JPS6225176B2 - - Google Patents

Info

Publication number
JPS6225176B2
JPS6225176B2 JP14402181A JP14402181A JPS6225176B2 JP S6225176 B2 JPS6225176 B2 JP S6225176B2 JP 14402181 A JP14402181 A JP 14402181A JP 14402181 A JP14402181 A JP 14402181A JP S6225176 B2 JPS6225176 B2 JP S6225176B2
Authority
JP
Japan
Prior art keywords
weight
vinyl
parts
monomers
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14402181A
Other languages
Japanese (ja)
Other versions
JPS5845245A (en
Inventor
Tadao Fukumoto
Akihiko Kishimoto
Toshimasa Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14402181A priority Critical patent/JPS5845245A/en
Publication of JPS5845245A publication Critical patent/JPS5845245A/en
Publication of JPS6225176B2 publication Critical patent/JPS6225176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性に代表される機械的性質と耐
候性が均衡してすぐれ、かつ外観良好な成形品を
与え得る熱可塑性樹脂組成物に関するものであ
る。 代表的な耐衝撃性樹脂として知られている
ABS樹脂は、グラフトゴム基質たるジエン系ゴ
ムが劣化しやすいことに起因して耐候性が劣ると
いう重大な欠点を有している。この欠点を改良
し、耐衝撃性と耐候性の両者がすぐれた熱可塑性
樹脂の取得を目的とした探索が従来より行なわれ
ており、例えばグラフトゴム基質として(1)エチレ
ン―プロピレン―非共役ジエン系三元共重合ゴム
を用いる方法や(2)アクリル酸エステル系ゴム質重
合体を用いる方法などが提案されている。しかし
ながら、上記(1)法においては塊状重合法や溶液重
合法を採用しているため、高ゴム含量の重合体が
得られないこと、および溶媒の除去プロセスが繁
雑であることなどの問題があり、また上記(2)法に
おいても乳化重合法を採用しているため、ゴム質
重合体の粒子径コントロールが難かしく、重合体
回収プロセスが繁雑であることなどの問題があ
る。したがつて上記従来法では製造プロセス上い
くつかの問題があるばかりか、得られる熱可塑性
樹脂の耐衝撃性も十分満足できるものではない。 そこで本発明者らは上記従来法の問題点を解消
し、耐衝撃性と耐候性が均衡してすぐれた熱可塑
性樹脂を効率的に得ることを目的として、いわゆ
るビニル系重合体に対するゴムブレンドの観点か
ら検討を行なつた結果、ブレンドゴム質重合体と
してエチレンとα、β―不飽和カルボン酸グリシ
ジルエステルとの共重合体が有効であることを知
見し、さらにビニル系重合体としてα、β―不飽
和カルボン酸を少割合共重合せしめた変性ビニル
系重合体を用いることにより最良の効果が得られ
ることを見出し本発明に到達した。 すなわち、本発明は(A)(イ)芳香族ビニル系モノ
マ、シアン化ビニル系モノマおよび(メタ)アク
リル酸エステル系モノマよりなる群から選ばれた
少なくとも1種のビニルモノマに対し、(ロ)α、β
―不飽和カルボン酸の少なくとも1種を0.01〜5
重量%共重合してなる変性ビニル系重合体および
(B)エチレンに対しα、β―不飽和カルボン酸グリ
シジルエステルの少なくとも1種を0.5〜30重量
%共重合してなるエチレン系共重合体を、全組成
物100重量部中に占める割合が(A):50〜99重量
部、(B):1〜50重量部となるように配合してなる
熱可塑性樹脂組成物(第1発明)および(A)(ロ)α、
β―不飽和カルボン酸の共重合量が0.1〜10重量
%である上記(A)と同様の変性ビニル系重合体、(B)
上記と同様のエチレン系共重合体および(C)芳香族
ビニル系モノマ、シアン化ビニル系モノマおよび
(メタ)アクリル酸エステル系モノマよりなる群
から選ばれた少なくとも1種のビニルモノマから
なるビニル系重合体を、全組成物100重量部中に
占める割合が、(A):5〜90重量部、(B):1〜50重
量部および(C):5〜90重量部となるように配合し
てなる熱可塑性樹脂組成物(第2発明)を提供す
るものである。 本発明の熱可塑性樹脂組成物は上記従来法のご
とくグラフト重合プロセスを経ることなく単純な
ブレンドコンパウンドとして得られるため、製造
プロセス上の種々の問題点が解消される。また本
発明はスチレン/アクリロニトリル共重合体など
のビニル系重合体をアクリル酸などのα、β―不
飽和カルボン酸で変性して用いることを特徴と
し、これによりブレンドゴム質重合体(エチレ
ン/α、β―不飽和カルボン酸グリシジルエステ
ル共重合体)との親和性が極めて向上するため、
十分な耐衝撃性と耐候性を具備した組成物を得る
ことができる。 本発明で用いる変性ビニル系重合体(A)とは、(イ)
スチレン、α―メチルスチレン、o―メチルスチ
レン、m―メチルスチレン、p―メチルスチレ
ン、o―クロロスチレン、m―クロロスチレンお
よびp―クロロスチレンなどの芳香族ビニル系モ
ノマ、アクリロニトリルおよびメタクリロニトリ
ルなどのシアン化ビニル系モノマおよびメタクリ
ル酸メチル、メタクリル酸エチルおよびアクリル
酸メチルなどの(メタ)アクリル酸エステル系モ
ノマよりなる群から選ばれた少なくとも1種のビ
ニル系モノマに対し、(ロ)α、β―不飽和カルボン
酸の少なくとも1種を特定量共重合したものであ
る。上記(イ)ビニル系モノマの中ではとくにスチレ
ン、α―メチルスチレン、アクリロニトリルおよ
びメタクリル酸メチルが好適であり、これらは1
種または2種以上を組合せて使用できる。またこ
こでいう(ロ)α、β―不飽和カルボン酸としてはア
クリル酸、メタクリル酸、エタクリル酸、マレイ
ン酸、フマル酸、イタコン酸などが挙げられる
が、アクリル酸およびメタクリル酸が好ましく使
用される。 この変性ビニル系重合体(A)における(ロ)α、β―
不飽和カルボン酸の共重合量は、上記第1発明の
場合は0.01〜5重量%、好ましくは0.05〜3重量
%か、また上記第2発明の場合は0.1〜10重量
%、好ましくは0.5〜5重量%が適当であり、い
ずれの場合も共重合量が上記下限以下では下記に
説明する(B)エチレン系共重合体との親和性が不十
分で望ましい耐衝撃性が得られず、また上記上限
以上では組成物からなる成形品の表面光沢が低下
するため好ましくない。 代表的な変性ビニル系重合体(A)としてはスチレ
ン/アクリル酸共重合体、スチレン/アクリロニ
トリル/アクリル酸共重合体、スチレン/メタク
リル酸メチル/アクリル酸共重合体、スチレン/
アクリロニトリル/メタクリル酸メチル/アクリ
ル酸共重合体およびこれらにおいてアクリル酸の
代りにメタクリル酸を用いた共重合体などが挙げ
られる。これらの変性ビニル系共重合体(A)は塊状
重合法、塊状―懸濁重合法などの公知の重合法に
より製造することができる。 一方、本発明で使用するエチレン系共重合体(B)
とは、エチレンに対し、α、β―不飽和カルボン
酸グリシジルエステルを0.5〜30重量%共重合し
てなるグリシジル基含有エチレン系共重合体であ
る。ここでα、β―不飽和カルボン酸グリシジル
エステルとは一般式
The present invention relates to a thermoplastic resin composition that has an excellent balance of mechanical properties such as impact resistance and weather resistance, and is capable of producing molded articles with good appearance. Known as a typical impact-resistant resin
