JPS62251632A - Bathometer - Google Patents

Bathometer

Info

Publication number
JPS62251632A
JPS62251632A JP9594586A JP9594586A JPS62251632A JP S62251632 A JPS62251632 A JP S62251632A JP 9594586 A JP9594586 A JP 9594586A JP 9594586 A JP9594586 A JP 9594586A JP S62251632 A JPS62251632 A JP S62251632A
Authority
JP
Japan
Prior art keywords
gap
depth
water
optical fibers
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9594586A
Other languages
Japanese (ja)
Inventor
Takashi Fujieda
藤枝 敬史
Cho Nakamura
中村 兆
Takuji Hara
拓司 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9594586A priority Critical patent/JPS62251632A/en
Publication of JPS62251632A publication Critical patent/JPS62251632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To eliminate the need for a power source and to easily measure the depth of water without being affected by electro-magnetic induction, etc., by arranging end surfaces of a couple of optical fibers opposite each across a gap. CONSTITUTION:When an instrument is dipped in liquid such as water, the external hydraulic pressure rises with the depth of water and the force operates as shown by an arrow A to make an elastic member 9 deform elastically so that the end surfaces 1a and 2a of the optical fibers comes closer to each other. Consequently, the gap between the end surfaces 1a and 2a of the optical fibers decreases in width and light transmission loss due to the gap decreases. For the purpose, the light transmission loss of light transmitted from one optical fiber to the other due to the gap is measured to calculate the width of the gap between optical fiber sections and further variation in the external pressure. In this case, variation in the external pressure corresponds to the hydraulic pressure and the depth of water is calculated from the hydraulic pressure.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、水などの液体中での深度を測定するための
水深計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a depth meter for measuring depth in a liquid such as water.

[従来の技術] 従来、水深計としては、ブルドン管型やダイヤフラム型
などの水深計が知られている。これらの従来の水深計で
は、得られた深度についての情報を一般に電気的信号に
変換して水上等のような場所に伝送している。
[Prior Art] Conventionally, as water depth gauges, water depth gauges such as a Bourdon tube type and a diaphragm type are known. In these conventional depth gauges, the obtained depth information is generally converted into an electrical signal and transmitted to a location, such as on the water.

[発明が解決しようとする問題点] したがって、従来の水深計では電気的信号に変換するた
めの電源を必要としており、水深計自体が電源のため大
型化したり、あるいは外部電源から電力を供給するため
の金属リード線を取付けなければならなかった。特に海
水中で使用する場合には、金属リード線等の腐食の問題
も生じた。
[Problems to be Solved by the Invention] Therefore, conventional depth gauges require a power source to convert them into electrical signals, and the depth meter itself has to be large in size due to its power supply, or it is necessary to supply power from an external power source. I had to install metal lead wires for this purpose. Particularly when used in seawater, there was a problem of corrosion of metal lead wires, etc.

また、多数の箇所に水深計を沈めて、それぞれの深度を
測定する場合、各水深計との間に金属リード線を並列に
設ける必要があり、設置作業が複雑化するという問題点
もあった。
Additionally, when submerging depth gauges in multiple locations to measure the depth of each location, it is necessary to install metal lead wires in parallel between each depth gauge, which poses the problem of complicating the installation process. .

さらに、金属リード線で各水深計を接続するため、電磁
誘導等の影響を受は粘度の良い測定ができないという問
題もあった。
Furthermore, since the depth gauges are connected with metal lead wires, there is a problem in that good viscosity measurements cannot be made due to the influence of electromagnetic induction.

それゆえに、この発明の目的は、電源が不要で、電磁誘
導等の影響を受けることなく、かつ簡便に設置可能な水
深計を提供することにある。
Therefore, an object of the present invention is to provide a water depth meter that does not require a power source, is not affected by electromagnetic induction, and can be easily installed.

E問題点を解決するための手段] この発明の水深計では、1対の光ファイバがその端面を
間隙を介して対向するように配置されている。該1対の
光ファイバには、それぞれを連結するように弾性部材が
取付けられており、3弾性部材は外部の圧力に対応して
該1対の光ファイバの端面間の間隙の幅を変化させるよ
うに弾性変形する。
Means for Solving Problem E] In the water depth gauge of the present invention, a pair of optical fibers are arranged so that their end surfaces face each other with a gap interposed therebetween. Elastic members are attached to the pair of optical fibers so as to connect them, and the third elastic member changes the width of the gap between the end faces of the pair of optical fibers in response to external pressure. It deforms elastically.

[作用] この発明の水深計では、1対の光ファイバが弾性部材に
より連結されているため、外部の圧力が変化すると弾性
部材が弾性変形し、1対の光ファイバの端面間の間隙の
幅がそれに伴って変化する。
[Function] In the depth gauge of the present invention, the pair of optical fibers are connected by an elastic member, so when external pressure changes, the elastic member deforms elastically, and the width of the gap between the end faces of the pair of optical fibers changes. changes accordingly.

