JPS62251408A - Steam turbine casing - Google Patents

Steam turbine casing

Info

Publication number
JPS62251408A
JPS62251408A JP9518986A JP9518986A JPS62251408A JP S62251408 A JPS62251408 A JP S62251408A JP 9518986 A JP9518986 A JP 9518986A JP 9518986 A JP9518986 A JP 9518986A JP S62251408 A JPS62251408 A JP S62251408A
Authority
JP
Japan
Prior art keywords
casing
turbine
inner casing
stage
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9518986A
Other languages
Japanese (ja)
Inventor
Sakae Kawasaki
榮 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9518986A priority Critical patent/JPS62251408A/en
Publication of JPS62251408A publication Critical patent/JPS62251408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce irregular thermal stress of a casing and to decrease the starting time, by providing the first internal casing, which surrounds the first stage of a turbine, while the second internal casing, which surrounds the final stage, and forming intermediate chambers between the internal casings and an external casing. CONSTITUTION:An internal casing of a high pressure turbine is divided into the first internal casing 7, which surrounds the first stage, and the second internal casing 8 which surrounds the final stage. And space between the internal casing and an external casing 1 is divided by a partitioning wall 10 into the first intermediate chamber 11 and the second intermediate chamber 12. In this way, one part of a flow of steam from the first stage of the turbine to its final stage is allowed to flow out into the first intermediate chamber 11 from a clearance 9 in the internal casing, and thermal stress, when the turbine is started, can be reduced by heating an external wall of the first internal casing 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は二重ケーシングII造の蒸気クービンケーシン
グに係り、特に内部ケーシングを分割した超8温・超高
圧タービンのケーシングに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a double casing II steam turbine casing, and more particularly to a casing for an ultra-8 temperature/ultra-high pressure turbine in which the inner casing is divided.

(従来の技術) 蒸気タービン使用の発電プラントは、エネルギ−事情の
ため熱効率の大幅な向上が1iIl持されており、この
ためにタービンの超高温・高圧化が図られている。
(Prior Art) Power plants using steam turbines are required to greatly improve thermal efficiency due to energy constraints, and for this reason, efforts are being made to make the turbines extremely high temperature and high pressure.

このような超高温・高圧蒸気タービンプラン1〜として
は、これまで蒸気条件を649℃、352atgとした
ものが建設されている。この蒸気タービンプラントの超
高温・高圧部は、△S M IEの195フイ[8月の
会報のrThe [ddystone 5upcr−p
ressurc (Init JおよびASME刊行物
の論文ナンバ59−Δ−288,1960年の[Dev
elo−pmcn(^5sociatcd With 
The 5uper pressurcTurbine
 for Eddystone 5tation Un
it No、I Jに開示されており、この開示による
と内部ケーシングと外部ケーシングとからなる二重ケー
シング構造である。この内部ケーシングに(、玉、高温
クリープ強度が大きい高級耐熱鋼、具体的には、Ni1
Cr等を多間に含有するオーステナイ]・系耐熱鋼が使
用され、外部ケーシングにはオーステナイト系耐熱鋼に
比べて比較的安価でかつ使用限界温度も低い耐熱鋼、具
体的には少量のCrやMO等を含有した、使用限界温度
が593℃のフェライト系耐熱鋼が使用された。
As such ultra-high temperature/high pressure steam turbine plans 1~, those with steam conditions of 649° C. and 352 atg have been constructed so far. The ultra-high temperature and high pressure section of this steam turbine plant is described in △SM IE 195 [rThe [ddystone 5upcr-p] of the August newsletter.
[Dev
elo-pmcn(^5sociatcd With
The 5upper pressurcTurbine
for Eddystone 5tation Un
It No., IJ, and according to this disclosure, it has a double casing structure consisting of an inner casing and an outer casing. This inner casing is made of high-grade heat-resistant steel with high high-temperature creep strength, specifically Ni1
Austenitic heat-resistant steel containing a large amount of Cr, etc. is used for the outer casing, and the outer casing is made of heat-resistant steel that is relatively inexpensive and has a lower service temperature limit than austenitic heat-resistant steel, specifically a small amount of Cr, etc. Ferritic heat-resistant steel containing MO and the like and having a service limit temperature of 593°C was used.