ABS resin has a serious drawback of poor weather resistance due to the fact that the diene rubber, which is the graft rubber substrate, easily deteriorates. Searches have been conducted to improve this drawback and obtain thermoplastic resins with excellent both impact resistance and weather resistance.For example, as a graft rubber substrate (1) ethylene-propylene-nonconjugated diene A method using a tertiary copolymer rubber and (2) a method using an acrylic acid ester rubber polymer have been proposed. However, since method (1) above uses bulk polymerization or solution polymerization, there are problems such as the inability to obtain a polymer with a high rubber content and the complicated process of removing the solvent. In addition, since the emulsion polymerization method is adopted in the above method (2), there are problems such as difficulty in controlling the particle size of the rubbery polymer and a complicated polymer recovery process. Therefore, the above-mentioned conventional method not only has several problems in terms of the manufacturing process, but also the impact resistance of the resulting thermoplastic resin is not fully satisfactory. Therefore, the present inventors aimed to solve the problems of the above-mentioned conventional methods and efficiently obtain a thermoplastic resin with excellent balance between impact resistance and weather resistance. As a result of investigation from this viewpoint, we found that a copolymer of ethylene and α,β-unsaturated carboxylic acid glycidyl ester is effective as a blended rubbery polymer, and that a copolymer of α,β-unsaturated carboxylic acid glycidyl ester is effective as a blended rubber polymer. -We have discovered that the best effects can be obtained by using a modified vinyl polymer copolymerized with a small proportion of unsaturated carboxylic acid, and have thus arrived at the present invention. That is, the present invention provides (b) α for at least one vinyl monomer selected from the group consisting of (A) (b) aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylic acid ester monomers. ,β
- At least one unsaturated carboxylic acid from 0.01 to 5
A modified vinyl polymer obtained by copolymerizing % by weight, and
(B) The proportion of the ethylene copolymer obtained by copolymerizing ethylene with 0.5 to 30% by weight of at least one α,β-unsaturated carboxylic acid glycidyl ester in 100 parts by weight of the total composition is ( A): 50 to 99 parts by weight, (B): 1 to 50 parts by weight of a thermoplastic resin composition (first invention), and (A) (b) α,
(B) a modified vinyl polymer similar to the above (A) in which the copolymerized amount of β-unsaturated carboxylic acid is 0.1 to 10% by weight;
A vinyl polymer consisting of the same ethylene copolymer as above and (C) at least one vinyl monomer selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylic acid ester monomers. The proportions of the combined components in 100 parts by weight of the total composition are (A): 5 to 90 parts by weight, (B): 1 to 50 parts by weight, and (C): 5 to 90 parts by weight. The present invention provides a thermoplastic resin composition (second invention) comprising: Since the thermoplastic resin composition of the present invention can be obtained as a simple blend compound without undergoing the graft polymerization process as in the conventional method, various problems in the manufacturing process are solved. Furthermore, the present invention is characterized in that a vinyl polymer such as a styrene/acrylonitrile copolymer is used after being modified with an α,β-unsaturated carboxylic acid such as acrylic acid. , β-unsaturated carboxylic acid glycidyl ester copolymer).
