comprising a polycyanate (a) of formula I (wherein m is 2-6, R is an aromatic organic group, and the cyanate group is bonded to the aromatic ring of the R group) or a mixture thereof with its prepolymer and a polymaleimide (B) of formula II (wherein R is a 2-6C aromatic or aliphatic organic group, X1-2 are each H, a halogen or an alkyl and n is m) or a mixture thereof with its prepolymer and 6-60wt%, based on the total of (a) + (b), thermoplastic resin which can homogeneously dissolve in both of components (a) and (b) (e.g., polyether sulfone).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規なプリプレグ用樹脂組成物に関するもので
ある。本発明により得られる樹脂硬化物は耐熱、耐水性
に優れ、特に繊維強化プラスチック(以下FRPと略す
)のプリプレグ用マトリックス樹脂として好適なもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel resin composition for prepreg. The cured resin obtained by the present invention has excellent heat resistance and water resistance, and is particularly suitable as a matrix resin for prepregs of fiber reinforced plastics (hereinafter abbreviated as FRP).

[従来の技術] 硬化性樹脂の中でもエポキシ樹脂はその優れた機械的特
性を生かし各種産業分野に広く使用されている。特に炭
素繊維、ガラス繊維およびアラミド繊維などの強化繊維
とマトリックス樹脂からなる先進複合材料にはエポキシ
樹脂が多く使われている。しかしこれら複合材料に使用
されているエポキシ樹脂にはまだ不満足な点があり用途
や使用方法に制限があった。その中の一つに耐熱、耐水
性がある。耐熱、耐水性を改善するために従来からエポ
キシ樹脂以外の様々な硬化性樹脂がマトリックス樹脂と
して使用されてきた。中でもシアン酸エステル系樹脂の
硬化物は耐熱、耐水性に優れた硬化物を与えることが知
られていた。しかしこれらの硬化物はもろく靭性にかけ
るためこれをマトリックス樹脂として使用した先進複合
材料は耐衝撃性に欠けしかも強化繊維の強度を充分に発
現できないという欠点があった。
[Prior Art] Among curable resins, epoxy resins are widely used in various industrial fields due to their excellent mechanical properties. In particular, epoxy resins are often used in advanced composite materials made of reinforcing fibers such as carbon fibers, glass fibers, and aramid fibers and matrix resins. However, the epoxy resins used in these composite materials still have some unsatisfactory points, and their applications and usage methods are limited. One of them is heat resistance and water resistance. Various curable resins other than epoxy resins have conventionally been used as matrix resins to improve heat resistance and water resistance. Among these, cured products of cyanate ester resins have been known to provide cured products with excellent heat resistance and water resistance. However, since these cured products are brittle and have poor toughness, advanced composite materials using them as matrix resins lack impact resistance and have the disadvantage that they cannot fully exhibit the strength of reinforcing fibers.

これらの硬化物の靭性を改良するためにはエポキシ樹脂
を添加する方法が知られている。この場合エポキシ樹脂
の添加量が多い程、靭性は高くなるがガラス転移温度(
To >が低下してくるため新たにエポキシ樹脂の硬化
剤を添加する必要があつた。使用する硬化剤は耐熱性を
考えた場合芳香族アミンを使用するのが一般的である。
In order to improve the toughness of these cured products, a method of adding an epoxy resin is known. In this case, the greater the amount of epoxy resin added, the higher the toughness, but the glass transition temperature (
Since To > was decreasing, it was necessary to newly add a curing agent for the epoxy resin. The curing agent used is generally an aromatic amine in consideration of heat resistance.

これらの樹脂組成物は例えば特開昭60−25006号
公報に示される通り公知のものでおる。
These resin compositions are known, for example, as shown in JP-A No. 60-25006.

しかしこれらの成分を混合した組成物を作成した場合多
官能性シアン酸エステル類と芳香族アミンとの反応性が
高く可使時間が短いという欠点がありプリプレグ用マト
リックス樹脂として使用するのが困難であった。
However, when a composition is created by mixing these components, it has the drawback of high reactivity with polyfunctional cyanate esters and aromatic amines and a short pot life, making it difficult to use as a matrix resin for prepregs. there were.

伯の方法による靭性の改良もいろいろ検84されている
。例えばシアン酸エステル系樹脂組成物にメタ(アクリ
ロイル)基を導入した変性ブタジェン系樹脂を配合する
もの(特開昭57−153045号公報)、ブタジェン
−アクリロニトリル共重合体を添加するもの(特開昭5
7−153046号公報)、あるいはこれらにさらにエ
ポキシ樹脂を加えたちのく特開昭56−157424.
56−157425号公報)などが知られている。
Various improvements in toughness using Haku's method have also been investigated. For example, a cyanate ester resin composition is blended with a modified butadiene resin into which a meth (acryloyl) group has been introduced (Japanese Unexamined Patent Publication No. 57-153045), and one in which a butadiene-acrylonitrile copolymer is added (Japanese Unexamined Patent Application Publication No. 1983-153045). 5
7-153046), or by adding an epoxy resin to these, JP-A-56-157424.
56-157425) and the like are known.