第4図は、このような二重ケーシング構造の蒸気タービ
ン高温・高圧部を示したもので、外部ケーシング1の内
側には内部ケーシング2が配置されている。この内部ケ
ーシング2の内側には、ノズルボックス3と、第1段落
のノズル(静岡)4aと羽根(動翼)5aと、第2段落
のノズル4bと羽根5bと、第3段落のノズル4Cど羽
根5Cと、第4段落のノズル4dと羽根5dとがそれぞ
れ設置されている。図示の省略された蒸気入口管から流
入した蒸気はノズルボックス3内を通過して矢印方向に
各段落を流れる。こうして各段落で仕事を行い温度と圧
力が低下した蒸気tよ、排気管6から排出されるととも
に一部が外部ケーシング1と内部ケーシング2との間隙
に充;tする。
FIG. 4 shows a high temperature/high pressure section of a steam turbine having such a double casing structure, in which an inner casing 2 is disposed inside an outer casing 1. Inside this internal casing 2, there are a nozzle box 3, a first stage nozzle (Shizuoka) 4a and blades (moving blades) 5a, a second stage nozzle 4b and blades 5b, a third stage nozzle 4C, etc. A blade 5C, a fourth stage nozzle 4d, and a blade 5d are installed, respectively. Steam flowing in from a steam inlet pipe (not shown) passes through the nozzle box 3 and flows through each stage in the direction of the arrow. In this way, the steam t whose temperature and pressure have been reduced by performing work in each stage is discharged from the exhaust pipe 6, and a portion thereof fills the gap between the outer casing 1 and the inner casing 2.

この充満した蒸気は、特開昭60−159310号の構
成では蒸気管入口部を利用して冷却然気として外部に流
出される。
In the structure of JP-A-60-159310, this filled steam is discharged to the outside as cooling air using the steam pipe inlet.

このように二重ケーシング構造では高温高圧蒸気が内部
ケーシング2はオーステナイト系耐熱鋼を用いて高温ク
リープ強度を向上させるとともに、比較的低温低圧蒸気
が接する外部ケーシング1は比較的安価なフェライト系
耐熱鋼が用いられている。
In this double casing structure, the inner casing 2 is made of austenitic heat-resistant steel to improve high-temperature creep strength, while the outer casing 1, which is in contact with relatively low-temperature and low-pressure steam, is made of relatively inexpensive ferritic heat-resistant steel. is used.

(発明が解決しようとする問題点) ところが、近年火力発電所蒸気タービンは例えば昼と夜
との間の電力需要の格差の拡大に応じて毎日1回または
2回の起動停止や負荷変動を受けている。このタービン
起動および停止時の蒸気の流入や流入停止により各ター
ビンケーシングの内外壁に大きな温度差が生じ非定常熱
応力が発生してしまう。この非定常応力は定常運転時に
発生する熱応力に比べて非常に大ぎく、これを許容応力
以1ζに抑えなければ安全な起vJや停止を行なうこと
はできない。しかしながら、この超高温・高圧タービン
の内部ケーシングに用いられたオーステナイ1へ系耐熱
鋼は、フェライト系耐熱鋼に比べて高温クリープ強度は
浸れているものの、熱伝導率が小さく、熱膨張係数も小
さくかつ耐力も劣っているため、熱応力が発生し易く、
材料の許容応力が小さいという欠点を有している。この
ため、従来のm高温・高圧蒸気タービンではタービン起
動・停止時に内部ケーシングに急激な温度変化を惹起す
るような運転を避けるためにタービン起動・停止時間を
大きくしなければならず、電力需給状況に即応した運転
が行えないといった欠点があった。
(Problem to be solved by the invention) However, in recent years, steam turbines in thermal power plants have been subject to startup and shutdown and load fluctuations once or twice a day, for example, in response to the widening disparity in electricity demand between day and night. ing. Due to the inflow of steam and the stoppage of the inflow of steam when the turbine is started and stopped, a large temperature difference occurs between the inner and outer walls of each turbine casing, resulting in generation of unsteady thermal stress. This unsteady stress is much larger than the thermal stress generated during steady operation, and unless it is suppressed to 1ζ below the allowable stress, safe starting and stopping cannot be achieved. However, although the Austenite 1 heat-resistant steel used for the internal casing of this ultra-high temperature/high-pressure turbine has lower high-temperature creep strength than ferritic heat-resistant steel, it has lower thermal conductivity and a smaller coefficient of thermal expansion. It also has poor yield strength, so thermal stress is likely to occur.
It has the disadvantage that the allowable stress of the material is small. For this reason, in conventional high-temperature, high-pressure steam turbines, it is necessary to increase the turbine startup and shutdown times in order to avoid operations that would cause sudden temperature changes in the internal casing when the turbine is started and stopped. The drawback was that it was not possible to operate in a timely manner.