A composition having sufficient impact resistance and weather resistance can be obtained. The modified vinyl polymer (A) used in the present invention is (a)
Aromatic vinyl monomers such as styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-chlorostyrene, m-chlorostyrene, and p-chlorostyrene, acrylonitrile, methacrylonitrile, etc. (b) α, A specific amount of at least one β-unsaturated carboxylic acid is copolymerized. Among the vinyl monomers (a) above, styrene, α-methylstyrene, acrylonitrile, and methyl methacrylate are particularly preferred;
A species or a combination of two or more species can be used. The α,β-unsaturated carboxylic acids mentioned here include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, etc., with acrylic acid and methacrylic acid being preferably used. . (b) α, β- in this modified vinyl polymer (A)
The amount of copolymerized unsaturated carboxylic acid is 0.01 to 5% by weight, preferably 0.05 to 3% by weight in the case of the first invention, and 0.1 to 10% by weight, preferably 0.5 to 3% by weight in the case of the second invention. 5% by weight is appropriate; in any case, if the copolymerization amount is below the above lower limit, the affinity with the ethylene copolymer (B) explained below will be insufficient and the desired impact resistance will not be obtained; If it exceeds the above upper limit, the surface gloss of the molded product made from the composition will decrease, which is not preferable. Typical modified vinyl polymers (A) include styrene/acrylic acid copolymer, styrene/acrylonitrile/acrylic acid copolymer, styrene/methyl methacrylate/acrylic acid copolymer, and styrene/acrylic acid copolymer.
Examples thereof include acrylonitrile/methyl methacrylate/acrylic acid copolymers and copolymers in which methacrylic acid is used instead of acrylic acid. These modified vinyl copolymers (A) can be produced by known polymerization methods such as bulk polymerization and bulk-suspension polymerization. On the other hand, the ethylene copolymer (B) used in the present invention
is a glycidyl group-containing ethylene copolymer obtained by copolymerizing 0.5 to 30% by weight of α,β-unsaturated carboxylic acid glycidyl ester with respect to ethylene. Here, α,β-unsaturated carboxylic acid glycidyl ester has the general formula

【式】(式中、Rは水 素原子、低級アルキル基あるいはグリシジルエス
テル基で置換された低級アルキル基である。)で
示され、具体的にはアクリル酸グリシジル、メタ
クリル酸グリシジル、エタクリル酸グリシジル、
イタコン酸グリシジルなどが挙げられるが、なか
でもメタクリル酸グリシジルが好ましく使用でき
る。エチレン系共重合体(B)におけるα、β―不飽
和カルボン酸グリシジルエステルの共重合量は
0.5〜30重量%、とくに1〜20重量%の範囲が適
当であり、0.5重量%以下では変性ビニル系重合
体(A)との親和性が十分発揮できず、また30重量%
以上ではエチレン系共重合体自体の柔軟性が損な
われ、いずれもすぐれた機械的性質を有する組成
物が得られないため好ましくない。 また、エチレン系共重合体(B)には、少割合の他
の共重合可能な不飽和モノマ、たとえばプロピレ
ン、ブデン―1などのα―オレフイン類、ビニル
エーテル類、酢酸ビニル、プロピオン酸ビニルな
どのビニルエステル類、メチル、エチル、プロピ
ル、ブチルなどのアクリル類およびメタクリル酸
エステル類、アクリロニトリル、スチレン、一酸
化炭素などを一種以上共重合せしめてもよい。 エチレン系共重合体(B)の具体例としては、エチ
レン/メタクリル酸グリシジル共重合体、エチレ
ン/酢酸ビニル/メタクリル酸グリシジル共重合
体、エチレン/一酸化炭素/メタクリル酸グリシ
ジル共重合体、エチレン/アクリル酸グリシジル
共重合体、エチレン/アクリル酸グリシジル/酢
酸ビニル共重合体などが挙げられ、これらは公知
の重合法により製造することができる。 本発明組成物において、全組成物100重量部中
に占めるエチレン系共重合体(B)の割合は1〜50重
量部、とくに5〜40重量部が好ましく、1重量部
以下では組成物の耐衝撃性が不十分であり、50重
量部以上では、かえつて引張特性などの機械的性
質が低下するため好ましくない。 本発明においては変性ビニル系共重合体(A)とエ