第2図に示すように、光フアイバ端面間の間隙の幅と、
光ファイバの一方から他方に伝送される光の間隙による
光伝送損失ΔPは比例関係を何しており、光伝送損失の
変化を測定することにより、光フアイバ端面間の間隙の
幅の変化を算出することができる。したがって、このよ
うにして求められた光フアイバ端面間の間隙の幅より、
1対の光フアイバ間に働いた外部の圧力を求めることが
できる。
As shown in FIG. 2, the width of the gap between the optical fiber end faces,
What is the proportional relationship between the optical transmission loss ΔP due to the gap between the light transmitted from one side of the optical fiber to the other? By measuring the change in the optical transmission loss, the change in the width of the gap between the end faces of the optical fiber can be calculated. can do. Therefore, from the width of the gap between the optical fiber end faces determined in this way,
The external pressure exerted between a pair of optical fibers can be determined.

[実施例コ 第1図は、この発明の一実施例を示す断面図である。第
1図において、1対の光ファイバ1.2は、その端部1
a、2a間が間隙を介して対向するように配置されてお
り、それぞれ光ファイバ固定部祠3,4により固定され
ている。該光フアイバ固定部材3.4には、それぞれフ
ランジ部3a。
Embodiment FIG. 1 is a sectional view showing an embodiment of the present invention. In FIG. 1, a pair of optical fibers 1.2 have their ends 1.
A and 2a are arranged so as to face each other with a gap in between, and are fixed by optical fiber fixing portions 3 and 4, respectively. The optical fiber fixing members 3.4 each have a flange portion 3a.

4aが形成されており、該フランジ部3a、4aに挾ま
れるようにして、外側バイブ7が設けられている。該外
側バイブ7の略中央部には、ベローズ部7aが形成され
ている。該ベローズ部7aの形成により、外側バイブ7
は伸縮可能にされている。該外側バイブ7の内側には、
コイルばねからなる弾性部材9が配置されており、該弾
性部材9の両端はフランジ部3a、4aにそれぞれ固定
されている。弾性部材9の内側には、さらにリミッタバ
イブ8が配置されており、該リミッタパイプ8内には、
光フアイバ固定部材3.4の端部がそれぞれ嵌められて
いる。該リミッタパイプ8は、端部1a、2aが互いに
近接した際、突き当たらないようにその両端をフランジ
部3a、4aに当接する。
4a is formed, and an outer vibrator 7 is provided so as to be sandwiched between the flange portions 3a, 4a. A bellows portion 7a is formed approximately at the center of the outer vibrator 7. By forming the bellows portion 7a, the outer vibrator 7
is made expandable. Inside the outer vibe 7,
An elastic member 9 made of a coil spring is arranged, and both ends of the elastic member 9 are fixed to the flanges 3a and 4a, respectively. A limiter vibe 8 is further arranged inside the elastic member 9, and inside the limiter pipe 8,
The ends of the optical fiber fixing elements 3.4 are respectively fitted. The limiter pipe 8 has both ends abutted against the flange portions 3a, 4a so as not to butt each other when the ends 1a, 2a come close to each other.

外側バイブ7の両端がフランジ部3a、4aにそれぞれ
当接する部分には、溝が形成されており、該溝にはOリ
ングパツキン5.6がそれぞれ嵌め入れられている。該
Oリングパツキン5.6により、外側バイブ7の内部の
気密状態が保持されている。外側バイブ7の両端近傍の
外周にはねじ山が形成されており、該ねじ山に嵌め入れ
るように両側からナツト10.11が取付けられている
Grooves are formed in the portions where both ends of the outer vibrator 7 abut against the flange portions 3a and 4a, respectively, and O-ring packings 5.6 are fitted into the grooves, respectively. The O-ring packing 5.6 maintains the airtight condition inside the outer vibrator 7. Threads are formed on the outer periphery near both ends of the outer vibrator 7, and nuts 10, 11 are attached from both sides so as to fit into the threads.

この実施例の水深計を水などの液体中に沈めると、深度
が深まるにつれて外部の水圧も高められる。外部の水圧
が高まると、第1図に矢印Aで示す方向にも力が働き、
光ファイバの端面1a、2aが互いに近接するように、
弾性部材9が弾性変形する。この結果、光ファイバの端
面1a、2a間の間隙の幅が小さくなり、第2図に示す
ように、この間隙による光伝送損失ΔPが小さくなる。
When the depth gauge of this embodiment is submerged in a liquid such as water, the external water pressure increases as the depth increases. When the external water pressure increases, a force also acts in the direction shown by arrow A in Figure 1,
so that the end faces 1a and 2a of the optical fiber are close to each other,
The elastic member 9 is elastically deformed. As a result, the width of the gap between the end faces 1a and 2a of the optical fiber becomes smaller, and as shown in FIG. 2, the optical transmission loss ΔP due to this gap becomes smaller.