そこで、本発明の目的は、タービン起動・停止時の非定
常熱応7Jの発生を抑制して起動・停止時間を短縮する
ことができる蒸気タービンケーシングを提供することに
ある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a steam turbine casing that can suppress the occurrence of an unsteady thermal response of 7 J during startup and shutdown of a turbine, thereby shortening startup and shutdown times.

(問題点を解決するための手段) 超高温・高圧タービンの各段落を取囲む内部ケーシング
は、第1内部ケーシングと第2内部ケーシングとに分割
されている。この第1内部ケーシングは超高温・高圧タ
ービンの少なくとも初段を取囲むと共に外部ケーシング
との間に第1中間車室を形成し、上記第2内部ケーシン
グは超高温・高圧の最終段を取囲むと共に少イ家りとも
上記外部ケーシングとの間に第2中間車室を形成する。
(Means for Solving the Problems) The internal casing surrounding each stage of the ultra-high temperature/high pressure turbine is divided into a first internal casing and a second internal casing. The first inner casing surrounds at least the first stage of the ultra-high temperature/high pressure turbine and forms a first intermediate casing between it and the outer casing, and the second inner casing surrounds the last stage of the ultra-high temperature/high pressure turbine and A second intermediate compartment is formed between the outer casing and the outer casing.

仕切壁が上記第1中間車室と上記第2中間車室とを仕切
るために上記第2内部ケーシングに突設されている。初
気管と補助排気管が上記第2中聞車室と上記第1中間車
室にぞれぞれ連通している。
A partition wall projects from the second inner casing to partition the first intermediate compartment and the second intermediate compartment. An initial trachea and an auxiliary exhaust pipe communicate with the second intermediate compartment and the first intermediate compartment, respectively.

(作 用) 超高温・高圧蒸気流は、タービン各段を通過後に第2中
間車室に流出しここから排気管を介して排出される。こ
のとき蒸気流の一部は、タービン初段から最終段に至る
途中において、第1内部ケーシングと第2内部ケーシン
グとの間の間隙から第1中間車室に流出し第1内部ケー
シングの外壁を加熱した後、補助排気管を介して排出さ
れる。
(Function) After passing through each stage of the turbine, the ultra-high temperature and high pressure steam flow flows into the second intermediate casing and is discharged from there via the exhaust pipe. At this time, part of the steam flow flows from the gap between the first internal casing and the second internal casing into the first intermediate casing on the way from the first stage to the final stage of the turbine, heating the outer wall of the first internal casing. After that, it is discharged through the auxiliary exhaust pipe.

このように第1内部ケーシングは内壁が超高温・高圧蒸
気雰囲気中で加熱されても外壁も第1中間中室に流入し
た比較的ム温・高圧の蒸気によって加熱されるので内外
壁の温度差が急速に減少し非定常熱応力の発生を短時間
で抑制することが可能となる。
In this way, even if the inner wall of the first inner casing is heated in an extremely high temperature and high pressure steam atmosphere, the outer wall is also heated by the relatively high temperature and high pressure steam that has flowed into the first intermediate chamber, so the temperature difference between the inner and outer walls is reduced. decreases rapidly, making it possible to suppress the occurrence of unsteady thermal stress in a short time.

(実施例) 以下に、本発明にJ:る蒸気タービンケーシングの一実
施例を第4図と同部分に同一符号を付して示した第1図
乃至第3図とを参照して説明する。
(Embodiment) An embodiment of a steam turbine casing according to the present invention will be described below with reference to FIGS. 1 to 3, in which the same parts as in FIG. 4 are denoted by the same reference numerals. .