チレン系共重合体(B)の二成分を上記の割合で配合
することにより目的とする耐衝撃性と耐候性を具
備した熱可塑性樹脂組成物(第1発明)を得るこ
とができるが、さらにはこの変性ビニル系共重合
体(A)と変性共重合成分としてのα、β―不飽和カ
ルボン酸を含有しないビニル系重合体(C)の混合物
に対しエチレン系共重合体(B)を配合した三成分系
の熱可塑性樹脂組成物(第2発明)によつても同
様の目的を達成することができる。 ここで用いるビニル系重合体(C)とはスチレン、
α―メチルスチレンなどの芳香族ビニル系モノ
マ、アクリロニトリルなどのシアン化ビニル系モ
ノマおよびメタアクリル酸メチルなどの(メタ)
アクリル酸エステル系モノマから選ばれた少なく
とも1種を重合してなる重合体であり、具体的に
はポリスチレン、ポリメタアクリル酸メチル、ス
チレン/アクリロニトリル共重合体、スチレン/
メタアクリル酸メチル共重合体、スチレン/アク
リロニトリル/メタアクリル酸メチル共重合体な
どが挙げられ、これらは懸濁重合法、塊状重合
法、塊状−懸濁重合法などの公知の重合方法によ
り製造される。 本発明の三成分系組成物(第2発明)における
変性ビニル系共重合体(A)、エチレン系共重合体(B)
およびビニル系重合体(C)の配合比は全組成物100
重量部中に(A)が5〜90重量部、(B)が1〜50重量
部、(C)が5〜90重量部を占める割合が適当であ
る。この三成分系熱可塑性樹脂組成物において
は、変性ビニル系共重合体(A)のα、β―不飽和カ
ルボン酸共重合量をやや高くし、これをビニル系
重合体(C)で希釈するといういわゆるマスターバツ
チ法も採用される。 なお本発明の熱可塑性樹脂組成物に対し、所望
により有機スルホン酸塩および硫酸エステル塩か
ら選ばれた少なくとも1種を添加する場合には、
耐衝撃性および耐候性が一層向上した組成物を得
ることができる。ここでいう有機スルホン酸塩お
よび硫酸エステル塩とは、一般式R(SO3M)n
およびR(OSO3M)nで示されるものである。
ただし、式中Mは金属原子をRは有機基を、ま
た、nは1以上の整数を示す。Mの好ましい例と
してはリチウム、ナトリウム、カリウムなどのア
ルカリ金属類、マグネシウム、カルシウム、スト
ロンチウム、バリウムなどのアルカリ土類金属、
あるいは亜鉛、アルミニウムなどが挙げられる。
Rの好ましい例としてはフエニル、α―ナフチ
ル、β―ナフチル、ドデシルフエニル、ドデシル
ナフチル、アリル、メタクリルなど、あるいは高
分子量体であるポリスチレン、ポリエチレングリ
コールなどである。 有機スルホン酸塩の好ましい例としては一般式 (ただし、式中Mはリチウム、ナトリウム、カ
リウム、カルシウム、R′およびR″はメチル、エ
チル、フエニル、2―ヒドロキシエチル、4―ヒ
ドロキシブチルである)で示される化合物、ドデ
シルベンゼンスルホン酸ナトリウム、ドデシルナ
フタレンスルホン酸ナトリウム、メタクリルスル
ホン酸ナトリウム、1,5―ナフタレンジスルホ
ン酸カリウム、ナフタレンスルホン酸ホルマリン
縮合物、スルホン化ポリスチレンのナトリウム塩
などである。硫酸エステル塩の好ましい例として
はラウリル硫酸ナトリウム、ラウリル硫酸カリウ
ム、ステアリル硫酸カルシウム、ステアリル硫酸
バリウム、ポリオキシエチレンエーテル硫酸ナト
リウム、ポリオキシエチレンドデシルフエニルエ
ーテル硫酸ナトリウムなどである。これらの有機
スルホン酸塩および硫酸エステル塩は2種類以上
併用してもよい。これらの有機スルホン酸塩およ
び硫酸エステル塩の添加量は熱可塑性樹脂組成物
100重量部に対し10重量部以下、好ましくは0.1〜
5重量部が適当であり、10重量部以上では組成物
の色調が低下するため好ましくない。 また、本発明の熱可塑性樹脂組成物には、本発
明の目的を損なわない範囲で通常の添加剤、たと
えば酸化防止剤、紫外線吸収剤、熱安定剤、滑
剤、離型剤、染料および顔料を含む着色剤、繊維
状および粒状の充填剤(たとえば、ガラス繊維、
ガラスビーズ、炭素繊維、炭酸カルシウム、炭酸
マグネシウム、硫酸バリウム、微粉ケイ酸、ワラ
ステナイト、タルク、クレー、マイカ、セリサイ
ト、ゼオライト、ペンナイト、ドロマイト、カオ
リンなど)および強化剤、核化剤、難燃剤などで
変性されていてもよい。これらの添加剤は1種ま
たは2種以上を併用して添加し得る。 また少量の他の熱可塑性樹脂を添加してもよ
い。 本発明の熱可塑性樹脂組成物の製造方法には特
に限定がないが、二者もしくは三者の重合体混合
物および必要に応じ添加されるその他の添加剤
を、変性ビニル系共重合体(A)の軟化点以上の温度
で溶融混合する方法が好ましい。具体的には重合
体(A)および(B)を溶融混合する方法、重合体(A)、(B)
および(C)を溶融混合する方法、重合体(A)および(C)
の溶融混合物にさらに重合体(B)を溶融混合する方
法およびこれらにおいて所望の添加剤を同時に溶
融混合する方法などが挙げられる。なお、溶融混
合手段としてはバンバリーミキサーおよび押出機
などの任意の手段が採用し得る。 かくして得られる本発明の熱可塑性樹脂組成物
は、耐衝撃性や引張特性などの機械的性質と耐候
性が均衡してすぐれるものであり、この特性を生
かした種々の用途に適用が期待できる。 以下に実施例を挙げて本発明の効果をさらに詳
述する。なお実施例における機械的性質の評価は
ASTM規格に準じて測定した値である。 実施例1〜7および比較例1〜4 第1表に示した変性ビニル系共重合体(A)、エチ
レン系共重合体(B)および添加剤をそれぞれ第1表
の割合で混合し、250℃に設定したスクリユー押
出機で溶融混練―ペレタイズした。各ペレツトか
ら射出成形により試験片を成形し、その機械的性
質、耐候性および成形品外観を評価した結果を第
1表に示す。 なお、1/4″アイゾツト衝撃試験片については、
ウエーザーメーター100時間照射前(a)および照射
後(b)の衝撃強さを測定し、照射後の衝撃強さの低
下の程度を知ることにより、耐衝撃性と耐候性を
同時に評価した。 成形品外観については試験片を目視で判定する
ことにより行ない、◎〜光沢があり極めて良好、
〇〜良好、×〜光沢が損なわれ不良を判定基準と
した。 また、下記第1表および第2表中の略記号の内
容は次のとおりである。 ST :スチレン AN :アクリロニトリル MMA:メタクリル酸メチル AA :アクリル酸 MAA:メタクリル酸 MLA:マレイン酸の無水物 E :エチレン GMA:メタクリル酸グリシジル VA :酢酸ビニル MA :アクリル酸メチル SDBS:ドデシルベンゼンスルホン酸ナトリ
ウム SSIA:3,5―ジカルボンキシベンゼンス
ルホン酸ナトリウム LSN :ラウリル硫酸ナトリウム 第1表の結果から明らかなように、本発明の熱
可塑性樹脂組成物(実施例1〜7)は耐衝撃性お
よび引張特性が極めてすぐれ、かつ耐候性および
成形品外観をも均衡して満足するものである。 一方、α、β―不飽和カルボン酸で変性して
[Formula] (wherein R is a hydrogen atom, a lower alkyl group, or a lower alkyl group substituted with a glycidyl ester group), specifically glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate,