しかしこれらの方法はいずれも耐熱、耐水性の低下が避
けられない問題であった。
However, all of these methods inevitably suffer from a decrease in heat resistance and water resistance.

その他にも複合材料のプリプレグ用マトリックス樹脂に
使用されているエポキシ樹脂には不満足な点がおる。た
とえば成形性の不足もそのうちの一つである。これは次
のような現像に起因する問題である。
There are other unsatisfactory points with the epoxy resins used as matrix resins for prepregs of composite materials. For example, lack of moldability is one of them. This is a problem caused by the following development.

エポキシ樹脂は高温になると低粘度になりFRPの成形
時には強化l1iraへの含浸が容易となる、成形品内
部の起泡が出やすくなるなど大きな利点となっているが
、反面その粘度が低すぎると大型で肉厚の成形品を成形
する場合樹脂が不必要に流れすぎ強化繊維の乱れや寸法
精度に問題が生じる。
Epoxy resin has great advantages as it becomes low in viscosity when heated to high temperatures, making it easier to impregnate reinforced l1ira during FRP molding, and making it easier for bubbles to form inside the molded product.However, on the other hand, if the viscosity is too low, When molding a large, thick molded product, the resin flows too much unnecessarily, causing problems such as disorder of reinforcing fibers and dimensional accuracy.

このため成形時の粘度にはある適正な範囲が存在する。Therefore, there is a certain appropriate range of viscosity during molding.

しかし高温での粘度を高くしようとすると室温での粘度
が高くなってしまいタック・ドレープ性にかけた樹脂組
成物になってしまい実用に適さない。この現像は前述し
たシアン酸エステル系でも同様である。
However, if an attempt is made to increase the viscosity at high temperatures, the viscosity at room temperature will increase, resulting in a resin composition with poor tack and drape properties, making it unsuitable for practical use. This development is similar to the above-mentioned cyanate ester type.

このような問題を解決するため一般に高温時の粘度調整
にはポリマーを添加する方法が知られている。添加する
ポリマーも種々のものが知られているが耐熱性を重視し
た場合添加するポリマーも出来るだけガラス転移温度(
Tg>が高いものが好ましくしかも均一に溶解するのも
のが好ましい。
In order to solve such problems, it is generally known to add a polymer to adjust the viscosity at high temperatures. Various types of polymers are known to be added, but if heat resistance is important, the polymer added should be as close to the glass transition temperature (
Those with a high Tg> are preferable and those that dissolve uniformly are preferable.

さらに硬化物の機械的特性を考えた場合添加するポリマ
ーも機械的特性にバランスがとれたものが望ましい。
Furthermore, when considering the mechanical properties of the cured product, it is desirable that the polymer added has well-balanced mechanical properties.

添加するのに好適な熱可塑性樹脂は溶剤に溶解してしま
うものが多いためエポキシ樹脂組成物に添加する場合こ
れらの溶剤に対する硬化物の耐溶剤性が懸念される。各
種硬化剤で熱可塑性樹脂を添加したエポキシ樹脂組成物
を硬化させたところ、均一に溶解しそのまま硬化したも
のあるいは均一に溶解せず相分離しても細かく分散する
ものは耐溶剤性にはほとんど問題がないことがわかった
Since many thermoplastic resins suitable for addition dissolve in solvents, there are concerns about the solvent resistance of the cured product to these solvents when added to epoxy resin compositions. When epoxy resin compositions containing thermoplastic resins are cured using various curing agents, those that dissolve uniformly and harden as they are, or those that do not dissolve uniformly and disperse finely even after phase separation, have very little solvent resistance. It turned out that there was no problem.

ところがシアン酸エステル系樹脂を使用した場合均一に
溶解していても硬化過程で熱可塑性樹脂が相分離してき
てしまい、しかも細かい分散ではないため最終硬化物は
耐溶剤性に劣っていたり、耐熱性が低下していたりする
ものが多く不満足なものしか得られなかった。この場合
でもポリエポキシ化合物とその硬化剤を併用すれば相分
離しても細かい分散になり耐溶剤性にほとんど問題がな
いことがわかった。
However, when cyanate ester resin is used, even if it is uniformly dissolved, the thermoplastic resin will undergo phase separation during the curing process, and because the dispersion is not fine, the final cured product will have poor solvent resistance and poor heat resistance. In many cases, the results were unsatisfactory. Even in this case, it was found that if a polyepoxy compound and its curing agent were used together, fine dispersion would be obtained even if phase separation occurred, and there would be almost no problem with solvent resistance.

しかし前述したように多官能性シアン酸エステル類と芳
香族アミンとの反応性が高く可使時間が短いという欠点
がありプリプレグ用マトリックス樹脂して使用するのが
困難である。
However, as mentioned above, it has the disadvantage of high reactivity between polyfunctional cyanate esters and aromatic amines and short pot life, making it difficult to use as a matrix resin for prepregs.