第1図において、フェライト系耐熱鋼を用いた外部ケー
シング1の内部には、オーステプイト系耐熱鋼の第1内
部ケーシング7とフェライト系耐熱鋼の第2内部ケーシ
ング8とが配置され、これらの第1、第2内部ケーシン
グ7.8(よ互いに間隙9によって互いに分離され、か
つ共に外部ケーシング1に保持されている。第1内部ケ
ーシング7は、ノズルボックス3と、第1段落のノズル
(静W)48と羽根(動5lit)5aと、第2段落の
ノズル4bと羽根5bとをそれぞれ取囲んでおり、また
第2内部ケーシング8は、第3段落のノズル4Cと羽根
5Cと、第4段落のノズル4dと羽根5dとをそれぞれ
取囲んでいる。外部ケーシング1と内部ケーシング7.
8との間の車室は、第2内部ケーシング8に突設された
リング状仕切壁10によって第1中間車室11と第2中
間市空12とに分割されている。すなわち、外部ケーシ
ング1と第1内部ケーシング7とにより第1中間車室1
1が形成され、外部ケーシング1と第1内部ケーシング
8と仕切壁10とによって第2中間車室12が形成され
ている。これらの第1中固車室11と第2中間車室12
とには、外部ケーシング1を貫通した補助排気管13と
排気管6とがそれぞれ連通している。この補助排気管1
3は排気管6に接続され、この補助排気管13には1f
fi調整弁14が配設されている。この流m調整弁14
はa11制御@′a15によって弁開度をυ制御される
。この制御装置15は、第2図に示されたように第1内
部ケーシング7の内壁7a、内部7b1外壁7Cの温度
信号SS、S3を入力するλカ装置16とこれらの信号
から第1内部ケーシングの熱応力を求めて流ffi調整
弁14のWi度を決定する熱応力演算装2?17と、こ
の開度を指示する出ツノ装置18とから構成されている
。上述の内壁温度45号S1と内部温疫信@S2と外1
!I!温α信号S3は、第1内部ケーシング7に取付け
られた図示を省略された複数個の温度センサから発生さ
れる。
In FIG. 1, a first inner casing 7 made of austepite heat-resistant steel and a second inner casing 8 made of ferritic heat-resistant steel are disposed inside an outer casing 1 made of ferritic heat-resistant steel. , a second inner casing 7.8 (separated from each other by a gap 9 and held together in the outer casing 1). 48 and vane (dynamic 5 lit) 5a, the second stage nozzle 4b and vane 5b, respectively, and the second internal casing 8 surrounds the third stage nozzle 4C and vane 5C, and the fourth stage nozzle 4C and vane 5C. The outer casing 1 and the inner casing 7 surround the nozzle 4d and the blade 5d, respectively.
8 is divided into a first intermediate compartment 11 and a second intermediate compartment 12 by a ring-shaped partition wall 10 projecting from the second inner casing 8. That is, the first intermediate compartment 1 is formed by the outer casing 1 and the first inner casing 7.
1 is formed, and a second intermediate compartment 12 is formed by the outer casing 1, the first inner casing 8, and the partition wall 10. These first intermediate compartment 11 and second intermediate compartment 12
An auxiliary exhaust pipe 13 and an exhaust pipe 6, which pass through the outer casing 1, communicate with each other. This auxiliary exhaust pipe 1
3 is connected to the exhaust pipe 6, and this auxiliary exhaust pipe 13 has a 1f
An fi adjustment valve 14 is provided. This flow m adjustment valve 14
The valve opening degree is υ controlled by a11 control @'a15. As shown in FIG. 2, this control device 15 includes a lambda power device 16 that inputs temperature signals SS and S3 of the inner wall 7a, inner wall 7b1, and outer wall 7C of the first inner casing 7, and a It is comprised of a thermal stress calculation device 2?17 that determines the degree of Wi of the flow ffi adjustment valve 14 by calculating the thermal stress of the flow ffi adjustment valve 14, and an outlet device 18 that indicates the degree of opening. Above mentioned inner wall temperature No. 45 S1 and internal temperature signal @S2 and outside 1
! I! The temperature α signal S3 is generated from a plurality of temperature sensors (not shown) attached to the first inner casing 7.

次に、この実施例の作用を説明する。Next, the operation of this embodiment will be explained.