Examples include glycidyl itaconate, among which glycidyl methacrylate is preferably used. The copolymerized amount of α,β-unsaturated carboxylic acid glycidyl ester in the ethylene copolymer (B) is
A range of 0.5 to 30% by weight, especially 1 to 20% by weight is appropriate; if it is less than 0.5% by weight, sufficient affinity with the modified vinyl polymer (A) cannot be exhibited;
The above is not preferable because the flexibility of the ethylene copolymer itself is impaired and a composition with excellent mechanical properties cannot be obtained. The ethylene copolymer (B) also contains a small proportion of other copolymerizable unsaturated monomers, such as propylene, α-olefins such as budene-1, vinyl ethers, vinyl acetate, vinyl propionate, etc. One or more types of vinyl esters, acrylics and methacrylic esters such as methyl, ethyl, propyl, butyl, acrylonitrile, styrene, carbon monoxide, etc. may be copolymerized. Specific examples of the ethylene copolymer (B) include ethylene/glycidyl methacrylate copolymer, ethylene/vinyl acetate/glycidyl methacrylate copolymer, ethylene/carbon monoxide/glycidyl methacrylate copolymer, and ethylene/glycidyl methacrylate copolymer. Examples include glycidyl acrylate copolymer and ethylene/glycidyl acrylate/vinyl acetate copolymer, which can be produced by known polymerization methods. In the composition of the present invention, the proportion of the ethylene copolymer (B) in 100 parts by weight of the total composition is preferably 1 to 50 parts by weight, particularly 5 to 40 parts by weight. The impact resistance is insufficient, and if the amount exceeds 50 parts by weight, mechanical properties such as tensile properties will deteriorate, which is not preferable. In the present invention, a thermoplastic resin composition that has the desired impact resistance and weather resistance is obtained by blending two components, a modified vinyl copolymer (A) and an ethylene copolymer (B), in the above ratio. Furthermore, this modified vinyl copolymer (A) and a vinyl polymer (C) that does not contain α,β-unsaturated carboxylic acid as a modified copolymerization component can be obtained. The same object can also be achieved by a three-component thermoplastic resin composition (second invention) in which the ethylene copolymer (B) is blended with the mixture. The vinyl polymer (C) used here is styrene,
Aromatic vinyl monomers such as α-methylstyrene, vinyl cyanide monomers such as acrylonitrile, and (meth)
A polymer formed by polymerizing at least one selected from acrylic acid ester monomers, specifically polystyrene, polymethyl methacrylate, styrene/acrylonitrile copolymer, styrene/
Examples include methyl methacrylate copolymer, styrene/acrylonitrile/methyl methacrylate copolymer, etc., which are produced by known polymerization methods such as suspension polymerization, bulk polymerization, and bulk-suspension polymerization. Ru. Modified vinyl copolymer (A) and ethylene copolymer (B) in the three-component composition of the present invention (second invention)
The blending ratio of vinyl polymer (C) is 100% of the total composition.