[本発明が解決しようとする問題点] 本発明の目的はシアン酸エステル系樹脂に、成形性の向
上のため粘度コントロール用に熱可塑性樹脂を加えその
分散性を向上させるため、さらに硬化物の靭性を改良す
るために、エポキシ樹脂の硬化剤を含有するポリエポキ
シ化合物を併用した場合でも可使時間が短くならないプ
リプレグ用樹脂組成物を提供することにある。
[Problems to be Solved by the Present Invention] The purpose of the present invention is to add a thermoplastic resin to the cyanate ester resin for viscosity control in order to improve moldability, and to further improve the dispersibility of the cured product. The object of the present invention is to provide a resin composition for prepregs that does not shorten its pot life even when a polyepoxy compound containing an epoxy resin curing agent is used in combination to improve toughness.

[問題点を解決するための手段] 本発明者らは鋭意検討の結果、あらかじめ当量以下の硬
化剤と予備反応させたエポキシ樹脂を調合し、多官能性
シアン酸エステル類と反応性の高いアミンの濃度を可使
時間に悪影響がない程度まで低下させた後に、粘度コン
トロール用熱可塑性樹脂及び、シアン酸エステル系樹脂
を加えることによって、エポキシ樹脂の硬化剤を添加し
た樹脂組成物を作成した場合でも可使時間が短くならず
耐熱、耐水性に優れしかも成形性の改良されたプリプレ
グ用樹脂組成物を提供することが可能であることを見出
し本発明に至った。
[Means for Solving the Problems] As a result of intensive studies, the present inventors prepared an epoxy resin that had been pre-reacted with an equivalent amount or less of a curing agent, and prepared an epoxy resin that had been pre-reacted with an equivalent amount or less of a curing agent. When a resin composition with an epoxy resin curing agent added is created by adding a thermoplastic resin for viscosity control and a cyanate ester resin after reducing the concentration of the resin to a level that does not adversely affect pot life. However, the inventors have discovered that it is possible to provide a resin composition for prepregs that does not shorten pot life, has excellent heat resistance and water resistance, and has improved moldability, leading to the present invention.

すなわち上記目的を達成するため本発明は下記の構成が
ある。
That is, in order to achieve the above object, the present invention has the following configuration.

少なくとも下記の成分を含有して成る一セセ樹脂組成物 A;あらかじめ当量以下の硬化剤で予価反応させた、一
分子中に少なくとも二個以上のエポキシ基を持つポリエ
ポキシ化合物縮合物B;シアン酸エステル系樹脂 C:熱可塑性樹脂 本発明に使用されるポリエポキシ化合物は何の制限もな
くたいていのものに使用可能である。特に例示するなら
ば、エピコート828.エピコート1001(油化シェ
ルエポキシ社製>DER−331(ダウ・ケミカル日本
社製)のごとき液状あるいは固形のビスフェノールA型
エポキシ樹脂、ELM434.ELMl 20 (住友
化学社製)、YH−434(東部化成社製)、MY−7
20(チバ・ガイギ社製)のごときグリシジルアミン型
エポキシ樹脂、エピクロン830(大日本インキ化学工
業社製)のごときビスフェノールF型エポキシ樹脂、エ
ピコート152.エピコート154(油化シェルエポキ
シ社製)のごときフェノールノボラック型エポキシ樹脂
、エピクロ152(大日本インキ化学工業社製)のごと
きブロム化ビスフェノールA型エポキシ樹脂、ESCN
−220(住友化学工業社製)のごときクレゾールノボ
ラック型エポキシ樹脂、その他ビスフェノールS型エポ
キシ樹脂、脂環式エポキシ樹脂などが挙げられる。
A single resin composition A containing at least the following components; A polyepoxy compound condensate B having at least two or more epoxy groups in one molecule, pre-reacted with an equivalent amount or less of a curing agent; Cyanic acid Ester Resin C: Thermoplastic Resin The polyepoxy compound used in the present invention can be used for most things without any restrictions. To specifically illustrate, Epicote 828. Liquid or solid bisphenol A epoxy resins such as Epicoat 1001 (manufactured by Yuka Shell Epoxy Co., Ltd.), DER-331 (manufactured by Dow Chemical Japan Co., Ltd.), ELM434. ), MY-7
Glycidylamine type epoxy resin such as 20 (manufactured by Ciba Geigi), bisphenol F type epoxy resin such as Epiclon 830 (manufactured by Dainippon Ink & Chemicals), Epicort 152. Phenol novolac type epoxy resins such as Epicoat 154 (manufactured by Yuka Shell Epoxy Co., Ltd.), brominated bisphenol A type epoxy resins such as Epiclo 152 (manufactured by Dainippon Ink Chemical Industries, Ltd.), ESCN
Examples include cresol novolac type epoxy resin such as -220 (manufactured by Sumitomo Chemical Co., Ltd.), other bisphenol S type epoxy resins, and alicyclic epoxy resins.

なお、エポキシ樹脂としては、熱可塑性樹脂を溶解し、
かつ低粘度のものが良く、ビスフェノールF型エポキシ
樹脂が特に好ましい。
In addition, as an epoxy resin, thermoplastic resin is dissolved,
A resin having a low viscosity is preferable, and a bisphenol F type epoxy resin is particularly preferable.

これらのポリエポキシ化合物は単独でもあるいは数種類
の混合物で使用しても一向に差し支えない。
These polyepoxy compounds may be used alone or in a mixture of several types without any problem.