プレウオーミングを行なった後のタービン起動時には、
図示を省略された蒸気入口管を介してノズルボックス3
に流入した超高温・高圧熱気が、第1段、第2段、第3
段および第4段の各ノズル48〜4dと各羽根5a〜5
dを順次通過する。
When starting the turbine after pre-warming,
Nozzle box 3 via a steam inlet pipe (not shown)
The ultra-high temperature and high pressure hot air that flowed into the first, second and third stages
Each of the stage and fourth stage nozzles 48 to 4d and each blade 5a to 5
d sequentially.

こうして各段で仕事をした結果、低温低圧化した蒸気は
、最終段の羽根5dを流入した後第2中間車室12内に
流入し排気126より排出される。このとき、第2段の
羽根5b7!i:流出した蒸気の一部は、第1内部ケー
シング7と第2内部ケーシング8との間隙9を通って第
1中間市室11内に流入し、第1内部ケーシング7の外
!!7Cをその内壁7aとのtQ Wl差が小さくなる
にうに加熱した後、補助排気管13から流ffi調整弁
14とを介して排気管6に流出し排出される。この第1
中闇市室11に流入するa温・高圧蒸気のmは、流m調
整弁14の開度によってυ制御できるので、この弁開度
の調製によって以下に詳述づるように第1内部ケーシン
グ7の非定常熱応力の発生を急速に抑えることができる
As a result of the work done in each stage, the steam, which has become low temperature and low pressure, flows into the second intermediate casing 12 after passing through the final stage vane 5d and is discharged from the exhaust gas 126. At this time, the second stage blade 5b7! i: A part of the steam that has flowed out flows into the first intermediate chamber 11 through the gap 9 between the first inner casing 7 and the second inner casing 8, and flows out of the first inner casing 7! ! 7C is heated so that the difference in tQWl with respect to the inner wall 7a becomes small, and then flows out from the auxiliary exhaust pipe 13 to the exhaust pipe 6 via the flow ffi adjustment valve 14 and is discharged. This first
Since m of the high-pressure steam at a temperature flowing into the black market chamber 11 can be controlled by the opening degree of the flow m adjustment valve 14, the opening degree of the first inner casing 7 can be controlled by adjusting the opening degree of the flow m adjustment valve 14. The generation of unsteady thermal stress can be rapidly suppressed.

a、11 In装買15の入力装置16には、上記蒸気
の流入開始と同時に第1内部ケーシングの内壁、内部、
外壁の各温度信号S  S 、S3が入力さ1 l  
 2 れる。熱応力演算装置17は、これらの温度信号S1.
S2.S3に基づき、第1内部ケーシング7の内外壁と
内部との各温度差へTを求め第1内部ケーシング7の熱
応力を樟出し、ざらにこの算出した熱応力に対する流R
調整弁の最適開度を決定する。具体的には、内外壁およ
び内部の温度差Δ王とこのときの熱応力絶対値との関係
並びにこの熱応力絶対値とこれに対する最適の流量調整
弁開度との関係をそれぞれ予め計算によりまたは実験に
より求める。これらの関係はそれぞれ第3図(a)、(
b>のグラフのように表わすことができる。熱応力演算
装置17はこれらのグラフの関係をテーブルとして記憶
しておき、入力装置16からの温度信号31 、 S2
.33に基づきそのとさの最適の流量調整弁1;4度を
決定する。出力装置18は、この決定された最適の流量
調整弁開度に応じて流h1調整弁14の弁開度を調vi
する。
a, 11 The input device 16 of the In equipment 15 receives information from the inner wall of the first inner casing, the inside,
Each temperature signal S S , S3 of the outer wall is inputted.
2. The thermal stress calculation device 17 receives these temperature signals S1.
S2. Based on S3, calculate T for each temperature difference between the inner and outer walls of the first inner casing 7 and calculate the thermal stress of the first inner casing 7, and roughly calculate the flow R for this calculated thermal stress.
Determine the optimal opening degree of the regulating valve. Specifically, the relationship between the temperature difference ΔK between the inner and outer walls and the inside and the absolute value of thermal stress at this time, and the relationship between this absolute value of thermal stress and the optimal flow rate adjustment valve opening for this are calculated in advance or Determined by experiment. These relationships are shown in Figure 3(a) and (
b> can be expressed as a graph. The thermal stress calculation device 17 stores the relationship between these graphs as a table, and receives temperature signals 31 and S2 from the input device 16.
.. 33, determine the optimum flow rate regulating valve 1;4 degree for that crest. The output device 18 adjusts the valve opening of the flow h1 regulating valve 14 according to the determined optimal flow regulating valve opening.
do.