したがって、光ファイバの一方から他方に伝送される光
の間隙による光伝送損失ΔPを測定することにより、光
フアイバ断面間の間隙の幅ひいては外部の圧力の変化を
算出することができる。この場合、外部の圧力の変化は
、水圧に相当し、水圧から深度を算出することができる
Therefore, by measuring the optical transmission loss ΔP due to the gap between the optical fibers and the light transmitted from one side of the optical fiber to the other, it is possible to calculate the width of the gap between the cross sections of the optical fiber and thus the change in external pressure. In this case, the change in external pressure corresponds to water pressure, and the depth can be calculated from the water pressure.

以」−のように、この発明の水深計は、深度を光信号に
変換し伝送するものであるため、従来の水深計のように
電源を必要とせず、電磁誘導の影響を受けることもない
As described above, the depth meter of this invention converts depth into an optical signal and transmits it, so it does not require a power source and is not affected by electromagnetic induction unlike conventional depth meters. .

また、この発明の水深計は、光ファイバにより接続され
るものであるため、第3図に示すように段数の水深計を
光ファイバによって直列に接続して用いることもできる
。この場合、順次各水深計の光ファイバを通過してきた
光は、最終的に測定器に伝送される。測定器としては、
たとえば光後方散乱測定器を用いることができる。
Further, since the water depth gauge of the present invention is connected by an optical fiber, it is also possible to use a number of stages of water depth gauges connected in series by optical fibers as shown in FIG. In this case, the light that has sequentially passed through the optical fiber of each depth gauge is finally transmitted to the measuring instrument. As a measuring device,
For example, a light backscatter meter can be used.

第4図は、光後方散乱測定器による観測波形の一例を示
す図である。第4図に示すように光後方散乱測定器によ
り、光ファイバの各地点の受光レベルを算出することが
できる。光ファイバにより伝送されてきた光は、順次そ
の受光レベルを一定の傾斜で減少しながら伝送されてい
るが、各水深計の設置された位置で特に急激にその受光
レベルを減少している。この急激な減少ΔP4.ΔP2
・・・は、それぞれ各水深計における光フアイバ端面間
の間隙による光伝送損失に対応している。したがって各
光伝送損失を測定することにより、光フアイバ端面間の
間隙の幅の変化を求め、この値から各水深計が位置する
深度を算出することができる。
FIG. 4 is a diagram showing an example of a waveform observed by an optical backscattering measuring device. As shown in FIG. 4, the light reception level at each point on the optical fiber can be calculated using a light backscattering measuring device. The light transmitted through the optical fiber is transmitted with the received light level decreasing at a constant slope, but the received light level decreases particularly rapidly at the position where each depth gauge is installed. This rapid decrease ΔP4. ΔP2
...corresponds to the optical transmission loss due to the gap between the end faces of the optical fibers in each depth gauge. Therefore, by measuring each optical transmission loss, the change in the width of the gap between the end faces of the optical fibers can be determined, and from this value, the depth at which each depth gauge is located can be calculated.

実施例では、弾性部材としてコイルばねを例示したが、
この発明の水深計に用いられる弾性部材はこのような形
状に限定されるものではない。
In the embodiment, a coil spring was used as an example of the elastic member, but
The elastic member used in the depth meter of the present invention is not limited to such a shape.

また、この発明の水深計に用いられる光ファイバとして
は、プラスチックファイバ、シリカ系ファイバ等従来使
用されているいかなる光ファイバをも使用することがで
きる。また、この場合、その端面は従来行なわれている
光コネクタの端面処理等の処理が施されていることが望
ましい。
Further, as the optical fiber used in the depth gauge of the present invention, any conventionally used optical fiber such as a plastic fiber or a silica fiber can be used. Further, in this case, it is desirable that the end face is subjected to a treatment such as a conventional end face treatment of an optical connector.

[発明の効果] 以−1−説明したように、この発明の水深計では、深度
を光信号に変換して伝送するため、従来の水深計のよう
な電源を必要とせず、また電磁誘導の影響を受けること
なく精度良く測定することができる。
[Effects of the Invention] As explained in 1-1 below, the depth meter of the present invention converts the depth into an optical signal and transmits it, so it does not require a power source like conventional depth gauges and does not require electromagnetic induction. It is possible to measure accurately without being affected.