また予備反応の使用される硬化剤は一般のエポキシ樹脂
用硬化剤ならばなんでも使用可能であるが前述したよう
に本発明の使用目的を考えた場合耐熱性の点で芳香族ア
ミンが望ましい。例示するならば、フェニレンジアミン
、ジアミノジフェニルメタン、ジアミノジフェニルスル
ホン、ジアミノジフェニルエーテル等が挙げられる。
Further, as the curing agent used in the preliminary reaction, any general curing agent for epoxy resins can be used, but as mentioned above, considering the purpose of use of the present invention, aromatic amines are preferable from the viewpoint of heat resistance. Examples include phenylene diamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, and the like.

これら硬化剤の添加母は当量まで加えるとゲル化などを
起こしやすく熱的に不安定なのでそれ以下にづる必要が
あるがあまり少量では効果が少なくなる。好ましくは使
用するポリエポキシ化合物の0.01〜0.6当量、さ
らに好ましくは0゜1〜0.4当量程度である。
If these curing agents are added in an equivalent amount, they tend to cause gelation and are thermally unstable, so it is necessary to use less than that, but if the amount is too small, the effect will be reduced. It is preferably about 0.01 to 0.6 equivalent of the polyepoxy compound used, more preferably about 0.1 to 0.4 equivalent.

予備反応は単にポリエポキシ化合物に硬化剤を加え一定
時間おくことにより達成されるが、現実的には加熱しで
ある程度反応を促進させる方法が効率的である。
The preliminary reaction is achieved by simply adding a curing agent to the polyepoxy compound and leaving it for a certain period of time, but in reality, it is more efficient to accelerate the reaction to some extent by heating.

またB成分における多官能性シアン酸エステル類とは二
個以上のシアン酸エステル基を有する化合物であり、好
適なシアン酸エステル類は下記一般式〈1)で表される
化合物である。
Further, the polyfunctional cyanate esters in component B are compounds having two or more cyanate ester groups, and preferred cyanate esters are compounds represented by the following general formula (1).

R−(−0−C三N > ll1(1)(式中mは2以
上、6以下の整数であり、Rは芳香族性の有機基であり
、上記シアン酸エステル基は該有IIRの芳香環に結合
しているもの〉具体的にはジシアナートベンゼン、トリ
シアナートベンゼン、ジシアナートナフタレン、トリシ
アナートナフタレン、ジアミノジフェニル、ビス(シア
ナートフェニル)メタン、ビス(シアナートフェニル)
プロパン、ビス(シアナートフェニル)エーテル、ビス
(シアナートフェニル)スルホン、およびノボラックと
ハロゲン化シアンとの反応により得られるシアン酸エス
テルなどが挙げられる。またこれら多官能性シアン酸エ
ステルをルイス酸、炭酸ナトリウムあるいは塩化リチウ
ムなどの塩類等の触媒の存在下に重合させて得られるプ
レポリマーとしても用いる事ができる。
R-(-0-C3N>ll1(1) (in the formula, m is an integer of 2 or more and 6 or less, R is an aromatic organic group, and the cyanate ester group is Those bonded to aromatic rings: Specifically, dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, tricyanatonaphthalene, diaminodiphenyl, bis(cyanatophenyl)methane, bis(cyanatophenyl)
Examples include propane, bis(cyanatophenyl) ether, bis(cyanatophenyl) sulfone, and cyanate ester obtained by reaction of novolac with cyanogen halide. It can also be used as a prepolymer obtained by polymerizing these polyfunctional cyanate esters in the presence of a catalyst such as a Lewis acid, a salt such as sodium carbonate, or lithium chloride.

また、多官能性マレイミド類とは下記一般式(2)で表
される化合物である。
Moreover, polyfunctional maleimides are compounds represented by the following general formula (2).

(式中、Rは2個以上6個以下の芳香族あるいは脂肪族
性有機基であり、×1.×2は水素、ハロゲン、または
アルキル基であり、nは2以上6以下の整数である。) 上式で表されるマレイミド類は無水マレイン酸類とアミ
ノ基を2〜6個有するポリアミン類と反応させてマレア
ミド酸を調整し、次いで脱水反応により得゛られる。用
いるポリアミンは耐熱性の点で芳香族ポリアミンが好ま
しいが、樹脂に可撓性や柔軟性を付与したい場合には脂
肪族アミンを用いても良い。好適なアミン類としては、
フェニレンジアミン、キシレンジアミン、シクロヘキサ
ンジアミン、ジアミノジフェニル、ジアミノジフェニル
メタン、ジアミノジフェニルエーテル、ジアミノジフェ
ニルスルホン等が挙げられる。またマレイミドとこれら
のアミンとの縮合反応物も使用される。
(In the formula, R is 2 to 6 aromatic or aliphatic organic groups, ×1. ×2 is hydrogen, halogen, or an alkyl group, and n is an integer of 2 to 6. ) The maleimides represented by the above formula can be obtained by reacting maleic anhydride with a polyamine having 2 to 6 amino groups to prepare maleamic acid, and then subjecting it to a dehydration reaction. The polyamine to be used is preferably an aromatic polyamine from the viewpoint of heat resistance, but an aliphatic amine may be used if flexibility and softness are desired to be imparted to the resin. Suitable amines include:
Examples include phenylene diamine, xylene diamine, cyclohexane diamine, diaminodiphenyl, diaminodiphenylmethane, diaminodiphenyl ether, diaminodiphenyl sulfone, and the like. Also used are condensation products of maleimide and these amines.