こうして、タービン軌道時に超高温・高圧蒸気が流入し
始めると、第1内部ケーシング7の内壁7 a 4;&
直らに加熱され高温化するため、この内壁7aと外壁7
Cとの間に大きな温度差が発生するが、この温度差は直
ちに検出され、これに応じて制御装置15は&量調整弁
14を全開するので、第2段羽根5bから流出した比較
的高温・高圧の蒸気が高速度で第1中間車室11に流入
する。一般に流体と静止物体との熱伝達は、流体速度の
増大に応じて大きくなるため、P4速の蒸気流は外壁7
Cを加熱し内外壁の温度差を小さくし熱応力を’fig
時間に緩和する。こうして内外壁の温度が小さくなると
これに応じて111御装置15は流量調整弁14の弁開
度を小さくして第2段羽根5bからのg温・高圧蒸気の
第1中聞車室11への流入量を減少させる。
In this way, when ultra-high temperature and high pressure steam starts to flow in during the turbine orbit, the inner wall 7 a 4 of the first inner casing 7
This inner wall 7a and outer wall 7 are directly heated and become high temperature.
However, this temperature difference is immediately detected, and in response to this, the control device 15 fully opens the & amount adjustment valve 14, so that the relatively high temperature flowing out from the second stage vane 5b - High-pressure steam flows into the first intermediate casing 11 at high speed. In general, heat transfer between a fluid and a stationary object increases as the fluid velocity increases, so the steam flow at P4 speed
C is heated to reduce the temperature difference between the inner and outer walls and reduce thermal stress.
Relax in time. In this way, when the temperature of the inner and outer walls decreases, the 111 control device 15 reduces the valve opening degree of the flow rate regulating valve 14 in response to this, and directs the g-temperature and high-pressure steam from the second stage vane 5b to the first intermediate compartment 11. decrease the amount of inflow.

また、第1中間車室11に流入する蒸気は、第2段羽根
5bからのもので、まだかなり高圧であるので第1内部
ケーシング7の内外壁の圧力差は小さい。このため、第
1内部ケーシング7を薄肉化することができ、この薄肉
化tよ、第1内部ケーシングの熱応力の急速緩和を更に
助長する。
Further, the steam flowing into the first intermediate casing 11 is from the second stage vane 5b and is still at a fairly high pressure, so the pressure difference between the inner and outer walls of the first inner casing 7 is small. Therefore, the first inner casing 7 can be made thinner, and this thinning t further promotes rapid relaxation of thermal stress in the first inner casing.