Appropriate ratios are such that (A) occupies 5 to 90 parts by weight, (B) occupies 1 to 50 parts by weight, and (C) occupies 5 to 90 parts by weight. In this three-component thermoplastic resin composition, the amount of α,β-unsaturated carboxylic acid copolymerized in the modified vinyl copolymer (A) is slightly increased, and this is diluted with the vinyl polymer (C). The so-called master batch method is also adopted. In addition, when adding at least one selected from organic sulfonates and sulfate ester salts to the thermoplastic resin composition of the present invention, if desired,
A composition with further improved impact resistance and weather resistance can be obtained. The organic sulfonate and sulfuric ester salt mentioned here have the general formula R(SO 3 M)n
and R(OSO 3 M)n.
However, in the formula, M represents a metal atom, R represents an organic group, and n represents an integer of 1 or more. Preferred examples of M include alkali metals such as lithium, sodium, and potassium; alkaline earth metals such as magnesium, calcium, strontium, and barium;
Alternatively, zinc, aluminum, etc. may be mentioned.
Preferred examples of R include phenyl, α-naphthyl, β-naphthyl, dodecyl phenyl, dodecylnaphthyl, allyl, methacryl, and high molecular weight substances such as polystyrene and polyethylene glycol. A preferable example of the organic sulfonate is the general formula (wherein M is lithium, sodium, potassium, calcium, R' and R'' are methyl, ethyl, phenyl, 2-hydroxyethyl, 4-hydroxybutyl), sodium dodecylbenzenesulfonate, These include sodium dodecylnaphthalene sulfonate, sodium methacryl sulfonate, potassium 1,5-naphthalenedisulfonate, formalin condensate of naphthalene sulfonate, sodium salt of sulfonated polystyrene, etc. Preferred examples of sulfate ester salts include sodium lauryl sulfate and lauryl sulfate. Potassium sulfate, calcium stearyl sulfate, barium stearyl sulfate, sodium polyoxyethylene ether sulfate, sodium polyoxyethylene dodecyl phenyl ether sulfate, etc. Two or more of these organic sulfonates and sulfate ester salts may be used in combination. The amount of these organic sulfonate salts and sulfate ester salts is determined by
10 parts by weight or less, preferably 0.1 to 100 parts by weight
A suitable amount is 5 parts by weight, and 10 parts by weight or more is not preferred because the color tone of the composition deteriorates. In addition, the thermoplastic resin composition of the present invention may contain conventional additives such as antioxidants, ultraviolet absorbers, heat stabilizers, lubricants, mold release agents, dyes, and pigments within a range that does not impair the purpose of the present invention. Contains colorants, fibrous and particulate fillers (e.g. glass fibers,
glass beads, carbon fiber, calcium carbonate, magnesium carbonate, barium sulfate, finely divided silicic acid, wollastenite, talc, clay, mica, sericite, zeolite, pennite, dolomite, kaolin, etc.) and reinforcing agents, nucleating agents, flame retardants It may be modified with, etc. These additives may be added singly or in combination of two or more. Small amounts of other thermoplastic resins may also be added. Although there are no particular limitations on the method for producing the thermoplastic resin composition of the present invention, a mixture of two or three polymers and other additives added as necessary are mixed into a modified vinyl copolymer (A), A method of melting and mixing at a temperature higher than the softening point of is preferred. Specifically, a method of melt-mixing polymers (A) and (B), polymers (A), (B)
and (C), a method of melt-mixing polymers (A) and (C)
Examples include a method in which the polymer (B) is further melt-mixed into the molten mixture, and a method in which desired additives are simultaneously melt-mixed in the polymer (B). Note that as the melt-mixing means, any means such as a Banbury mixer and an extruder can be employed. The thermoplastic resin composition of the present invention obtained in this way has excellent mechanical properties such as impact resistance and tensile properties, and excellent weather resistance in a well-balanced manner, and can be expected to be applied to a variety of uses that take advantage of these properties. . The effects of the present invention will be explained in further detail with reference to Examples below. In addition, the evaluation of mechanical properties in the examples is
This is a value measured according to ASTM standards. Examples 1 to 7 and Comparative Examples 1 to 4 The modified vinyl copolymer (A), ethylene copolymer (B) and additives shown in Table 1 were mixed in the proportions shown in Table 1, and 250 The mixture was melt-kneaded and pelletized using a screw extruder set at ℃. Test pieces were molded from each pellet by injection molding, and the mechanical properties, weather resistance, and appearance of the molded products were evaluated. Table 1 shows the results. Regarding the 1/4″ Izotsu impact test piece,
Impact resistance and weather resistance were simultaneously evaluated by measuring the impact strength before (a) and after (b) irradiation with a weather meter for 100 hours, and by determining the degree of decrease in impact strength after irradiation. The appearance of the molded product was determined by visual inspection of the test piece.