A成分とB成分の混合比については使用する化合物の種
類によっても異なるが、大体A:Bが9:1から2:8
の範囲である。
The mixing ratio of component A and component B varies depending on the type of compound used, but generally A:B is 9:1 to 2:8.
is within the range of

C成分の熱可塑性樹脂は前述したように種々のものが知
られているが耐熱性を重視した場合添加するポリマーも
出来るだけガラス転移温度(Tg)が高いものが好まし
く、しかもポリエポキシ化合物あるいはシアン酸エステ
ル類、マレイミド類に均一に溶解するものが好ましい。
As mentioned above, various thermoplastic resins are known as component C, but if heat resistance is important, it is preferable that the polymer added has as high a glass transition temperature (Tg) as possible, and moreover, it is preferable to use a polyepoxy compound or cyanide. Preferably, those that dissolve uniformly in acid esters and maleimides.

ざらに機械的特性を考えた場合添加するポリマーも機械
的特性にバランスがとれたものが望ましい。そのような
条件を満足するものとして数種類の熱可塑性樹脂が使用
可能である。
When considering mechanical properties, it is desirable that the polymer added has well-balanced mechanical properties. Several types of thermoplastic resins can be used that satisfy such conditions.

具体的には、ポリエーテルスルホン、ポリスルホン、ポ
リカーボネート、フェノキシ樹脂、ボリアリレート、ポ
リビニルホルマール、ポリビニルブチラール、ポリアミ
ドなどが挙げられる。これら熱可塑性樹脂の添加量はA
成分のポリエポキシ化合物と8成分のシアン酸エステル
類、マレイミド類の合計100重量部に対し6〜60部
程度程度ましくこれ以下になると添加効果が少なくこれ
以上になるとプリプレグのタック・ドレープが悪化して
しまう。
Specific examples include polyether sulfone, polysulfone, polycarbonate, phenoxy resin, polyarylate, polyvinyl formal, polyvinyl butyral, and polyamide. The amount of these thermoplastic resins added is A
Preferably, it is about 6 to 60 parts per 100 parts by weight of the polyepoxy compound and the 8 components of cyanate esters and maleimide.If the amount is less than this, the addition effect will be small and if it is more than this, the tack and drape of the prepreg will deteriorate. Resulting in.

本発明の各成分の混合方法は特に制限はなく各成分の形
状や目的とする配合物の混合状態あるいは分散状態に応
じて適宜好ましい方法を選択することができる。混合方
法の一例として各成分が溶解する溶媒を使用して均一溶
液とする方法があり、他の例として溶媒を使用せずポリ
エポキシ化合物と熱可塑性樹脂を比較的高温で溶解させ
た後温度を下げ、シアン酸エステル類、マレイミド類を
添加する方法がある。
The method of mixing the components of the present invention is not particularly limited, and a preferred method can be selected as appropriate depending on the shape of each component and the mixing state or dispersion state of the intended blend. One example of a mixing method is to use a solvent that dissolves each component to form a homogeneous solution.Another example is to melt the polyepoxy compound and thermoplastic resin at a relatively high temperature without using a solvent, and then lower the temperature. There is a method of adding cyanate esters and maleimides.

本発明の樹脂組成物には特にFRPのプリプレグ用マト
リックス樹脂として使用した場合タック・ドレープ性に
優れ成形性が良好でしかも靭性が高い成形物を与えるプ
リプレグとなる有用なエポキシ樹脂組成物となるもので
あるが強化繊維としては炭素繊維・ガラス繊維およびア
ラミド4ii!維、ボロン繊維、あるいはこれらのハイ
ブリッドが使用できる。またその形状も一定方向に配列
されたテープ、シート状物、マット状物、織物などどの
ようなものでも使用できる。
In particular, the resin composition of the present invention is a useful epoxy resin composition that, when used as a matrix resin for FRP prepreg, provides a prepreg with excellent tack and drape properties, good moldability, and high toughness. However, the reinforcing fibers include carbon fiber, glass fiber, and aramid 4ii! Fibers, boron fibers, or hybrids thereof can be used. Moreover, any shape can be used, such as a tape arranged in a certain direction, a sheet-like material, a mat-like material, a woven material, etc.

更に特性を損わない範囲で充填材、硬化促進剤、希釈剤
など各種添加剤も使用することができる。
Furthermore, various additives such as fillers, curing accelerators, and diluents can be used within the range that does not impair the properties.