第1内部ケーシング7は超高温・高圧蒸気の雰囲気中に
あるので高温クリープ強度が優れているオーステナイト
系耐熱鋼を使用したが、第2内部ケーシング8と仕切壁
10とは、少なくとも第1段落と第2段落とで仕事を行
い、その結果温度と圧力とが降下した蒸気の雰囲気中に
あるので、比較的安価なフェライト系耐熱鋼を使用する
ことができる。
The first internal casing 7 is made of austenitic heat-resistant steel that has excellent high-temperature creep strength since it is in an atmosphere of ultra-high temperature and high-pressure steam. Since the work is performed in the second stage in a steam atmosphere with a resulting drop in temperature and pressure, relatively inexpensive ferritic heat-resistant steel can be used.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によると、内部
ケーシングを第1内部ケーシングと第2内部ケーシング
とに分割し、第1内部ケーシングと外部ケーシングとの
間に第1中間車室を、また第2内部ケーシングと外n1
ケーシングとの間に第2中間車室をそれぞれ形成し、ざ
らに第2内部ケーシングに第1中間車室と第2中間車室
とを仕切る仕切壁を突設しているため、タービンの初段
から最終段に流れる蒸気流の一部がその途中から第1内
部ケーシングと第2内部ケーシングとの間の開隔を通−
)で第1中間車室に流入し第1内部ケーシングの外壁を
加熱して第1内部ケーシングの内外壁の温度差を急速に
小さくり゛る。したがって、第1内部ケーシングの非定
常熱応力の発生を急速に緩和り“ることができタービン
の起動や停止の時間を大幅に短縮でき、電力需給状況に
応じた運転が可能にシ【る。
As is clear from the above description, according to the present invention, the inner casing is divided into a first inner casing and a second inner casing, and a first intermediate compartment is also provided between the first inner casing and the outer casing. Second inner casing and outer n1
A second intermediate casing is formed between each of the casings, and a partition wall that roughly partitions the first intermediate casing and the second intermediate casing is provided protruding from the second internal casing. A part of the steam flow flowing to the final stage passes through the opening between the first inner casing and the second inner casing.
) flows into the first intermediate casing and heats the outer wall of the first inner casing, rapidly reducing the temperature difference between the inner and outer walls of the first inner casing. Therefore, the occurrence of unsteady thermal stress in the first inner casing can be rapidly alleviated, and the time for starting and stopping the turbine can be significantly shortened, making it possible to operate the turbine according to the power supply and demand situation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による蒸気タービンケーシングの一実施
例を示した断面図、第2図は第1図のa、111ilI
装置の構成を示したブロック図、第3図(a)。 (b)は第1内部ケーシングの内外壁および内部の温度
差と熱応力絶対値との関係、ならびに熱応力絶対値と流
量調整弁開度との関係をそれぞれ示したグラフ図、第4
図は従来の二重ケーシング型の蒸気タービンケーシング
を示した断面図Cある。 1・・・外部ケーシング、4a〜4d・・・ノズル、5
a〜5d・・・羽根、6・・・排気管、7・・・第1内
部ケーシング、8・・・:J12内部ケーシング、10
・・・仕切壁、11・・・第1中間車室、12・・・第
2中間車室、13・・・補助排気管、14・・・流迅調
整弁。 出願人代理人  佐  藤  −雄 葛1目 1へ 賂2図
FIG. 1 is a sectional view showing an embodiment of a steam turbine casing according to the present invention, and FIG.
FIG. 3(a) is a block diagram showing the configuration of the device. (b) is a graph diagram showing the relationship between the temperature difference between the inner and outer walls and inside of the first inner casing and the absolute value of thermal stress, and the relationship between the absolute value of thermal stress and the opening degree of the flow rate regulating valve, respectively;
The figure is a sectional view C showing a conventional double casing type steam turbine casing. 1... External casing, 4a to 4d... Nozzle, 5
a to 5d...Blade, 6...Exhaust pipe, 7...First internal casing, 8...: J12 internal casing, 10
...Partition wall, 11...First intermediate compartment, 12...Second intermediate compartment, 13...Auxiliary exhaust pipe, 14...Flow rate adjustment valve. Applicant's representative Sato - Yukatsu 1, 1, bribe 2

Claims (1)