The criteria for judgment were ○ - good, and × - poor due to loss of gloss. Further, the contents of the abbreviations in Tables 1 and 2 below are as follows. ST: Styrene AN: Acrylonitrile MMA: Methyl methacrylate AA: Acrylic acid MAA: Methacrylic acid MLA: Maleic acid anhydride E: Ethylene GMA: Glycidyl methacrylate VA: Vinyl acetate MA: Methyl acrylate SDBS: Sodium dodecylbenzenesulfonate SSIA: Sodium 3,5-dicarboxybenzenesulfonate LSN: Sodium lauryl sulfate As is clear from the results in Table 1, the thermoplastic resin compositions of the present invention (Examples 1 to 7) have excellent impact resistance and tensile properties. It has excellent weather resistance and a balanced appearance of molded products. On the other hand, modified with α,β-unsaturated carboxylic acid

【表】 いないビニル系共重合体をベースとする場合(比
較例1)や変性ビニル系共重合体にエポキシ基を
含有しないポリエチレンを配合する場合(比較例
2)は重合体同志の親和性が劣るため、耐衝撃性
が極めて小さい組成物しか得られない。 また変性ビニル系共重合体(A)に対するα、β―
不飽和カルボン酸の共重合量が5重量%以上(比
較例3)では組成物の流動性が低下するため成形
品の外観が極めて悪化し、エチレン系共重合体(B)
の配合量が50重量部以上(比較例4)では組成物
の引張特性の低下が著しくなるため好ましくな
い。 実施例8〜12および比較例5〜6 第2表に示した変性ビニル系共重合体(A)、エチ
レン系共重合体(B)、ビニル系重合体(C)および添加
剤をそれぞれ第2表の割合で混合し、250℃に設
定したスクリユー押出機により溶融混練ペレタイ
ズした。各ペレツトから射出成形により試験片を
成形し、その機械的性質、耐候性および形品外観
を評価した結果を第2表に示す。
[Table] When using a vinyl copolymer that does not contain epoxy groups as a base (Comparative Example 1) or when blending polyethylene that does not contain epoxy groups with a modified vinyl copolymer (Comparative Example 2), the affinity between the polymers is As a result, only compositions with extremely low impact resistance can be obtained. Also, α, β- for modified vinyl copolymer (A)
If the copolymerization amount of unsaturated carboxylic acid is 5% by weight or more (Comparative Example 3), the fluidity of the composition decreases, resulting in extremely poor appearance of the molded product, and the ethylene copolymer (B)
If the blending amount is 50 parts by weight or more (Comparative Example 4), the tensile properties of the composition will deteriorate significantly, which is not preferable. Examples 8 to 12 and Comparative Examples 5 to 6 The modified vinyl copolymer (A), ethylene copolymer (B), vinyl polymer (C) and additives shown in Table 2 were each They were mixed in the proportions shown in the table and melt-kneaded and pelletized using a screw extruder set at 250°C. Test pieces were molded from each pellet by injection molding, and the mechanical properties, weather resistance, and appearance of the molded pieces were evaluated. The results are shown in Table 2.

【表】 第2表の結果から明らかなように、本発明の三
成分系熱可塑性樹脂組成物(実施例8〜12)もま
た耐衝撃性に代表される機械的性質、耐候性およ
び成形品外観を均衡に満足した成形品を与える。 一方、変性ビニル系共重合体(A)に対するα、β
―不飽和カルボン酸共重合量が0.1重量%以下
(比較例5)および10重量%以上(比較例6)の
場合は重合体同志の親和性が向上せず、十分な耐
衝撃性が得られない。
[Table] As is clear from the results in Table 2, the three-component thermoplastic resin compositions of the present invention (Examples 8 to 12) also have mechanical properties such as impact resistance, weather resistance, and molded products. To give a molded product with a well-balanced appearance. On the other hand, α and β for modified vinyl copolymer (A)
- When the amount of unsaturated carboxylic acid copolymerized is 0.1% by weight or less (Comparative Example 5) or 10% by weight or more (Comparative Example 6), the affinity between polymers does not improve and sufficient impact resistance cannot be obtained. do not have.