[作用] 本発明では、樹脂組成物にあらかじめ当量以下の硬化剤
と予備反応させたエポキシ樹脂を調合し、多官能性シア
ン酸エステル類と反応性の高いアミンの濃度を可使時間
に悪影響がない程度まで低下させた後に、粘度コントロ
ール用の熱可塑性樹脂及び、シアン酸エステル系樹脂を
加えることによって、エポキシ樹脂の硬化剤を添加した
樹脂組成物を作成した場合でも可使時間が短くならず、
耐熱、耐水性に優れしかも成形性の改良されたプリプレ
グ用樹脂組成物を提供することが可能になったのである
[Function] In the present invention, an epoxy resin that has been pre-reacted with an equivalent amount or less of a curing agent is prepared in a resin composition, and the concentration of an amine that is highly reactive with polyfunctional cyanate esters is adjusted so that the pot life is not adversely affected. By adding a thermoplastic resin for viscosity control and a cyanate ester resin after reducing the viscosity to a certain level, even if a resin composition with an epoxy resin curing agent is created, the pot life will not be shortened. ,
It has now become possible to provide a resin composition for prepreg that has excellent heat resistance and water resistance, and has improved moldability.

[実施例コ 以下の実施例によって本発明を更に詳細に説明する。実
施例中の各成分の量は重量部を表し、樹脂の内容は以下
の通りである。
[Example] The present invention will be explained in more detail by the following example. The amounts of each component in the examples represent parts by weight, and the contents of the resin are as follows.

エポキシ樹脂A:テトラグリシジルジアミノジフェニル
メタン、21M434 (住友化学社装〉エポキシ樹脂
B:ビスフェノールF型エポキシ樹脂、エピクロン83
0(大日本インキ化学工業(株)製) BTレジン:2,2’−ビス(4−シアナトフェニル)
プロパンの予備反応物、BT−216ORx(三菱瓦斯
化学(株)製) 実施例1 エポキシ樹脂A100ffiff1部に対しジアミノジ
フェニルスルホン(DDS)5部を加え130℃で1時
間予備反応させた。その後下記化学構造を有するポリエ
ーテルスルホンVICTREX100P(1,C,I社
製)25部を150’Cで加熱攪拌したところ30分後
に透明な粘稠液を得た。
Epoxy resin A: Tetraglycidyldiaminodiphenylmethane, 21M434 (Sumitomo Chemical Co., Ltd.) Epoxy resin B: Bisphenol F type epoxy resin, Epiclon 83
0 (manufactured by Dainippon Ink and Chemicals Co., Ltd.) BT resin: 2,2'-bis(4-cyanatophenyl)
Preliminary reaction product of propane, BT-216ORx (manufactured by Mitsubishi Gas Chemical Co., Ltd.) Example 1 5 parts of diaminodiphenylsulfone (DDS) was added to 1 part of epoxy resin A100ffiff, and a preliminary reaction was carried out at 130°C for 1 hour. Thereafter, 25 parts of polyether sulfone VICTREX 100P (manufactured by Company 1, C, I) having the following chemical structure was heated and stirred at 150'C, and a transparent viscous liquid was obtained after 30 minutes.

この混合物を80℃に冷却し8Tレジン100部を加え
樹脂組成物を(qだ。この樹脂組成物を注型し180℃
で2時間硬化させ硬化物を得た。
This mixture was cooled to 80°C, 100 parts of 8T resin was added, and the resin composition (q) was cast.
The mixture was cured for 2 hours to obtain a cured product.

この硬化物のガラス転移温度(To )を示差走査熱量
計で測定したところ210℃であり耐熱性の高い硬化物
であった。またこの硬化物を塩化メチレンに浸けて一日
放置したが何の変化もなかった。
The glass transition temperature (To) of this cured product was measured with a differential scanning calorimeter and was 210° C., indicating that it was a cured product with high heat resistance. Further, this cured product was immersed in methylene chloride and left for one day, but no change occurred.

この樹脂組成物の粘度の温度依存性をレオベキシーアナ
ライザー(官本製作所製)で測定したところ最低粘度は
18ポイズであった。
The temperature dependence of the viscosity of this resin composition was measured using a Rheobexy Analyzer (manufactured by Kanmoto Seisakusho), and the minimum viscosity was 18 poise.

実施例2 エポキシ樹脂8100重量部に対しジアミノジフェニル
スルホン(DDS)10部を加え130℃で1時間予備
反応させた。その後ポリエーテルスルホンvICTRE
X100P(■、C0■社製)25部を150℃で加熱
攪拌したところ30分後に透明な粘稠液を得た。この混
合物を80℃に冷却しBTレジン100部を加え樹脂組
成物を得た。この樹脂組成物を注型し180℃で2時間
硬化させ硬化物を得た。
Example 2 10 parts of diaminodiphenylsulfone (DDS) was added to 8100 parts by weight of epoxy resin, and a preliminary reaction was carried out at 130°C for 1 hour. Then polyether sulfone vICTRE
When 25 parts of X100P (■, manufactured by C0■) were heated and stirred at 150°C, a transparent viscous liquid was obtained after 30 minutes. This mixture was cooled to 80°C and 100 parts of BT resin was added to obtain a resin composition. This resin composition was cast and cured at 180° C. for 2 hours to obtain a cured product.

この硬化物のガラス転移温度(T(J )を示差走査熱
量計で測定したところ205℃であり耐熱性の高い硬化
物であった。またこの硬化物を塩化メチレンに浸けて一
日放置したが何の変化もなかった。
The glass transition temperature (T(J)) of this cured product was measured with a differential scanning calorimeter and was 205°C, indicating that it was a cured product with high heat resistance.Also, this cured product was immersed in methylene chloride and left for one day. There was no change.