また、この発明の水深計は、光ファイバで相互に接続す
ることにより直列に接続して設置することができる。し
たがって、従来の水深計の設置に比べ、著しく簡便に各
水深計を所定の箇所に設置することができる。
Furthermore, the depth gauges of the present invention can be installed in series by interconnecting them with optical fibers. Therefore, compared to the installation of conventional water depth gauges, each water depth gauge can be installed at a predetermined location much more easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す断面図である。第
2図は、光フアイバ端面間のrj1隙の幅と光伝送損失
との関係を示す図である。第3図は、この発明の水深計
の接続状態の一例を示す概略構成図である。第4図は、
光後方散乱測定器による観M1波形の一例を示す図であ
る。 図において、1.2は光ファイバ、la、2aは光ファ
イバの端面、9は弾性部材を示す。 第1図 え1r信舶間□n庶□幅 第3図 第4図 逆   #  (%)
FIG. 1 is a sectional view showing an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the width of the rj1 gap between the end faces of optical fibers and optical transmission loss. FIG. 3 is a schematic configuration diagram showing an example of the connection state of the water depth meter of the present invention. Figure 4 shows
FIG. 3 is a diagram showing an example of an M1 waveform observed by a light backscattering measurement device. In the figure, 1.2 is an optical fiber, la and 2a are end faces of the optical fiber, and 9 is an elastic member. 1st figure 1r ship interval □n common □ Width 3rd figure 4th reverse # (%)

Claims (1)

【特許請求の範囲】[Claims] (1)間隙を介して端面が対向するように配置される1
対の光ファイバと、前記1対の光ファイバを連結するよ
うに取付けられ、かつ外部の圧力に対応して該1対の光
ファイバの端面間の間隙の幅を変化させるように弾性変
形する弾性部材とを備える、水深計。
(1) 1 arranged so that the end faces face each other with a gap in between
a pair of optical fibers; an elastic member that is attached to connect the pair of optical fibers and that is elastically deformed so as to change the width of the gap between the end faces of the pair of optical fibers in response to external pressure; A water depth gauge comprising:
JP9594586A 1986-04-24 1986-04-24 Bathometer Pending JPS62251632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9594586A JPS62251632A (en) 1986-04-24 1986-04-24 Bathometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9594586A JPS62251632A (en) 1986-04-24 1986-04-24 Bathometer

Publications (1)

Publication Number Publication Date
JPS62251632A true JPS62251632A (en) 1987-11-02

Family

ID=14151398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9594586A Pending JPS62251632A (en) 1986-04-24 1986-04-24 Bathometer

Country Status (1)

Country Link
JP (1) JPS62251632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802132A (en) * 2017-01-18 2017-06-06 青岛海洋地质研究所 A kind of penetration type Multifunction fishing bottom sediment in-situ observation feeler lever

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802132A (en) * 2017-01-18 2017-06-06 青岛海洋地质研究所 A kind of penetration type Multifunction fishing bottom sediment in-situ observation feeler lever

Similar Documents

Publication Publication Date Title
CN106441511B (en) Discrete liquid level sensor based on fiber Bragg grating technology
US3204463A (en) Force operated instrument
US3424000A (en) Semiconductor flowmeter
CN106153978A (en) Flow velocity based on optical fiber MEMS method amber microcavity test device and method of testing
US10508938B2 (en) Fiber optical fabry-perot flow test device and test method with local bending diversion structure
CN111879970B (en) Temperature insensitive FBG acceleration sensor and method based on strain chirp effect
US4930862A (en) Fiberoptic microbend accelerometer
CN105387968B (en) Fibre cladding surface Bragg grating temperature self-compensating pressure transducers
CN109387760A (en) A kind of shelf depreciation quantitative detection system and method based on fiber grating
JP2018517908A (en) Optical fiber pressure device, method and application
CN110954259A (en) Gasket sensor based on optical fiber microbend loss
CN109186825B (en) Optical fiber macrobend pressure sensor and measuring system thereof
CN101586994B (en) Fiber grating pull pressure sensor having temperature compensation function
CN113203704A (en) Transformer monitoring and sensing integrated optical fiber sensor and use method
JPS62251632A (en) Bathometer
CN112284270A (en) Metal surface corrosion monitoring device based on fiber bragg grating self-temperature compensation
CN110470426A (en) A kind of fiber-optic grating sensor and measurement method that can measure temperature and pressure simultaneously
US3869920A (en) Symmetrically arranged, deflection type differential pressure transmitters for controlling industrial systems and processes
CN115144712A (en) Partial discharge optical ultrasonic detection system
CN113532724B (en) High-temperature-resistant high-pressure optical fiber sensor
US2641131A (en) Pressure gauge
US4255973A (en) Digital pressure transducer for use at high temperatures
US3286526A (en) Pressure transducer
CN208547608U (en) Fiber grating micro-vibration and voice sending sensor device of the type vibration wire based on micro-nano fiber
CN111947722A (en) Volume and mass flow detection method and device