Claims (1)

【特許請求の範囲】 1 (A)(イ)芳香族ビニル系モノマ、シアン化ビニル
系モノマおよび(メタ)アクリル酸エステル系モ
ノマよりなる群から選ばれた少なくとも1種のビ
ニルモノマに対し、(ロ)α、β―不飽和カルボン酸
の少なくとも1種を0.01〜5重量%共重合してな
る変性ビニル系重合体および(B)エチレンに対し
α、β―不飽和カルボン酸グリシジルエステルの
少なくとも1種を0.5〜30重量%共重合してなる
エチレン系共重合体を、全組成物100重量部中に
占める割合が(A):50〜99重量部、(B):1〜50重量
部となるように配合してなる熱可塑性樹脂組成
物。 2 (A)(イ)芳香族ビニル系モノマ、シアン化ビニル
系モノマおよび(メタ)アクリル酸エステル系モ
ノマよりなる群から選ばれた少なくとも1種のビ
ニルモノマに対し、(ロ)α、β―不飽和カルボン酸
の少なくとも1種を0.1〜10重量%共重合してな
る変性ビニル系重合体、(B)エチレンに対しα、β
―不飽和カルボン酸グリシジルエステルの少なく
とも1種を0.5〜30重量%共重合してなるエチレ
ン系共重合体および(C)芳香族ビニル系モノマ、シ
アン化ビニル系モノマおよび(メタ)アクリル酸
エステル系モノマよりなる群から選ばれた少なく
とも1種のビニルモノマからなるビニル系重合体
を、全組成物100重量部中に占める割合が(A):5
〜90重量部、(B):1〜50重量部および、(C):5〜
90重量部となるように配合してなる熱可塑性樹脂
組成物。
[Scope of Claims] 1 (A) (B) At least one vinyl monomer selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylic acid ester monomers, ) a modified vinyl polymer copolymerized with 0.01 to 5% by weight of at least one α,β-unsaturated carboxylic acid; and (B) at least one α,β-unsaturated carboxylic acid glycidyl ester based on ethylene. The proportion of the ethylene copolymer obtained by copolymerizing 0.5 to 30% by weight of (A) to 100 parts by weight of the total composition is 50 to 99 parts by weight, and 1 to 50 parts by weight (B). A thermoplastic resin composition formulated as follows. 2 (A) (a) At least one vinyl monomer selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylic acid ester monomers, (b) A modified vinyl polymer obtained by copolymerizing at least one saturated carboxylic acid from 0.1 to 10% by weight, (B) α, β with respect to ethylene.
- Ethylene copolymer obtained by copolymerizing 0.5 to 30% by weight of at least one type of unsaturated carboxylic acid glycidyl ester, and (C) aromatic vinyl monomer, vinyl cyanide monomer, and (meth)acrylic acid ester type The proportion of the vinyl polymer made of at least one vinyl monomer selected from the group consisting of monomers in 100 parts by weight of the total composition is (A): 5
~90 parts by weight, (B): 1 to 50 parts by weight, and (C): 5 to
A thermoplastic resin composition containing 90 parts by weight.
JP14402181A 1981-09-14 1981-09-14 Thermoplastic resin composition Granted JPS5845245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14402181A JPS5845245A (en) 1981-09-14 1981-09-14 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14402181A JPS5845245A (en) 1981-09-14 1981-09-14 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5845245A JPS5845245A (en) 1983-03-16
JPS6225176B2 true JPS6225176B2 (en) 1987-06-02

Family

ID=15352477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14402181A Granted JPS5845245A (en) 1981-09-14 1981-09-14 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5845245A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188443A (en) * 1984-03-09 1985-09-25 Toray Ind Inc Thermoplastic resin composition
JPS6195052A (en) * 1984-10-16 1986-05-13 Sumitomo Naugatuck Co Ltd Heat-resistant resin composition with high thermal stability
JPS61266427A (en) * 1985-05-20 1986-11-26 Mitsubishi Petrochem Co Ltd Water-absorptive resin composition and its production
JPH0717839B2 (en) * 1986-11-29 1995-03-01 三菱油化株式会社 Self-extinguishing polymer composition

Also Published As

Publication number Publication date
JPS5845245A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
CA2288863C (en) Resin composition containing graft polymer having multilayer structure
JP4054042B2 (en) Thermoplastic resin composition and molded article thereof
JP2006528994A (en) Styrenic thermoplastic resin composition with excellent low gloss and impact resistance
US6187862B1 (en) Weatherable resinous composition having improved opacity and impact strength
US6380306B1 (en) Thermoplastic molding compounds
JPS6225176B2 (en)
JPH01101355A (en) Thermoplastic resin composition
JPH08134312A (en) Resin composition excellent in impact resistance
US4395516A (en) Thermoplastic resin compositions comprising copolymer of unsaturated dicarboxylic acid anhydride and vinyl aromatic monomer, ABS, and methylmethacrylate polymer
JPS6313453B2 (en)
KR20190080603A (en) Thermoplastic resin composition and molded product using the same
JPH0354134B2 (en)
JP5708979B2 (en) Polycarbonate resin composition and molded product
EP0769522B1 (en) Antistatic agent for polymer compositions
JP4416873B2 (en) Styrenic thermoplastic resin composition and styrene thermoplastic molded article using the same
JPH0354135B2 (en)
JPS60188443A (en) Thermoplastic resin composition
JP7434947B2 (en) Flowability improver for aromatic polycarbonate resin, aromatic polycarbonate resin composition, and molded products thereof
JP3025333B2 (en) Thermoplastic resin composition
JPS5949254A (en) Thermoplastic resin composition
JPS60202139A (en) Thermoplastic resin composition
JPH0347852A (en) Thermoplastic resin composition
JPS5842648A (en) Heat-resistant resin composition having good flow characteristics
JPH04145151A (en) Flame-retardant resin composition
JPH0328258A (en) Thermoplastic resin composition