この樹脂組成物の粘度の温度依存性をレオベキシーアナ
ライザー(官本製作所製)で測定したところ最低粘度は
23ポイズであった。
The temperature dependence of the viscosity of this resin composition was measured using a Rheobexie Analyzer (manufactured by Kanmoto Seisakusho), and the minimum viscosity was 23 poise.

比較例1 DDSを加えて予備反応する工程を除いた以外はすべて
実施例1と同様にして樹脂組成物を1qた。
Comparative Example 1 1 q of a resin composition was prepared in the same manner as in Example 1 except that the step of adding DDS and pre-reacting was removed.

この樹脂組成物を注型し180℃で2時間硬化させ硬化
物を得た。
This resin composition was cast and cured at 180° C. for 2 hours to obtain a cured product.

この硬化物のガラス転移温度(T!I+ >を示差走査
熱量計で測定したところ185℃であり、実施例1に比
べてかなり耐熱性が低下してしまった。
When the glass transition temperature (T!I+>) of this cured product was measured using a differential scanning calorimeter, it was 185°C, and the heat resistance was considerably lower than that of Example 1.

またこの硬化物を塩化メチレンに浸けて一日放置したと
ころ表面が白化してしまい端面から崩れてきてしまった
Furthermore, when this cured product was immersed in methylene chloride and left for one day, the surface turned white and began to crumble from the edges.

比較例2 DDSを加えて予備反応する工程を除いた以外はすべて
実施例2と同様にして樹脂組成物を得た。
Comparative Example 2 A resin composition was obtained in the same manner as in Example 2 except that the step of adding DDS and pre-reacting was removed.

この樹脂組成物を注型し180°Cで2時間硬化させ硬
化物を得た。
This resin composition was cast and cured at 180°C for 2 hours to obtain a cured product.

この硬化物のガラス転移温度(T(1>を示差走査熱賛
計で測定したところ170℃であり、実施例2に比べて
かなり耐熱性が低下してしまった。
When the glass transition temperature (T(1>) of this cured product was measured using a differential scanning thermometer, it was 170° C., and the heat resistance was considerably lower than that of Example 2.

またこの硬化物を塩化メチレンに浸けて一日放置したと
ころ比較例1と同様に表面が白化してしまい端面から崩
れてきてしまった。
Further, when this cured product was immersed in methylene chloride and left for one day, the surface became white as in Comparative Example 1 and crumbled from the end surface.

実施例3 実施例2で1qられた樹脂組成物を室温で二週間放置し
たが若干粘度が高くなった以外はあまり変化はなく、充
分使用可能であった。
Example 3 The resin composition prepared by 1q in Example 2 was left at room temperature for two weeks, but there was no significant change other than a slight increase in viscosity, and it was fully usable.

比較例3 DDSを予備反応させる代りに一番@俊に加える以外は
すべて実施例2と同様にして樹脂組成物を得た。
Comparative Example 3 A resin composition was obtained in the same manner as in Example 2 except that DDS was added to Ichiban@Shun instead of pre-reacting.

得られた樹脂組成物を室温で二週間放置したが固くなっ
てしまい流動性に乏しく使用不可能であった。
The resulting resin composition was left at room temperature for two weeks, but it became hard and had poor fluidity, making it unusable.

実施例4 実施例1で得られた注型樹脂板を切出して引張り物性を
測定したところ、破断伸度は3.7%であった。同様に
して実施例2で得られた注型樹脂板を切出して引張り物
性を測定したところ、破断伸度は4.9%であった。
Example 4 When the cast resin plate obtained in Example 1 was cut out and its tensile properties were measured, the elongation at break was 3.7%. When the cast resin plate obtained in Example 2 was similarly cut out and its tensile properties were measured, the elongation at break was 4.9%.

比較例4 BTレジンのみで注型樹脂を作成し引張り物性を測定し
たところ、破断伸度は1.5%であり実施例4に比較し
てかなり可撓性に欠けたもろいものであった。
Comparative Example 4 When a casting resin was prepared using only BT resin and its tensile properties were measured, the elongation at break was 1.5%, and compared to Example 4, it was considerably less flexible and brittle.

比較例5 実施例1の中でポリエーテルスルホンVICTREX1
00P(1,C,I社製)25部を加える工程を除いた
以外はすべて実施例1と同様にして樹脂組成物を得た。
Comparative Example 5 Polyether sulfone VICTREX1 in Example 1
A resin composition was obtained in the same manner as in Example 1 except for the step of adding 25 parts of 00P (manufactured by Company 1, C, I).