【特許請求の範囲】 1、外部ケーシングと、超高温・超高圧タービンの少な
くとも初段を取囲むと共に上記外部ケーシングとの間に
第1中間車室を形成する第1内部ケーシングと、上記超
高温高圧タービンの少なくとも最終段を取囲みかつ上記
第1内部ケーシングとの間に間隙が生ずるように配置さ
れると共に上記外部ケーシングとの間に第2中間車室を
形成する第2内部ケーシングと、この第2内部ケーシン
グに突設され上記第2中間車室とを仕切る仕切壁と、上
記第2中間車室に連通する排気管と、上記第1中間車室
に連通する補助排気管とを具備することを特徴とする蒸
気タービンケーシング。 2、上記第1内部ケーシングの材料は、上記第2内部ケ
ーシングの材料よりも高温クリープ強度が優れているこ
とを特徴とする特許請求の範囲第1項に記載の蒸気ター
ビンケーシング。 3、上記第1内部ケーシングの材料はオーステナイト系
耐熱鋼であり、上記第2内部ケーシングの材料はフェラ
イト系タービン鋼であることを特徴とする特許請求の範
囲第2項に記載の蒸気タービンケーシング。 4、上記補助排気管には、上記第1内部ケーシングの内
外壁の温度差に応じて弁開度が制御される流量調整弁が
設けられていることを特徴とする特許請求の範囲第1項
に記載の蒸気タービンケーシング。
[Claims] 1. An outer casing, a first inner casing that surrounds at least the first stage of the ultra-high temperature/ultra-high pressure turbine and forms a first intermediate casing between the outer casing and the ultra-high temperature/high pressure turbine; a second inner casing that surrounds at least the final stage of the turbine and is arranged so as to form a gap with the first inner casing and forms a second intermediate casing between the second inner casing and the outer casing; 2. A partition wall projecting from the internal casing and partitioning the vehicle from the second intermediate compartment, an exhaust pipe communicating with the second intermediate compartment, and an auxiliary exhaust pipe communicating with the first intermediate compartment. A steam turbine casing featuring: 2. The steam turbine casing according to claim 1, wherein the material of the first inner casing has higher high temperature creep strength than the material of the second inner casing. 3. The steam turbine casing according to claim 2, wherein the material of the first inner casing is austenitic heat-resistant steel, and the material of the second inner casing is ferritic turbine steel. 4. Claim 1, characterized in that the auxiliary exhaust pipe is provided with a flow rate regulating valve whose opening degree is controlled according to the temperature difference between the inner and outer walls of the first inner casing. The steam turbine casing described in .
JP9518986A 1986-04-24 1986-04-24 Steam turbine casing Pending JPS62251408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9518986A JPS62251408A (en) 1986-04-24 1986-04-24 Steam turbine casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9518986A JPS62251408A (en) 1986-04-24 1986-04-24 Steam turbine casing

Publications (1)

Publication Number Publication Date
JPS62251408A true JPS62251408A (en) 1987-11-02

Family

ID=14130805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9518986A Pending JPS62251408A (en) 1986-04-24 1986-04-24 Steam turbine casing

Country Status (1)

Country Link
JP (1) JPS62251408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109402U (en) * 1991-03-04 1992-09-22 三菱重工業株式会社 High and medium pressure turbine casing
WO2001059264A1 (en) * 2000-02-10 2001-08-16 Kabushiki Kaisha Toshiba Steam turbine and power generating equipment
JP2011137387A (en) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Steam turbine, and method for operating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109402U (en) * 1991-03-04 1992-09-22 三菱重工業株式会社 High and medium pressure turbine casing
WO2001059264A1 (en) * 2000-02-10 2001-08-16 Kabushiki Kaisha Toshiba Steam turbine and power generating equipment
US6790002B2 (en) 2000-02-10 2004-09-14 Kabushiki Kaisha Toshiba Steam turbine and power generating equipment
JP2011137387A (en) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Steam turbine, and method for operating the same

Similar Documents

Publication Publication Date Title
US2219994A (en) Gas turbine plant and regulating system therefor
EP0231952A2 (en) Method and apparatus for controlling temperatures of turbine casing and turbine rotor
JPS59229003A (en) Structure of main steam inlet of steam turbine
EP0900921A2 (en) Hydrogen burning turbine plant
JPS59231604A (en) Operation controlling method of thermal power plant
EP0933505B1 (en) Steam cooled system in combined cycle power plant
RU2498098C2 (en) Turbine cooling system and method of cooling turbine section with intermediate pressure
US5018356A (en) Temperature control of a steam turbine steam to minimize thermal stresses
US5967743A (en) Blade carrier for a compressor
US6851265B2 (en) Steam cooling control for a combined cycle power plant
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
JPS62251408A (en) Steam turbine casing
US20040040279A1 (en) System for control and regulation of the flame temperature for single-shaft gas turbines
JPS61138804A (en) Cooling system for steam turbine
JPS611809A (en) Casing of steam turbine
JPS60247001A (en) Thermal stress control device for steam turbine casing
JP2003106170A (en) Gas turbine, gas turbine combined plant and method for controlling cooling steam pressure
JPS614804A (en) Steam turbine
CN108799620B (en) A kind of valve casing cooling system
JPS62237009A (en) Steam valve for steam turbine
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JPS60195305A (en) Casing structure for steam turbine
JPH0932512A (en) Steam supply device of steam turbine gland seal
JP6637064B2 (en) Axial turbine
JPH0281905A (en) Forced cooling method for steam turbine and cooling device for the same