この樹脂組成物の粘度の温度依存性をレオベキシーアナ
ライザー(台本製作所製)で測定したところ最低粘度は
2ポイズであり実施例1に比べてかなり粘度が低下して
しまった。
The temperature dependence of the viscosity of this resin composition was measured using a Rheobexy Analyzer (manufactured by Script Seisakusho), and the lowest viscosity was 2 poise, which was considerably lower than that of Example 1.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも下記の成分を含有して成る樹脂組成物 A;あらかじめ当量以下の硬化剤で予備反応させた、一
分子中に少なくとも二個以上のエポキシ基を持つポリエ
ポキシ化合物縮合物 B;シアン酸エステル系樹脂 C;熱可塑性樹脂
(1) Resin composition A containing at least the following components; Polyepoxy compound condensate B having at least two or more epoxy groups in one molecule, pre-reacted with an equivalent or less amount of curing agent; Cyanide Acid ester resin C; thermoplastic resin
(2)C成分の熱可塑性樹脂が下記一般式で表わされる
ポリアリルエーテルスルホンであるところの特許請求の
範囲第一項記載のプリプレグ用樹脂組成物 (Ar−SO_2)_n Ar;▲数式、化学式、表等があります▼、▲数式、化
学式、表等があります▼、▲数式、化学式、表等があり
ます▼▲数式、化学式、表等があります▼ nは5以上の整数
(2) The resin composition for prepreg according to claim 1, wherein the thermoplastic resin of component C is polyallylether sulfone represented by the following general formula (Ar-SO_2)_n Ar; ▲ mathematical formula, chemical formula , tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ n is an integer of 5 or more
(3)B成分のシアン酸エステル系樹脂が (a)分子中にシアナト基を二個以上含有する多官能性
シアン酸エステル類あるいはそのプレポリマーとの混合
物、又は (b)(a)と分子中にマレイミド基を二個以上含有す
る多官能性マレイミド類あるいはそのプレポリマーとの
混合物 から成る特許請求の範囲第一項記載のプリプレグ用樹脂
組成物
(3) The cyanate ester resin of component B is (a) a mixture with a polyfunctional cyanate ester containing two or more cyanato groups in the molecule or a prepolymer thereof, or (b) a molecule with (a). The resin composition for prepreg according to claim 1, which comprises a polyfunctional maleimide containing two or more maleimide groups or a mixture thereof with a prepolymer.
JP9472786A 1986-04-25 1986-04-25 Resin composition for prepreg Pending JPS62252417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9472786A JPS62252417A (en) 1986-04-25 1986-04-25 Resin composition for prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9472786A JPS62252417A (en) 1986-04-25 1986-04-25 Resin composition for prepreg

Publications (1)

Publication Number Publication Date
JPS62252417A true JPS62252417A (en) 1987-11-04

Family

ID=14118145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9472786A Pending JPS62252417A (en) 1986-04-25 1986-04-25 Resin composition for prepreg

Country Status (1)

Country Link
JP (1) JPS62252417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018035A1 (en) * 1990-05-14 1991-11-28 Nova Corporation Of Alberta Cyanate ester resin composition containing an epoxy/aromatic adduct
WO2003035718A1 (en) * 2001-10-19 2003-05-01 Lonza Ag Hardenable cyanate compositions
WO2022202086A1 (en) * 2021-03-25 2022-09-29 三菱瓦斯化学株式会社 Thermosetting resin composition, prepreg, fiber reinforced composite material, and high pressure gas container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018035A1 (en) * 1990-05-14 1991-11-28 Nova Corporation Of Alberta Cyanate ester resin composition containing an epoxy/aromatic adduct
WO2003035718A1 (en) * 2001-10-19 2003-05-01 Lonza Ag Hardenable cyanate compositions
WO2022202086A1 (en) * 2021-03-25 2022-09-29 三菱瓦斯化学株式会社 Thermosetting resin composition, prepreg, fiber reinforced composite material, and high pressure gas container

Similar Documents

Publication Publication Date Title
EP0232368B1 (en) Aromatic bismaleimides and prepreg resins therefrom
US4691025A (en) Bismaleimides and prepreg resins therefrom
US4962162A (en) Resin composition of thermosetting resin and thermoplastic resin
US4853449A (en) Bismaleimide formulations containing olefinic ether modifiers
US4567216A (en) Thermoplastic modified epoxy compositions
US4593056A (en) Epoxy/aromatic amine resin systems containing aromatic trihydroxy compounds as cure accelerators
EP1275674A1 (en) Epoxy resin composition and prepreg made with the epoxy resin composition
US4743647A (en) Prepreg resin from aromatic bismaleimide and ethylenically unsaturated coreactant
JPH0554503B2 (en)
EP0298742B1 (en) Latent cure accelerators for cyanate esters
US4931496A (en) Damage tolerant fiber-reinforced composites based on cyanate ester/urea thermosetting composition
US4918157A (en) Thermosetting composition comprising cyanate ester, urea compound and epoxy resin
EP0133281A2 (en) Curable fibre reinforced epoxy resin composition
JPS62252417A (en) Resin composition for prepreg
JPS62277466A (en) Resin composition for prepreg
JPS62127317A (en) Epoxy resin composition for prepreg
JPS619417A (en) Addition polyimide composition
JPS62129308A (en) Epoxy resin composition having improved moldability
WO2021083583A1 (en) Epoxy resin compositions
JPS59174616A (en) Epoxy resin composition and prepreg
JPS62277424A (en) Curable resin composition
JPS62246924A (en) Curable resin composition
CA1223385A (en) Curable epoxy resin compositions
CA1271869A (en) Fiber resin matrix composition
JPS6368626A (en) Resin composition for prepreg